Machine Learning: A Probabilistic Perspective
Machine Learning
A Probabilistic Perspective

Kevin P. Murphy

The MIT Press
Cambridge, Massachusetts
London, England
This book is dedicated to Alessandro, Michael and Stefano, and to the memory of Gerard Joseph Murphy.
Contents

1 Introduction

1.1 Machine learning: what and why? 1
 1.1.1 Types of machine learning 2
1.2 Supervised learning 2
 1.2.1 Classification 3
 1.2.2 Regression 8
1.3 Unsupervised learning 9
 1.3.1 Discovering clusters 10
 1.3.2 Discovering latent factors 11
 1.3.3 Discovering graph structure 12
 1.3.4 Matrix completion 13
1.4 Some basic concepts in machine learning 15
 1.4.1 Parametric vs non-parametric models 15
 1.4.2 A simple non-parametric classifier: K-nearest neighbors 16
 1.4.3 The curse of dimensionality 17
 1.4.4 Parametric models for classification and regression 18
 1.4.5 Linear regression 19
 1.4.6 Logistic regression 20
 1.4.7 Overfitting 22
 1.4.8 Model selection 22
 1.4.9 No free lunch theorem 24

2 Probability 25

2.1 Introduction 25
2.2 A brief review of probability theory 26
 2.2.1 Discrete random variables 26
 2.2.2 Fundamental rules 26
 2.2.3 Bayes rule 27
 2.2.4 Independence and conditional independence 28
 2.2.5 Continuous random variables 30
 2.2.6 Quantiles 31
CONTENTS

2.2.7 Mean and variance 31

2.3 Some common discrete distributions 32
 2.3.1 The binomial and Bernoulli distributions 32
 2.3.2 The multinomial and multinoulli distributions 33
 2.3.3 The Poisson distribution 35
 2.3.4 The empirical distribution 35

2.4 Some common continuous distributions 36
 2.4.1 Gaussian (normal) distribution 36
 2.4.2 Degenerate pdf 37
 2.4.3 The Student t distribution 37
 2.4.4 The Laplace distribution 39
 2.4.5 The gamma distribution 39
 2.4.6 The beta distribution 40
 2.4.7 Pareto distribution 41

2.5 Joint probability distributions 42
 2.5.1 Covariance and correlation 42
 2.5.2 The multivariate Gaussian 44
 2.5.3 Multivariate Student t distribution 44
 2.5.4 Dirichlet distribution 45

2.6 Transformations of random variables 47
 2.6.1 Linear transformations 47
 2.6.2 General transformations 48
 2.6.3 Central limit theorem 49

2.7 Monte Carlo approximation 50
 2.7.1 Example: change of variables, the MC way 51
 2.7.2 Example: estimating π by Monte Carlo integration 52
 2.7.3 Accuracy of Monte Carlo approximation 52

2.8 Information theory 54
 2.8.1 Entropy 54
 2.8.2 KL divergence 55
 2.8.3 Mutual information 57

3 Generative models for discrete data 63

3.1 Introduction 63
 3.2 Bayesian concept learning 63
 3.2.1 Likelihood 65
 3.2.2 Prior 65
 3.2.3 Posterior 66
 3.2.4 Posterior predictive distribution 69
 3.2.5 A more complex prior 70

3.3 The Beta-Binomial model 70
 3.3.1 Likelihood 71
 3.3.2 Prior 72
 3.3.3 Posterior 73
 3.3.4 Posterior predictive distribution 75
3.4 The Dirichlet-multinomial model 76
 3.4.1 Likelihood 77
 3.4.2 Prior 77
 3.4.3 Posterior 77
 3.4.4 Posterior predictive 79
3.5 Naive Bayes classifiers 80
 3.5.1 Model fitting 81
 3.5.2 Using the model for prediction 83
 3.5.3 The log-sum-exp trick 84
 3.5.4 Feature selection using mutual information 84
 3.5.5 Classifying documents using bag of words 85

