
Grammars (C2)

• Stochastic Grammars (2.4) (Bayes Net w/ dynamic structure)

• Polytime for Types 2-3*

• Wikipedia says most natural languages generated by Type-1

• Intermediate between 1 and 2: Tree-adjoining/Attribute Grammars

• Type-0 includes innate universal grammar shared by all humans*



Why Grammars?

• Composition and
Reusability

• Productivity
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Figure 31: An And-Or graph example for the object category – clock. It has two parse graphs shown in
Figure 30, one of which is illustrated in dark arrows. Some leaf nodes are omitted from the graph for clarity.
From [87].

each link e ∈ R. The former is like the SCFG and the latter is like the Markov random fields or graphical
models. We will discuss the probability component in the next subsection.

Before concluding this section, we show an And-Or graph for a clock category [87] in Figure 31. Fig. 31
has shown two parse graphs as instances of this And-Or graph. The dark bold arrows in Figure 31 are the
parse tree shown in Fig.30.(a).

Another And-Or example is shown in Figure 40. It is a subgraph extracted, for reason of clarity, from
a big And-Or graph for the upper body of human figure [9]. Figure 41 displays three cloth configurations
produced by this And-Or graph.

In summary, an And-Or graph Gand−or defines a context sensitive graph grammar with VT being its
vocabulary, VN the production rules, Σ its language, R the contexts. Gand−or contains all the possible parse
graphs which in turns produce a combinatorial number of configurations. Again, the number of configurations
is far larger than the vocabulary, i.e.

|VN ∪ VT | << |Σ|. (52)

This is a crucial aspect for representing the large intra-category structural variations.
Our next task is to define a probability model on Gand−or to make it a stochastic grammar.
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(fewer training examples, represent large intra-class variation)



Image Grammar Challenges (2.3 + 2.6)
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Figure 11: An example of ambiguous sentence with two parse trees . The non-terminal nodes S, V, NP, VP denotes sentence,

verbal, noun phrase, and verbal phrase respectively. Note that if the two parses are merged, we obtain a graph, not a tree, with

a ‘diamond’ in it as above.

2. High level patterns which incorporate multiple partial patterns.

3. ‘joints’ between two high level parts where some sharing of pixels or edges occurs.

4. Occlusion where a background object is completed behind a foreground object, so the two objects
overlap.

(a) (b)

(c) (d)

Figure 12: Four types of images in which ‘reusable parts’ overlap. (a) The pinnocio nose is a part of the background whose

gray level is close to the face, so it can be grouped with the face or the background. This algorithm chose the wrong parse. (b)

The square can be parsed in two different ways depending on which partial patterns are singled out. Neither parse is wrong

but the mid-level units overlap. (c) The two halves of a butt joint have a common small edge. (d) The reconstructed complete

sky, trees and field overlap with the face.

A common cause of ambiguity in images is when there is an accidental match of color across the edge of
an object. An example is shown in Figure 12a: the man’s face has similar color to the background and, in
fact, the segmenter decided the man had a pinnocio-like nose. The true background and the false head with
large nose overlap. As in the linguistic examples, there is only ‘true’ parse and the large nose part should
be rejected.

An example of the second is given by a square (or by many alpha-numeric characters). A square may
be broken up into two pairs of parallel lines. A pair of parallel lines is a common reusable part in its own
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Ambiguity (2.3) No LR Order

the context information which makes sure that the components in a configuration observe good spatial
relationships between object parts, for example, relative positions, ratio of sizes, and consistency of colors.
Both aspects encode important parts of our visual knowledge.

Going from 1D language grammars to 2D image grammars is non-trivial and requires a major leap
in technology. Perhaps more important than anything else, one faces enormous complexity, although the
principles are still simple. The following section summarizes three major differences (and difficulties) between
the language grammars and image grammars.