4 Gaussian models 95
 4.1 Introduction 95
 4.1.1 Notation 95
 4.1.2 Basics 95
 4.1.3 MLE for an MVN 97
 4.1.4 Maximum entropy derivation of the Gaussian * 99
 4.2 Gaussian Discriminant analysis 99
 4.2.1 Quadratic discriminant analysis (QDA) 100
 4.2.2 Linear discriminant analysis (LDA) 101
 4.2.3 Two-class LDA 102
 4.2.4 MLE for discriminant analysis 104
 4.2.5 Strategies for preventing overfitting 104
 4.2.6 Regularized LDA * 105
 4.2.7 Diagonal LDA 106
 4.2.8 Nearest shrunken centroids classifier * 107
 4.3 Inference in jointly Gaussian distributions 108
 4.3.1 Statement of the result 109
 4.3.2 Examples 109
 4.3.3 Information form 113
 4.3.4 Proof of the result * 114
 4.4 Linear Gaussian systems 117
 4.4.1 Statement of the result 117
 4.4.2 Examples 118
 4.4.3 Proof of the result * 122
 4.5 Digression: The Wishart distribution * 123
 4.5.1 Inverse Wishart distribution 124
 4.5.2 Visualizing the Wishart distribution * 125
 4.6 Inferring the parameters of an MVN 125
 4.6.1 Posterior distribution of μ 126
 4.6.2 Posterior distribution of Σ * 126
 4.6.3 Posterior distribution of μ and Σ * 130
 4.6.4 Sensor fusion with unknown precisions * 136
5 Bayesian statistics 147
5.1 Introduction 147
5.2 Summarizing posterior distributions 147
 5.2.1 MAP estimation 147
 5.2.2 Credible intervals 150
 5.2.3 Inference for a difference in proportions 152
5.3 Bayesian model selection 154
 5.3.1 Bayesian Occam’s razor 154
 5.3.2 Computing the marginal likelihood (evidence) 156
 5.3.3 Bayes factors 161
 5.3.4 Jeffreys-Lindley paradox * 162
5.4 Priors 163
 5.4.1 Uninformative priors 163
 5.4.2 Jeffreys priors * 164
 5.4.3 Robust priors 166
 5.4.4 Mixtures of conjugate priors 166
5.5 Hierarchical Bayes 169
 5.5.1 Example: modeling related cancer rates 169
5.6 Empirical Bayes 170
 5.6.1 Example: Beta-Binomial model 171
 5.6.2 Example: Gaussian-Gaussian model 171
5.7 Bayesian decision theory 174
 5.7.1 Bayes estimators for common loss functions 175
 5.7.2 The false positive vs false negative tradeoff 178
 5.7.3 Other topics * 182

6 Frequentist statistics 189
6.1 Introduction 189
6.2 Sampling distribution of an estimator 189
 6.2.1 Bootstrap 190
 6.2.2 Large sample theory for the MLE * 191
6.3 Frequentist decision theory 192
 6.3.1 Bayes risk 193
 6.3.2 Minimax risk 194
 6.3.3 Admissible estimators 195
6.4 Desirable properties of estimators 198
 6.4.1 Consistent estimators 198
 6.4.2 Unbiased estimators 198
 6.4.3 Minimum variance estimators 199
 6.4.4 The bias-variance tradeoff 200
6.5 Empirical risk minimization 202
 6.5.1 Regularized risk minimization 203
 6.5.2 Structural risk minimization 204
 6.5.3 Estimating the risk using cross validation 204
 6.5.4 Upper bounding the risk using statistical learning theory * 207
6.5.5 Surrogate loss functions 208
6.6 Pathologies of frequentist statistics * 209
 6.6.1 Counter-intuitive behavior of confidence intervals 210
 6.6.2 P-values considered harmful 211
 6.6.3 The likelihood principle 212
 6.6.4 Why isn't everyone a Bayesian? 213

7 Linear regression 215
 7.1 Introduction 215
 7.2 Model specification 215
 7.3 Maximum likelihood estimation (least squares) 215
 7.3.1 Derivation of the MLE 217
 7.3.2 Geometric interpretation 218
 7.3.3 Convexity 219
 7.4 Robust linear regression * 221
 7.5 Ridge regression 223
 7.5.1 Basic idea 223
 7.5.2 Numerically stable computation * 225
 7.5.3 Connection with PCA * 226
 7.5.4 Regularization effects of big data 228
 7.6 Bayesian linear regression 229
 7.6.1 Computing the posterior 230
 7.6.2 Computing the posterior predictive 231
 7.6.3 Bayesian inference when σ^2 is unknown * 232
 7.6.4 EB for linear regression (evidence procedure) 236

8 Logistic regression 243
 8.1 Introduction 243
 8.2 Model specification 243
 8.3 Model fitting 243
 8.3.1 MLE 244
 8.3.2 Steepest descent 245
 8.3.3 Newton’s method 247
 8.3.4 Iteratively reweighted least squares (IRLS) 248
 8.3.5 Quasi-Newton (variable metric) methods 249
 8.3.6 ℓ_2 regularization 250
 8.3.7 Multi-class logistic regression 250
 8.4 Bayesian logistic regression 252
 8.4.1 Gaussian/ Laplace approximation in general 252
 8.4.2 Derivation of the BIC 253
 8.4.3 Gaussian approximation for logistic regression 254
 8.4.4 Approximating the posterior predictive 255
 8.4.5 Residual analysis (outlier detection) * 258
 8.5 Online learning and stochastic optimization 259
 8.5.1 Online learning and regret minimization 259
8.5.2 Stochastic optimization and risk minimization 260
8.5.3 The LMS algorithm 263
8.5.4 The perceptron algorithm 263
8.5.5 A Bayesian view 264
8.6 Generative vs discriminative classifiers 265
8.6.1 Pros and cons of each approach 265
8.6.2 Dealing with missing data 266
8.6.3 Fisher’s linear discriminant analysis (FLDA) * 269