The first huge problem is the loss of the left-to-right ordering in language. In language, every production
rule A → β is assumed to generate a linearly ordered sequence of nodes β and following this down to the
leaves, we get a linearly ordered sequence of terminal words. In vision, we have to replace the implicit links
of words to their left and right neighbors by the edges of a more complex ‘region adjacency graph’ or RAG.
To make this precise, let the domain D of an image I have a decomposition D = ∪k∈SRk into disjoint
regions. Then we make a RAG with nodes 〈Ri〉 and edges 〈Rk〉 — 〈Rl〉 whenever Rk and Rl are adjacent.
This means we must explicitly add horizontal edges to our parse tree to represent adjacency. In a production
rule A → β, we no longer assume the nodes of β are linearly ordered. Instead, we should make β into a
configuration, that is, a set of nodes from VN ∪ VT plus horizontal edges representing adjacency. We shall
make this precise below.

Ideas to deal with the loss of left-to-right ordering have been proposed by the K.S. Fu school of ‘syntactic
pattern recognition’ under the names ‘web grammars’ and ‘plex grammars’ [22], by Grenander in his pattern
theory [27], and more recently by graph grammars for diagram interpretation in computer science [61]. These
ideas have not received enough attention in vision. We need to study the much richer spatial relations for
how object and parts are connected. Making matters more complex, due to occlusions and other non-local
groupings, non-adjacent spatial relations often have to be added in the course of parsing.

a a aaaa

(a) (b)

Figure 14: A cheetah and the background after local segmentation: both can be described by a RAG. Without the left-to-right

order, if the regions are to be merged one at a time, they have a combinatorially explosive number of parse trees.

One immediate consequence of the lack of natural ordering is that a region has very ambiguous production
rules. Let A be a region and a an atomic region, and let the production rules be A → aA | a. A linear region
ω = (a, a, a, ..., a) has a unique parse graph in left-to-right ordering. With the order removed, it has a
combinatorial number of parse trees. Figure 14 shows an example of parsing an image with a cheetah. It
becomes infeasible to estimate the probability p(ω) by summing over all these parse trees in (10).

Therefore we must avoid these recursively defined grammar rules A → aA, and treat the grouping of
atomic regions into one large region A as a single computational step, such as the grouping and partitioning
in a graph space [3]. Thus the probability p(ω) is assigned to each object as a whole instead of the production
rules. In the literature, there are a number of hierarchic representations by an adaptive image pyramid, for
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Continuous Image Scaling

example, the work by Rosenfeld and Hong in the early 80’s [33], and the multi-scale segmentation by Galun
et al [24]. Though generic elements are grouped in these works, there are no explicit grammar rules. We
shall distinguish such multi-scale pyramid representation from parse trees.

The second issue, unseen in language grammar, is the issue of image scaling [82, 45, 80]. It is a unique
property of vision that objects appear at arbitrary scales in an image when the 3D object lies nearer or farther
from the camera. You cannot hear or read an English sentence at multiple scales, but the image grammar
must be a multi-resolution representation. This implies that the parse tree can terminate immediately at
any node because no more detail is visible.

Figure 15 shows a human face in three levels from [86]. The left column shows face images at three
resolutions, the middle column shows three configurations (graphs) of increasing detail, and the right col-
umn shows the dictionaries (terminals) used at each resolution respectively. At a low resolution, a face is
represented by patches as a whole (for example, by principle component analysis), at a middle resolution,
it is represented by a number of parts, and at a higher resolution, the face is represented by a sketch graph
using smaller image primitives. The sketch graphs shown in the middle of Figure 15 expands with increasing
resolution. One can account for this by adding some termination rules to each non-terminal node, e.g. each

images                                   sketches                                  primitives

Figure 15: A face appears at three resolutions is represented by graph configurations in three scales. The right column shows

the primitives used at the three levels.

non-terminal node may exit the production for a low resolution case.

∀A ∈ VN , A → β1 | · · · |βn(A) | t1 | t2 |· (18)

where t1, t2,∈ VT are image primitives or image templates for A at certain scales. For example, if A is a car,
then t1, t2 are typical views (small patches) of the car at low resolution. As they are in low resolution, the
parts of the cars are not very distinguishable and thus are not represented separately. The decompositions
βi, i = 1, 2, ..., n(A) represent the production rules for higher resolutions, so this new issue does not complicate
the grammar design, except that one must learn the image primitives at multiple scales in developing the
visual vocabulary.

The third issue with image grammars is that natural images contain a much wider spectrum of quite
irregular local patterns than in speech signals. Images not only have very regular and highly structured
objects which could be composed by production rules, they also contain very stochastic patterns, such as
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Continuous Spectrum of
Texture/Clutter



Previous Work on Image 
Grammars (2.7)

• Syntactic Pattern Recognition

• Medial Axis, Shock Graphs

• Pattern Theory

• Sparse Coding

clutter and texture which are better represented by Markov random field models. In fact, the spectrum is
continuous. The structured and textured patterns can transfer from one to the other through continuous
scaling [85, 80]. The two categories of models ought to be integrated more intimately and melded into a
common model. This raises numerous challenges in modeling and learning at all levels of vision. For example,
how do we decide when we should develop a image primitive (texton) for a specific element or use a texture
description (for example, a Markov Random Field)? How do we decide when we should group objects in a
scene by a production rule or by a Markov random field for context?

2.7 Previous work in image grammars

There are four streams of research on image grammars in the vision literature.
The first stream is syntactic pattern recognition by K.S. Fu and his school in the late 1970s to early 1980s

[22]. Fu depicted an ambitious program for scene understanding using grammars. A block world example
is illustrated in Figure 16. Similar image understanding systems were also studied in the 1970-80s [55, 32]
The hierarchical representation on the right is exactly the sort of parse graph that we are pursuing today.
The vertical arrows show the decomposition of the scene and objects, and the horizonal arrows display some
relations, such as support and adjacency. Fu and collaborators applied stochastic grammars to simple objects
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Figure 16: A parser tree for a block world from (Fu, 1982). The ellipses represents non-terminal nodes and the squares are

for terminal nodes. The parse tree is augmented into a parse graph with horizonal connections for relations, such as one object

supporting the other, or two adjacent objects sharing a boundary.

(such as diagrams) and shape contours (such as outline of a chromosome). Most of the work remained in
1D structures, although the ideas of web grammars and plex grammars were also studied. This stream was
disrupted in the 1980s and suffered from the lack of an image vocabulary that is realistic enough to express
real world objects and scenes, and reliably detectable from images. This remains a challenge today, though
much progress has been made recently in appearance based methods, such as PCAs, image primitives, [30],
code books [17], fragments and patches [37, 76]. It is worth mentioning that many of these works on patches
and fragments do not provide a formalism for composition and that they lack the bond structures studied
in this paper.

The second stream are the medial axis techniques for analyzing 2D shapes. For animate objects repre-
sented by simple closed contours, Blum argued in 1973 [8] that medial axes are an intuitive and effective
representation of a shape, in contrast to boundary fragments. Leyton proposed a process grammar approach
to these in 1988 [42]. He argued that any shape is a record of motion history, and developed a grammar for
the procedure for how a shape grows from a simple object, say a small circle. A shape grammar for shape
matching and recognition via medial axes was then developed by Zhu and Yuille in 1996 [90]. An example
is shown on the left in Figure 17. The dog should be read as a node A in the parse tree and the fragments
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below it as the child nodes for a production rule that expands the dog into its limbs, trunk, head and tail.
The circles are the maximal circles on which the medial axis is based and allow one to create horizontal
arrows between the parts, so that the production yields not merely a set of parts but a configuration.

A formal shock graph was studied by Zucker’s school including Dickinson[39], Kimia[68], Siddiqi et
al.[67, 64, 40]. They reverse Leyton’s growth process by collapsing the shape using the distance transform.
The singularities in the process create “shocks”, for example, when two sides of the leg of a dog collapse into
an axis. Thus different sections of their skeleton are characterized by the types of singularity and record
the temporal record of the shape’s collapse. Figure 17 shows on the right the shock graph of a goat from
[67]. The vertical arrows in their shock tree are very different from those in the parse tree. In the shock tree
the child nodes are a younger generation that grow from the parent nodes, thus the two graphs have quite
different interpretations.
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Figure 17: (a) A dog and its decomposition into parts using the medial axis algorithm of [90]. (b) The shock graph of a goat

with its shock tree in (c) adopted from [67]. The root of the tree is the node at the “hip” of the goat marked by a square.