9 Generalized linear models and the exponential family 277
9.1 Introduction 277
9.2 The exponential family 277
 9.2.1 Definition 278
 9.2.2 Examples 278
 9.2.3 Log partition function 280
 9.2.4 MLE for the exponential family 282
 9.2.5 Bayes for the exponential family * 283
 9.2.6 Maximum entropy derivation of the exponential family * 285
9.3 Generalized linear models (GLMs) 286
 9.3.1 Basics 286
 9.3.2 ML and MAP estimation 288
 9.3.3 Bayesian inference 289
9.4 Probit regression 289
 9.4.1 ML/ MAP estimation using gradient-based optimization 290
 9.4.2 Latent variable interpretation 290
 9.4.3 Ordinal probit regression * 291
 9.4.4 Multinomial probit models * 291
9.5 Multi-task learning and mixed effect GLMs * 293
 9.5.1 Basic model 293
 9.5.2 Example: semi-parametric GLMMs for medical data 294
 9.5.3 Example: discrete choice modeling 294
 9.5.4 Other kinds of prior 295
 9.5.5 Computational issues 295
9.6 Learning to rank * 295
 9.6.1 The pointwise approach 296
 9.6.2 The pairwise approach 297
 9.6.3 The listwise approach 297
 9.6.4 Loss functions for ranking 298

10 Directed graphical models (Bayes nets) 301
10.1 Introduction 301
 10.1.1 Chain rule 301
 10.1.2 Conditional independence 302
 10.1.3 Graphical models 302
 10.1.4 Graph terminology 303
10.1.5 Directed graphical models 304

10.2 Examples 305
10.2.1 Naive Bayes classifiers 305
10.2.2 Markov and hidden Markov models 306
10.2.3 Medical diagnosis 307
10.2.4 Genetic linkage analysis * 309
10.2.5 Directed Gaussian graphical models * 312

10.3 Inference 313

10.4 Learning 314
10.4.1 Plate notation 314
10.4.2 Learning from complete data 316
10.4.3 Learning with missing and/or latent variables 317

10.5 Conditional independence properties of DGMs 318
10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties) 318
10.5.2 Other Markov properties of DGMs 321
10.5.3 Markov blanket and full conditionals 321

10.6 Influence (decision) diagrams * 322

11 Mixture models and the EM algorithm 331

11.1 Latent variable models 331

11.2 Mixture models 331
11.2.1 Mixtures of Gaussians 333
11.2.2 Mixture of multinoullis 334
11.2.3 Using mixture models for clustering 334
11.2.4 Mixtures of experts 336

11.3 Parameter estimation for mixture models 339
11.3.1 Unidentifiability 340
11.3.2 Computing a MAP estimate is non-convex 341

11.4 The EM algorithm 342
11.4.1 Basic idea 343
11.4.2 EM for GMMs 344
11.4.3 EM for mixture of experts 351
11.4.4 EM for DGMs with hidden variables 352
11.4.5 EM for the Student distribution * 353
11.4.6 EM for probit regression * 356
11.4.7 Theoretical basis for EM * 357
11.4.8 Online EM 359
11.4.9 Other EM variants * 361

11.5 Model selection for latent variable models 363
11.5.1 Model selection for probabilistic models 364
11.5.2 Model selection for non-probabilistic methods 364

11.6 Fitting models with missing data 366
11.6.1 EM for the MLE of an MVN with missing data 367
12 Latent linear models 375

12.1 Factor analysis 375
 12.1.1 FA is a low rank parameterization of an MVN 375
 12.1.2 Inference of the latent factors 376
 12.1.3 Unidentifiability 377
 12.1.4 Mixtures of factor analysers 379
 12.1.5 EM for factor analysis models 380
 12.1.6 Fitting FA models with missing data 381

12.2 Principal components analysis (PCA) 381
 12.2.1 Classical PCA: statement of the theorem 381
 12.2.2 Proof * 383
 12.2.3 Singular value decomposition (SVD) 386
 12.2.4 Probabilistic PCA 389
 12.2.5 EM algorithm for PCA 390

12.3 Choosing the number of latent dimensions 392
 12.3.1 Model selection for FA/PPCA 392
 12.3.2 Model selection for PCA 393

12.4 PCA for categorical data 396

12.5 PCA for paired and multi-view data 398
 12.5.1 Supervised PCA (latent factor regression) 399
 12.5.2 Partial least squares 400
 12.5.3 Canonical correlation analysis 401

12.6 Independent Component Analysis (ICA) 401
 12.6.1 Maximum likelihood estimation 404
 12.6.2 The FastICA algorithm 405
 12.6.3 Using EM 408
 12.6.4 Other estimation principles * 409

13 Sparse linear models 415

13.1 Introduction 415

13.2 Bayesian variable selection 416
 13.2.1 The spike and slab model 418
 13.2.2 From the Bernoulli-Gaussian model to ℓ_0 regularization 419
 13.2.3 Algorithms 420

13.3 ℓ_1 regularization: basics 423
 13.3.1 Why does ℓ_1 regularization yield sparse solutions? 424
 13.3.2 Optimality conditions for lasso 425
 13.3.3 Comparison of least squares, lasso, ridge and subset selection 429
 13.3.4 Regularization path 430
 13.3.5 Model selection 433
 13.3.6 Bayesian inference for linear models with Laplace priors 434