The third stream can be seen as a number of works branching out from the school of pattern theory.
Grenander [27] defined a regular pattern on a set of graphs which are made from some primitives which he
called “generators”. Each generator is like a terminal element and has a number of attributes and “bonds” to
connect with other generators. S. Geman and collaborators [6, 25, 35] proposed a more ambitious formulation
for compositionality which is quite similar to that developed in this paper. Moreover, they seek to create
not only computer vision systems but models of cortical vision mechanisms in animals. In sharp contrast to
our approach, they make the overlapping of their reusable parts into a central element of their formalism.
This overlapping is used to allow parts to compute their ‘binding strength’ depending on any and all features
of this overlap. It is also the key, in their system, to synchronizing the activity of the neurons expressing
the higher order parts. As a proof of concept, they applied the compositional system to handwritten upper
case letter recognition and to licence plate reading [35]. The work in this paper belongs to this approach,
cf. an attribute grammar to parse images of the man-made world [31] and a context sensitive grammar for
representing and recognizing human clothes [9]. These will be reviewed in later sections.

Finally, the sparse image coding model can be viewed as an attribute stochastic context free grammar.
In sparse coding [56, 69], an image is made of a number of n independent image bases, and there are a
few types of image bases, such as Gabor cosine, Gabor sine, and Laplacian of Gaussian etc. These bases
have attributes θ = (x, y, τ, σ,α) for locations, orientations, scales and contrasts respectively. This can be
expressed as a SCFG. Let S denote a scene, A an image base, and a,b,c the different bases.

S → An, n ∼ p(n) ∝ e−λon,

A→ a(θ) | b(θ) | c(θ), θ ∼ p(θ) ∝ e−λ|α|,
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And-Or Graph (6.2)

• And-Or Tree (PCFG):

• (Leaf Node) := a

• (Or Node) := A (label)

• (And Node) := γ (template)

• And-Or Graph (Eq 54-55):

• Horizontal Or Edges (pot.)

• *Other Relations

• *Sharing Nodes

1, An And-Or graph. Figure 3.(a) shows a simple example of an And-Or graph. An And-Or graph includes
three types of nodes: And-nodes (solid circles), Or-nodes (dashed circles), and terminal nodes (squares). An
And-node represents a decomposition of an entity into its parts. It corresponds to the grammar rules, for
example,

A→ BCD, H → NO.

The horizontal links between the children of an And-node represent relations and constraints. The Or-nodes
act as ”switches” for alternative sub-structures, and stands for labels of classification at various levels, such
as scene category, object classes, and parts etc. It corresponds to production rules like,

B → E | F, C → G | H | I.

Due to this recursive definition, one may merge the And-Or graphs for many objects or scene categories into
a larger graph. In theory, all scene and object categories can be represented by one huge And-Or graph, as
it is the case for natural language. The nodes in an And-Or graph may share common parts, for example,
both cars and trucks have rubber wheels as parts, and both clock and pictures have frames.
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Figure 3: . Illustrating the And-Or graph representation. (a) An And-Or graph embodies the grammar productions rules

and contexts. It contains many parse graphs, one of which is shown in bold arrows. (b) and (c) are two distinct parse graphs

by selecting the switches at related Or-nodes. (d) and (e) are two graphical configurations produced by the two parse graphs

respectively. The links of these configurations are inherited from the And-or graph relations.