13.4 ℓ_1 regularization: algorithms 435
 13.4.1 Coordinate descent 435
 13.4.2 LARS and other homotopy methods 435
 13.4.3 Proximal and gradient projection methods 436
13.4.4 EM for lasso 441
13.5 ℓ_1 regularization: extensions 443
13.5.1 Group Lasso 443
13.5.2 Fused lasso 448
13.5.3 Elastic net (ridge and lasso combined) 449
13.6 Non-convex regularizers 451
13.6.1 Bridge regression 452
13.6.2 Hierarchical adaptive lasso 452
13.6.3 Other hierarchical priors 456
13.7 Automatic relevance determination (ARD)/ sparse Bayesian learning (SBL) 457
13.7.1 ARD for linear regression 457
13.7.2 Whence sparsity? 459
13.7.3 Connection to MAP estimation 459
13.7.4 Algorithms for ARD * 460
13.7.5 ARD for logistic regression 462
13.8 Sparse coding * 462
13.8.1 Learning a sparse coding dictionary 463
13.8.2 Results of dictionary learning from image patches 464
13.8.3 Compressed sensing 466
13.8.4 Image inpainting and denoising 466

14 Kernels 473
14.1 Introduction 473
14.2 Kernel functions 473
14.2.1 RBF kernels 474
14.2.2 Kernels for comparing documents 474
14.2.3 Mercer (positive definite) kernels 475
14.2.4 Linear kernels 476
14.2.5 Matern kernels 476
14.2.6 String kernels 477
14.2.7 Pyramid match kernels 478
14.2.8 Kernels derived from probabilistic generative models 479
14.3 Using kernels inside GLMs 480
14.3.1 Kernel machines 480
14.3.2 LIVMs, RVMs, and other sparse kernel machines 481
14.4 The kernel trick 482
14.4.1 Kernelized nearest neighbor classification 483
14.4.2 Kernelized K-medoids clustering 483
14.4.3 Kernelized ridge regression 486
14.4.4 Kernel PCA 487
14.5 Support vector machines (SVMs) 490
14.5.1 SVMs for regression 491
14.5.2 SVMs for classification 492
14.5.3 Choosing C 498
14.5.4 Summary of key points 498
14.5.5 A probabilistic interpretation of SVMs 499
14.6 Comparison of discriminative kernel methods 499
14.7 Kernels for building generative models 501
 14.7.1 Smoothing kernels 501
 14.7.2 Kernel density estimation (KDE) 502
 14.7.3 From KDE to KNN 504
 14.7.4 Kernel regression 504
 14.7.5 Locally weighted regression 506

15 Gaussian processes 509
 15.1 Introduction 509
 15.2 GPs for regression 510
 15.2.1 Predictions using noise-free observations 511
 15.2.2 Predictions using noisy observations 512
 15.2.3 Effect of the kernel parameters 513
 15.2.4 Estimating the kernel parameters 515
 15.2.5 Computational and numerical issues * 518
 15.2.6 Semi-parametric GPs * 518
 15.3 GPs meet GLMs 519
 15.3.1 Binary classification 519
 15.3.2 Multi-class classification 522
 15.3.3 GPs for Poisson regression 525
 15.4 Connection with other methods 526
 15.4.1 Linear models compared to GPs 526
 15.4.2 Linear smoothers compared to GPs 527
 15.4.3 SVMs compared to GPs 528
 15.4.4 LIVM and RVMs compared to GPs 528
 15.4.5 Neural networks compared to GPs 529
 15.4.6 Smoothing splines compared to GPs * 530
 15.4.7 RKHS methods compared to GPs * 532
 15.5 GP latent variable model 534
 15.6 Approximation methods for large datasets 536

16 Adaptive basis function models 537
 16.1 Introduction 537
 16.2 Classification and regression trees (CART) 538
 16.2.1 Basics 538
 16.2.2 Growing a tree 540
 16.2.3 Pruning a tree 543
 16.2.4 Pros and cons of trees 544
 16.2.5 Random forests 545
 16.2.6 CART compared to hierarchical mixture of experts * 545
 16.3 Generalized additive models 546
 16.3.1 Backfitting 546
 16.3.2 Computational efficiency 547
I6.3.3 Multivariate adaptive regression splines (MARS) 547
I6.4 Boosting 548
I6.4.1 Forward stagewise additive modeling 549
I6.4.2 L2boosting 552
I6.4.3 AdaBoost 552
I6.4.4 LogitBoost 554
I6.4.5 Boosting as functional gradient descent 554
I6.4.6 Sparse boosting 556
I6.4.7 Multivariate adaptive regression trees (MART) 556
I6.4.8 Why does boosting work so well? 557
I6.4.9 A Bayesian view 557
I6.5 Feedforward neural networks (multilayer perceptrons) 558
I6.5.1 Convolutional neural networks 559
I6.5.2 Other kinds of neural networks 562
I6.5.3 A brief history of the field 563
I6.5.4 The backpropagation algorithm 564
I6.5.5 Identifiability 566
I6.5.6 Regularization 566
I6.5.7 Bayesian inference 570
I6.6 Ensemble learning 574
I6.6.1 Stacking 574
I6.6.2 Error-correcting output codes 575
I6.6.3 Ensemble learning is not equivalent to Bayes model averaging 575
I6.7 Experimental comparison 576
I6.7.1 Low-dimensional features 576
I6.7.2 High-dimensional features 577
I6.8 Interpreting black-box models 579

17 Markov and hidden Markov Models 583
I7.1 Introduction 583
I7.2 Markov models 583
I7.2.1 Transition matrix 583
I7.2.2 Application: Language modeling 585
I7.2.3 Stationary distribution of a Markov chain 590
I7.2.4 Application: Google's PageRank algorithm for web page ranking 594
I7.3 Hidden Markov models 597
I7.3.1 Applications of HMMs 598
I7.4 Inference in HMMs 600
I7.4.1 Types of inference problems for temporal models 600
I7.4.2 The forwards algorithm 603
I7.4.3 The forwards-backwards algorithm 604
I7.4.4 The Viterbi algorithm 606
I7.4.5 Forwards filtering, backwards sampling 610
I7.5 Learning for HMMs 611
I7.5.1 Training with fully observed data 611
17.5.2 EM for HMMs (the Baum-Welch algorithm) 612
17.5.3 Bayesian methods for “fitting” HMMs * 614
17.5.4 Discriminative training 614
17.5.5 Model selection 615
17.6 Generalizations of HMMs 615
17.6.1 Variable duration (semi-Markov) HMMs 616
17.6.2 Hierarchical HMMs 618
17.6.3 Input-output HMMs 619
17.6.4 Auto-regressive and buried HMMs 620
17.6.5 Factorial HMM 621
17.6.6 Coupled HMM and the influence model 622
17.6.7 Dynamic Bayesian networks (DBNs) 622

18 State space models 625
18.1 Introduction 625
18.2 Applications of SSMs 626
18.2.1 SSMs for object tracking 626
18.2.2 Robotic SLAM 627
18.2.3 Online parameter learning using recursive least squares 630
18.2.4 SSM for time series forecasting * 631
18.3 Inference in LG-SSM 634
18.3.1 The Kalman filtering algorithm 634
18.3.2 The Kalman smoothing algorithm 637
18.4 Learning for LG-SSM 640
18.4.1 Identifiability and numerical stability 640
18.4.2 Training with fully observed data 641
18.4.3 EM for LG-SSM 641
18.4.4 Subspace methods 641
18.4.5 Bayesian methods for “fitting” LG-SSMs 641
18.5 Approximate online inference for non-linear, non-Gaussian SSMs 641
18.5.1 Extended Kalman filter (EKF) 642
18.5.2 Unscented Kalman filter (UKF) 644
18.5.3 Assumed density filtering (ADF) 646
18.6 Hybrid discrete/continuous SSMs 649
18.6.1 Inference 650
18.6.2 Application: Data association and multi target tracking 652
18.6.3 Application: fault diagnosis 653
18.6.4 Application: econometric forecasting 654

19 Undirected graphical models (Markov random fields) 655
19.1 Introduction 655
19.2 Conditional independence properties of UGMs 655
19.2.1 Key properties 655
19.2.2 An undirected alternative to d-separation 657
19.2.3 Comparing directed and undirected graphical models 658
19.3 Parameterization of MRFs 659
 19.3.1 The Hammersley-Clifford theorem 659
 19.3.2 Representing potential functions 661
19.4 Examples of MRFs 662
 19.4.1 Ising model 662
 19.4.2 Hopfield networks 663
 19.4.3 Potts model 665
 19.4.4 Gaussian MRFs 666
 19.4.5 Markov logic networks * 668
19.5 Learning 670
 19.5.1 Training maxent models using gradient methods 670
 19.5.2 Training partially observed maxent models 671
 19.5.3 Approximate methods for computing the MLEs of MRFs 672
 19.5.4 Pseudo likelihood 672
 19.5.5 Stochastic Maximum Likelihood 673
 19.5.6 Feature induction for maxent models * 674
 19.5.7 Iterative proportional fitting (IPF) * 675
19.6 Conditional random fields (CRFs) 678
 19.6.1 Chain-structured CRFs, MEMMs and the label-bias problem 678
19.7 Applications of CRFs 680
 19.7.1 Handwriting recognition 680
 19.7.2 Noun phrase chunking 681
 19.7.3 Named entity recognition 682
 19.7.4 CRFs for protein side-chain prediction 682
 19.7.5 Stereo vision 683
19.8 CRF training 685
19.9 Max margin methods for structured output classifiers * 686

20 Exact inference for graphical models 689
20.1 Introduction 689
20.2 Belief propagation for trees 689
 20.2.1 Serial protocol 689
 20.2.2 Parallel protocol 691
 20.2.3 Gaussian BP * 692
 20.2.4 Other BP variants * 694
20.3 The variable elimination algorithm 696
 20.3.1 The generalized distributive law * 699
 20.3.2 Computational complexity of VE 699
 20.3.3 A weakness of VE 702
20.4 The junction tree algorithm * 702
 20.4.1 Creating a junction tree 702
 20.4.2 Message passing on a junction tree 704
 20.4.3 Computational complexity of JTA 707
 20.4.4 JTA generalizations * 708
20.5 Computational intractability of exact inference in the worst case 708
21 Variational inference 713