2, A parse graph, as shown in Figure 1, is a hierarchic generative interpretation of a specific image. A
parse graph is augmented from a parse tree, mostly used in natural or programming language by adding a
number of relations, shown as side links, among the nodes. A parse graph is derived from the And-Or graph
by selecting the switches or classification labels at related Or-nodes. Figure 3.(b) and (c) are two instances
of the parse graph from the And-Or graph in Figure 3.(a). The part shared by two node may have different
instances, for example, node I is a child of both nodes C and D. Thus we have two instances for node 9.
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Learning (C7)

• 1. No horizontal edges, 
standard PCFG learning

• 2. Introduce edge w/ 
highest information gain 
(67)

• 3. Sample to approximate 
expectations (63,65)

• 4. Move down gradient

• Repeat 2-4

learned model in the spirit of analysis-by-synthesis. In this subsection, we show synthesis results in sampling
the probabilistic ensemble (or the language) defined by the grammar, i.e. sampling the typical configurations
from the probabilistic model defined on the And-Or graph.

C ∼ L(Gand−or) = {(Ck, p(Ck)) : S
Gand−or=⇒ Ck}. (69)

This is equivalent to first sampling the parse graphs,

pg;∼ p(pg;Θ,∆), (70)

and then producing the configurations,
pg→ C. (71)

(a)

(b)

(c)

(d)

(e)

Figure 32: Learning the And-Or graph parameters for the clock category. (a) Sampled clock examples (synthesis) based on

SCFG (Markov tree) that accounts for the frequency of occurrence. (b-e) Synthesis examples at four incremental statges of the

minimax entropy pursuit process. (b) Matching the relation positions between parts, (c) further matching the relative scales,

(d) further pursuing the hinge relation, (e) further macthing the containing relation. From [58]

Figure 32 illustrates the synthesis process for a clock category whose And-Or graph is shown previously
in Figure 31. The experiment is from (Porway, Yao and Zhu)[58]. Each row in Figure 32 shows five typical
examples from the synthesis set Ωsyn

pg in different iterations. In the first row, the clocks are sampled from
the SCFG (Markov tree) in a window. These examples have valid parts for clocks shown in different colors,
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Parsing (decoding)

• Recursive top-down / bottom-up algorithm:

• Bottom-up:

• Feature Detection

• Composition Binding

• Top-down

• Compute Hypothesis Posterior

• Update Hypothesis

8 Recursive top-down / bottom-up algorithm for image parsing

This section briefly reviews an inference algorithm with three case studies of image parsing using grammars
by the author and collaborators. The first case is a generic grammar for man-made world scenes. The com-
positional objects include buildings (indoor or outdoor) and furniture [31]. The second is a more restrictive
grammar for human clothes and upper body [9]. The third case [87] applies the grammar for recognizing
five object categories –clock, bike, computer (screen and keyboard), cup/bowl, teapot. In both cases, the
inference is performed under the Bayesian framework. Given an input image I as the terminal configuration,
we compute a parse graph pg that maximizes a posterior probability

pg∗ = arg max
pg

p(I|pg;∆sk)p(pg;Θ,∆). (72)

The likelihood model is based on the primal sketch in Section 3.2, and the prior is defined by the grammar
model in equation 54.

In the following, we briefly review the the computing procedures, and refer to the original papers [31]
and [9] for more details.

The And-Or graph is defined recursively, as is the inference algorithm. This recursive property largely
simplifies the algorithm design and makes it easily scalable to arbitrarily large number of object categories.

Consider an arbitrary And-node A in an And-Or graph. A may correspond to an object or a part.
Without loss of generality, we assume it can be either terminated into one of n leaves at low resolution or
decomposed into n(A) = 3 parts,

A→ A1 · A2 · A3 | t1 | · · · | tn. (73)

This recursive unit is shown in Figure 34.

t1 t2 tn

A

A1 A2 A3

At1 t2 tn

A A1 A2 A3
. .

open list (weighted particles for hypotheses)

closed list (accepted instances)

Figure 34: Data structure for the recursive inference algorithm on the And-Or graph. See text for interpretation.

In this figure, each such unit is associated with data structures which are widely used in heuristic searches
in artificial intelligence [60].

• An Open List stores a number of weighted particles (or hypotheses) which are computed in bottom-up
process for the instances of A in the input image.

• A Closed List stores a number of instances for A which are accepted in the top-down process. These
instances are nodes in the current parse graph pg.