21.1 Introduction 713
21.2 Variational inference 714
 21.2.1 Alternative interpretations of the variational objective 715
 21.2.2 Forward or reverse KL? * 715
21.3 The mean field method 717
 21.3.1 Derivation of the mean field update equations 718
 21.3.2 Example: Mean field for the Ising model 719
21.4 Structured mean field * 721
 21.4.1 Example: factorial HMM 722
21.5 Variational Bayes 724
 21.5.1 Example: VB for a univariate Gaussian 724
 21.5.2 Example: VB for linear regression 728
21.6 Variational Bayes EM 731
 21.6.1 Example: VBEM for mixtures of Gaussians * 732
21.7 Variational message passing and VIBES 738
21.8 Local variational bounds * 738
 21.8.1 Motivating applications 738
 21.8.2 Bohning’s quadratic bound to the log-sum-exp function 740
 21.8.3 Bounds for the sigmoid function 742
 21.8.4 Other bounds and approximations to the log-sum-exp function * 744
 21.8.5 Variational inference based on upper bounds 745

22 More variational inference 749

22.1 Introduction 749
22.2 Loopy belief propagation: algorithmic issues 749
 22.2.1 A brief history 749
 22.2.2 LBP on pairwise models 750
 22.2.3 LBP on a factor graph 751
 22.2.4 Convergence 753
 22.2.5 Accuracy of LBP 756
 22.2.6 Other speedup tricks for BP * 757
22.3 Loopy belief propagation: theoretical issues * 758
 22.3.1 UGMs represented in exponential family form 758
 22.3.2 The marginal polytope 759
 22.3.3 Exact inference as a variational optimization problem 760
 22.3.4 Mean field as a variational optimization problem 761
 22.3.5 LBP as a variational optimization problem 761
 22.3.6 Loopy BP vs mean field 765
22.4 Extensions of belief propagation * 765
 22.4.1 Generalized belief propagation 765
 22.4.2 Convex belief propagation 767
22.5 Expectation propagation 769
22.5.1 EP as a variational inference problem 770
22.5.2 Optimizing the EP objective using moment matching 771
22.5.3 EP for the clutter problem 773
22.5.4 LBP is a special case of EP 774
22.5.5 Ranking players using TrueSkill 775
22.5.6 Other applications 781
22.6 MAP state estimation 781
22.6.1 Linear programming relaxation 781
22.6.2 Max-product belief propagation 782
22.6.3 Graphcuts 783
22.6.4 Experimental comparison of graphcuts and BP 786
22.6.5 Dual decomposition 788

23 Monte Carlo inference 795
23.1 Introduction 795
23.2 Sampling from standard distributions 795
23.2.1 Using the cdf 795
23.2.2 Sampling from a Gaussian (Box-Muller method) 797
23.3 Rejection sampling 797
23.3.1 Basic idea 797
23.3.2 Example 798
23.3.3 Application to Bayesian statistics 799
23.3.4 Adaptive rejection sampling 799
23.3.5 Rejection sampling in high dimensions 800
23.4 Importance sampling 800
23.4.1 Basic idea 800
23.4.2 Handling unnormalized distributions 801
23.4.3 Importance sampling for a DGM: Likelihood weighting 802
23.4.4 Sampling importance resampling (SIR) 802
23.5 Particle filtering 803
23.5.1 Sequential importance sampling 804
23.5.2 The degeneracy problem 805
23.5.3 The resampling step 805
23.5.4 The proposal distribution 807
23.5.5 Application: Robot localization 808
23.5.6 Application: Visual object tracking 808
23.5.7 Application: time series forecasting 811
23.6 Rao-Blackwellised particle filtering (RBPF) 811
23.6.1 RBPF for switching LG-SSMs 811
23.6.2 Application: Tracking a maneuvering target 812
23.6.3 Application: Fast SLAM 814

24 Markov Chain Monte Carlo (MCMC) inference 817
24.1 Introduction 817
24.2 Gibbs sampling 818
24.2.1 Basic idea 818
24.2.2 Example: Gibbs sampling for the Ising model 818
24.2.3 Example: Gibbs sampling for inferring the parameters of a GMM 820
24.2.4 Collapsed Gibbs sampling * 821
24.2.5 Gibbs sampling for hierarchical GLMs 824
24.2.6 BUGS and JAGS 826
24.2.7 The Imputation Posterior (IP) algorithm 827
24.2.8 Blocking Gibbs sampling 827
24.3 Metropolis Hastings algorithm 828
24.3.1 Basic idea 828
24.3.2 Gibbs sampling is a special case of MH 829
24.3.3 Proposal distributions 830
24.3.4 Adaptive MCMC 833
24.3.5 Initialization and mode hopping 834
24.3.6 Why MH works * 834
24.3.7 Reversible jump (trans-dimensional) MCMC * 835
24.4 Speed and accuracy of MCMC 836
24.4.1 The burn-in phase 836
24.4.2 Mixing rates of Markov chains * 837
24.4.3 Practical convergence diagnostics 838
24.4.4 Accuracy of MCMC 840
24.4.5 How many chains? 842
24.5 Auxiliary variable MCMC * 843
24.5.1 Auxiliary variable sampling for logistic regression 843
24.5.2 Slice sampling 844
24.5.3 Swendsen Wang 846
24.5.4 Hybrid/ Hamiltonian MCMC * 848
24.6 Annealing methods 848
24.6.1 Simulated annealing 849
24.6.2 Annealed importance sampling 851
24.6.3 Parallel tempering 851
24.7 Approximating the marginal likelihood 852
24.7.1 The candidate method 852
24.7.2 Harmonic mean estimate 852
24.7.3 Annealed importance sampling 853
25 Clustering 855
25.1 Introduction 855
25.1.1 Measuring (dis)similarity 855
25.1.2 Evaluating the output of clustering methods * 856
25.2 Dirichlet process mixture models 859
25.2.1 From finite to infinite mixture models 859
25.2.2 The Dirichlet process 862
25.2.3 Applying Dirichlet processes to mixture modeling 865
25.2.4 Fitting a DP mixture model 866
25.3 Affinity propagation 867
25.4 Spectral clustering 870
 25.4.1 Graph Laplacian 871
 25.4.2 Normalized graph Laplacian 872
 25.4.3 Example 873
25.5 Hierarchical clustering 873
 25.5.1 Agglomerative clustering 875
 25.5.2 Divisive clustering 878
 25.5.3 Choosing the number of clusters 879
 25.5.4 Bayesian hierarchical clustering 879
25.6 Clustering datapoints and features 881
 25.6.1 Biclustering 883
 25.6.2 Multi-view clustering 883

26 Graphical model structure learning 887
26.1 Introduction 887
26.2 Quick and dirty ways to learn graph structure 888
 26.2.1 Relevance networks 888
 26.2.2 Dependency networks 889
26.3 Learning tree structures 890
 26.3.1 Directed or undirected tree? 891
 26.3.2 Chow-Liu algorithm for finding the ML tree structure 892
 26.3.3 Finding the MAP forest 892
 26.3.4 Mixtures of trees 894
26.4 Learning DAG structures 894
 26.4.1 Exact structural inference 894
 26.4.2 Scaling up to larger graphs 900
26.5 Learning DAG structure with latent variables 902
 26.5.1 Approximating the marginal likelihood when we have missing data 902
 26.5.2 Structural EM 905
 26.5.3 Discovering hidden variables 905
 26.5.4 Case study: Google's Rephil 908
 26.5.5 Structural equation models * 909
26.6 Learning causal DAGs 911
 26.6.1 Causal interpretation of DAGs 911
 26.6.2 Using causal DAGs to resolve Simpson's paradox 912
 26.6.3 Learning causal DAG structures 915
26.7 Learning undirected Gaussian graphical models 918
 26.7.1 MLE for a GRF 918
 26.7.2 Graphical lasso 919
 26.7.3 Bayesian inference for GRF structure 921
 26.7.4 Handling non-Gaussian data * 923
26.8 Learning undirected discrete graphical models 923
 26.8.1 Graphical lasso for MRFs/ CRFs 923
 26.8.2 Thin junction trees 924
27 Latent variable models for discrete data 927
27.1 Introduction 927
27.2 Distributed state LVMs for discrete data 928
27.2.1 Mixture models 928
27.2.2 Exponential family PCA 929
27.2.3 LDA and mPCA 930
27.2.4 GaP model and non-negative matrix factorization 931
27.3 Latent Dirichlet allocation (LDA) 932
27.3.1 Basics 932
27.3.2 Unsupervised discovery of topics 935
27.3.3 Quantitatively evaluating LDA as a language model 935
27.3.4 Fitting using (collapsed) Gibbs sampling 937
27.3.5 Example 938
27.3.6 Fitting using batch variational inference 939
27.3.7 Fitting using online variational inference 941
27.3.8 Determining the number of topics 942
27.4 Extensions of LDA 943
27.4.1 Correlated topic model 943
27.4.2 Dynamic topic model 944
27.4.3 LDA-HMM 945
27.4.4 Supervised LDA 949
27.5 LVMs for graph-structured data 952
27.5.1 Stochastic block model 953
27.5.2 Mixed membership stochastic block model 955
27.5.3 Relational topic model 956
27.6 LVMs for relational data 957
27.6.1 Infinite relational model 958
27.6.2 Probabilistic matrix factorization for collaborative filtering 961
27.7 Restricted Boltzmann machines (RBMs) 965
27.7.1 Varieties of RBMs 967
27.7.2 Learning RBMs 969
27.7.3 Applications of RBMs 973