Thus the inference algorithm consists of two basic processes that compute and maintain the Open and
Closed lists for each unit A.
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• Vocabulary (C3):

• Image Primitives

• Basic Geometric Groupings

• Parts and Objects

• Relations (C4):

• Connections between primitives

• Joints and Junctions

• Object Interactions and Semantics

(a) input image (b) sketch graph -- configuration (c) pixels covered by primitives 

(d) remaining texture pixels (e)  texture pixels clustered (f) reconstructed image

Figure 21: An example of the primal sketch model. (a) An input image I. (b) The sketch graph – configuration computed

from the image I. (c) The pixels in the sketchable part Λsk. (d) The remaining non-sketchable portion are textures, which are

is segmented into a small number of homogeneous regions in (e). (f) The final synthesized image integrating seamlessly the

structures and textures. From [30].

sparse image coding [47, 56] mentioned before, and other image patches and fragments in the recent vision
literature [76]. The bonds encode the topological information, in addition to the geometry and appearance,
and enable the composition of bigger and bigger structures in the hierarchy.

3.3 Basic geometric groupings

If by analogy, image primitives are like English letters or phonemes, then one wonders what are the visual
words and visual phrases. This is the central question addressed by the gestalt school of psychophysicists
[38, 93]. One may summarize their work by saying that the geometric relations of alignment, parallelism and
symmetry, especially as created by occlusions, are the driving forces behind the grouping of lower level parts
into larger parts. A set of these composite parts is shown in Figure 22 and briefly described in the caption.

It is important to realize that these groupings occur at every scale. Many of them occur in local groupings
containing as few as 2 to 8 image primitives as in the previous section. We will call these ‘graphlets’ [83].
But extended curves, parallels and symmetric structures may span the whole image. Notably, symmetry
is always a larger scale feature but one occurring very often in nature (e.g. in faces) and which is highly
detectable by people even in cluttered scenes. Parallel lines also occur frequently in nature, e.g. in tree
trunks. The occlusion clue shown in Figure 22 is especially important because it is not only common but is
the strongest clue in a static 2D image to the 3D structure of the scene. Moreover, it implies the existence of
an ‘amodal’ or occluded contour representing the continuation of the left and right edges behind the central
bar. This necessitates a special purpose algorithm to be discussed below. Figure 23 shows an image with its
primal sketch on the right side with its graphlets shown in dark line segments.

These graphlets are learned through clustering and binding the image primitives in a way discussed in
equation 1. Each cluster in this space is an equivalence class subject to an affine transform, some deformation,
as well as minor topological editing. These graphlets are generic 2D patterns, and some of them could be
interpreted as object parts.
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The conventional wavelets, Gabor image bases, image patches, and image fragments are possible examples
of this visual vocabulary except that they don’t have bonds. As an image grammar must adopt a multi-
resolution representation, the elements in its vocabulary represent visual concepts at all levels of abstraction
and complexity. In the following we introduce some examples of the visual vocabulary at the low, middle,
and high levels respectively.

3.2 Image primitives

In the 1960s-70s, Julesz conjectured that textons (blobs, bars, terminators, crosses) are the atomic elements
in the early stage of visual perception for local structures [36]. He found in texture discrimination experiments
that the human visual system seem to detect these elements with a parallel computing mechanism. Marr
extended Julesz’s texton concept to image primitives which he called ‘symbolic tokens’ in his primal sketch
representation [49]. An essential criterion in selecting a dictionary in low level vision is to ensure that they
are parsimonious and sufficient in representing real world images, and more importantly they should have the
necessary structures to allow composition into higher level parts. In this subsection, we review a dictionary
of image primitives proposed in Guo et al [30] as a formal mathematical model of the primal sketch. Many
other studies have come up with similar lists, including studies which are based on the statistical analysis of
small image patches from large databases [41, 34].

(a) (b)

Figure 19: Low level visual vocabulary – image primitives. (a). Some examples of image primitives: blobs, terminators,

edges, ridges, ‘L’-junctions, ‘T’-junction, and cross junction etc. These primitives are the elements for composing a bigger

graph structure at the upper level of the hierarchy. (b) is an example of composing a big ‘T’-shape image using 7 primitives.

From (Guo, Zhu and Wu, 2003).

Illustrated in Figure 19.(a), an image primitive is a small image patch with a degree d connections or
bonds which are illustrated by the half circles. The primitives are called blobs, terminators, edges or ridges,
‘L’-junctions, ‘T’-junctions, and cross junctions for d = 0, 1, 2, 3, 4 respectively. Each primitive has a number
of attributes for its geometry and appearance. The geometric attributes include position, orientation, scale,
and relative positions of the bonds with respect to the center. The appearance is described by the intensity
profiles around the center and along the directions perpendicular to the line-segment connecting the center
and the bonds. For instance, a d = 2 primitive could be called a step edge, a ridge/bar, or double edge
depending on its intensity profile. Each bond of the primitive is like an arm or hand. When the bonds of two
primitives are joined by matching the two half circles, we say they are connected. Figure 19.(b) illustrates
how a ‘T’-shape is composed through 3 terminators, 3 bars, and 1 ‘T’-junction.
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(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)

(i)

(k)

(j)

Figure 22: Middle level visual vocabulary: common groupings found in images. (a) extended curves, (b) curves with breaks

and imperfect alignment, (c) parallel curves, (d) parallels continuing past corners, (e) ends of bars formed by parallels and

corners, (f) curves continuing across paired T-junctions (the most frequent indication of occlusion), (g) a bar occluded by some

edge, (h) a square, (i) a curve created by repetition of discrete similar elements, (j) symmetric curves and (k) parallel lines

ending at terminators forming a curve.

(a) (b)

Figure 23: An example of graphlets in natural image. The graphlets are highlighted in the primal sketch. These graphlets

can be viewed as larger pieces of lego.

3.4 Parts and objects

If one is only interested in certain object categories segmented from the background, such as bicycles, cars,
ipods, chairs, clothes, the dictionary will be object parts. Although these object parts are significant within
each category or reusable by a few categories, their overall frequency is low and they are often rare events
in a big database of real world images. Thus the object parts are less significant as contributors to lowering
image entropy than the graphlets presented above, and the latter are, in turn, less entropically significant
than the image primitives at the low level.

We take one complex object category – clothes as an example. Figure 24 shows how a shirt is composed
of three parts: a collar, and a left and a right short sleeves. In this figure, each part is represented by an
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Figure 24: . High level visual vocabulary – the objects and parts. We show an example of upper body clothes made of three

parts: a collar, a left and a right short sleeves. Each part is again represented by a graph with bonds. A vocabulary of part for

human clothes is shown in Figure 25.

attribute graph with open bonds, like the graphlets. For example, the collar part has 5 bonds, and the two
short sleaves have 3 bonds to be connected with the arms and collar. By decomposing a number of instances
in the clothes category together with upper body and shoes, one can obtain a dictionary of parts. Figure 25
shows some examples for each category.
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Figure 25: . The dictionary of object parts for cloth and body components. Each element is a small graph composed of

primitives and graphlets and has open-bonds for collecting with other parts.

Thus we denote the dictionary by

∆cloth = {(Φcloth
i (x, y;αi),βi) : ∀i,αi,βi.} (24)

As before, Φcloth
i is an image patch defined in a domain Λcloth

i which does not have to be compact or connected.
αi controls the geometric and photometric attributes, and βi = (βi1,βi2, . . . , βid(i)) is a set of open bonds.
These bonds shall be represented as address variables that point to other bonds. Some upper-cloth examples
that are synthesized by these parts are shown in Figure 41.

In fact, the object parts defined above are not no much different from the dictionaries of image primitives
or graphlets, except that they are bigger and more structured. Indeed they form a continuous spectrum for
the vision vocabulary from low to high levels of vision.
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Two bonds βij and βkl are said to be connected if they are aligned in position and orientation. Therefore
the bonding relation is a set of pairs of bonds with attributes:

Ebond(S) = {(βij ,βkl ; γ, ρ)} (28)

where γ = (x, y, θ) denote the position and orientation of the bond. The latter is the tangent direction at
the bond for the two connected primitives. ρ is a function to check the consistency of intensity profile or
color between two connected primitives.