28 Deep learning 977
28.1 Introduction 977
28.2 Deep generative models 978
28.2.1 Deep sigmoid networks 978
28.2.2 Deep Boltzmann machines 979
28.2.3 Deep belief networks 980
28.3 Training deep networks 981
28.3.1 Greedy layer-wise learning of DBNs 981
28.3.2 Fitting deep neural nets 983
28.3.3 Fitting deep auto-encoders 983
28.3.4 Stacked denoising auto-encoders 984
28.4 Applications of deep networks 984
CONTENTS

28.4.1 Handwritten digit classification using DBNs 984
28.4.2 Data visualization using deep auto-encoders 986
28.4.3 Information retrieval using deep autoencoders (semantic hashing) 986
28.4.4 Learning audio features using 1d convolutional DBNs 987
28.4.5 Learning image features using 2d convolutional DBNs 988
28.5 Discussion 989

Bibliography 991

Index to code 1021
Index to keywords 1025
Preface

Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods for data analysis continues to grow. The goal of machine learning is to develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Machine learning is thus closely related to the fields of statistics and data mining, but differs slightly in terms of its emphasis and terminology. This book provides a detailed introduction to the field, and includes worked examples drawn from application domains such as biology, text processing, computer vision, and robotics.

Target audience

This book is suitable for upper-level undergraduate students and beginning graduate students in computer science, statistics, electrical engineering, econometrics, or anyone else who has the appropriate mathematical background. Specifically, the reader is assumed to already be familiar with basic multivariate calculus, probability, linear algebra, and computer programming. Prior exposure to statistics is helpful but not necessary.

A probabilistic approach

This book adopts the view that the best way to make machines that can learn from data is to use the tools of probability theory, which has been the mainstay of statistics and engineering for centuries. Probability theory can be applied to any problem involving uncertainty. In machine learning, uncertainty comes in many forms: what is the best prediction (or decision) given some data? what is the best model given some data? what measurement should I perform next? etc.

The systematic application of probabilistic reasoning to all inferential problems, including inferring parameters of statistical models, is sometimes called a Bayesian approach. However, this term tends to elicit very strong reactions (either positive or negative, depending on who you ask), so we prefer the more neutral term “probabilistic approach”. Besides, we will often use techniques such as maximum likelihood estimation, which are not Bayesian methods, but certainly fall within the probabilistic paradigm.

Rather than describing a cookbook of different heuristic methods, this book stresses a principled model-based approach to machine learning. For any given model, a variety of algorithms
can often be applied. Conversely, any given algorithm can often be applied to a variety of models. This kind of modularity, where we distinguish model from algorithm, is good pedagogy and good engineering.

We will often use the language of graphical models to specify our models in a concise and intuitive way. In addition to aiding comprehension, the graph structure aids in developing efficient algorithms, as we will see. However, this book is not primarily about graphical models; it is about probabilistic modeling in general.

A practical approach

Nearly all of the methods described in this book have been implemented in a MATLAB software package called **PMTK**, which stands for probabilistic modeling toolkit. This is freely available from pmtk3.googlecode.com (the digit 3 refers to the third edition of the toolkit, which is the one used in this version of the book). There are also a variety of supporting files, written by other people, available at pmtksupport.googlecode.com.

MATLAB is a high-level, interactive scripting language ideally suited to numerical computation and data visualization, and can be purchased from www.mathworks.com. (Additional toolboxes, such as the Statistics toolbox, can be purchased, too; we have tried to minimize our dependence on this toolbox, but it is nevertheless very useful to have.) There is also a free version of Matlab called **Octave**, available at http://www.gnu.org/software/octave/, which supports most of the functionality of MATLAB (see the PMTK website for a comparison).

PMTK was used to generate many of the figures in this book; the source code for these figures is included on the PMTK website, allowing the reader to easily see the effects of changing the data or algorithm or parameter settings. The book refers to files by name, e.g., naiveBayesFit. In order to find the corresponding file, you can use two methods: within Matlab you can type which naiveBayesFit and it will return the full path to the file; or, if you do not have Matlab but want to read the source code anyway, you can use your favorite search engine, which should return the corresponding file from the pmtk3.googlecode.com website.

Details on how to use PMTK can be found on the PMTK website, which will be updated over time. Details on the underlying theory behind these methods can be found in this book.

Acknowledgments

A book this large is obviously a team effort. I would especially like to thank the following people: my wife Margaret, for keeping the home fires burning as I toiled away in my office for the last six years; Matt Dunham, who created many of the figures in this book, and who wrote much of the code in PMTK; Baback Moghaddam, who gave extremely detailed feedback on every page of an earlier draft of the book; Chris Williams, who also gave very detailed feedback; Cody Severinski and Wei-Lun Lu, who assisted with figures; generations of UBC students, who gave helpful comments on earlier drafts; Daphne Koller, Nir Friedman, and Chris Manning, for letting me use their latex style files; Stanford University, Google Research and Skyline College for hosting me during part of my sabbatical; and various Canadian funding agencies (NSERC, CRC and CIFAR) who have supported me financially over the years.

In addition, I would like to thank the following people for giving me helpful feedback on parts of the book, and/or for sharing figures, code, exercises or even (in some cases) text: David Blei,

Kevin Murphy
Palo Alto, California
March 2012