The trivial example is the image lattice. The primitives Ai, i = 1, ..., |Λ| are the pixels. Each pixel
has 4 bonds βij , j = 1, 2, 3, 4. Then Ebond(S) is the set of 4-nearest neighbor connections. In this case,
γ = nil is empty, and ρ is a pair-clique function for the intensities at pixels i and j. Figures 22 and 24 show
more examples of bonds for composing graphlets from primitives, and composing clothes from parts. Very
often people use graphical models, such as templates, with fixed structures where the bonds are decided
deterministically and thus become transparent. In the next subsection, we shall define the bonds as random
variables to reconfigure the graph structures.

Relation type 2 : joints and junctions When image primitives are connected into larger parts, some
spatial and functional relations must be found. Besides its open bonds to connect with others, usually
its immediate neighbors, a part may be bound with other parts in various ways. The gestalt groupings
discussed in the previous section are the best examples: parts can be linked over possibly large distances by
being collinear, parallel or symmetric. To identify this groupings, connections must be created flagging this
non-accidental relationship. Figure 26 displays some typical relations of this type between object parts.

Hinged Butting Concentric Attached Colinear Parallel Radial Bar-circle

Figure 26: Examples of spatial relations for binding object parts. The red dots or lines are the attributes γ(s, t) of joint

relation (s, t) which form the ‘glue’ in this relation. From [58].

Some of these relations also contribute to 3D interpretations. For example, an ellipse is a part that has
multiple possible compositions. If it is recognized as a bike wheel, its center can function as an axis and
thus can be connected to the tip of a bar (see the rightmost of Figure 26). It could also be the rim of a tea
cup, and then the two ends of its long axis will be joined to a pair of parallel lines to form a cylinder. In
Figure 13 we discussed a phenomenon occurred in language where the word ‘what’ is shared by two clauses.
Similarly we have many such joints in images, such as hinge joints, and butting joints.

As Figure 26 shows, two parts can be hinged at a point. For example, two hands of a clock have a
common axis. For a set of parts in an image S = V , the hinge relation is a set

Ehinge(S) = {(Ai, Aj ; γ(Ai, Aj), ρ(Ai, Aj))}. (29)

Here γ is the hinge point and ρ = nil. In a butting relation, γ(Ai, Aj) represents the line segment(s) shared
by the two parts. The line segment is shown in red in Figure 26. Sometimes, two parts may share two line
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Figure 44: Recognition experiments on 5 object categories. From [87].

Firstly, to represent intra-category variation, the grammar can create a large number of configurations
from a relatively much smaller vocabulary. The And-Or graph acts like a reconfigurable mother template,
and assembles novel configurations on-the-fly to interpret novel instances unseen before.

Secondly, to scale up to hundreds of categories, the And-Or graph is recursively designed. Thus one can
integrate, without much overhead, all categories into one big And-Or graph. The learning and inference
algorithms are designed recursively as well. This permits large scale parallel computing.

There are two open issues for further study.
(i) Learning and discovering the And-Or graph. As it was proposed in a series of recent works [81, 17, 52,

58, 87], the objective is to map the visual vocabulary including dictionaries at all levels of abstraction and
all visual aspects. This task can be formulated in theory under a common learning principle, that is to put
the dictionary ∆ into the maximum likelihood learning process. The various information criteria, such as
the binding strength, mutual information, minimax entropy, will come naturally out of this learning process.

However, the ultimate visual vocabulary is unlikely to be learned fully automatically from statistical
principles, as the determination of the vocabulary must take the purposes of vision into account. This
argues for a semi-automatic method which is being carried out at the Lotus Hill Institute. Human users,
guided by real life experience, psychology and vision tasks, define most of the structures, and leaving the
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Test image Top objects

Top object under Markov 
distribution

Top object under content-sensitive 
distribution


