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Introduction

Common problem in Bayesian statistics: approximation of

Eπ [h] =

∫
E

h(x)π(x)dx

where π(x) = γ(x)
Z , γ(x) can be evaluated pointwise and Z is

unknown

MCMC draw T samples x (i), i = 1, . . . ,T approximately distributed
from π with an ergodic Markov kernel K with invariant distribution π
and approximate Eπ [h] with

ST (h) =
1

T

T∑
i=1

h(x (i))
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Introduction

Distribution π is often highly dimensional, multimodal

Lead to poor mixing properties of MCMC algorithms, based on local
moves

Example: Mixture models with K elements

K ! symmetric modes - non convergence of most of the MCMC
algorithms

Note that it is only taken as an example, as the exploration of the K !
is redundant from a statistical point of view
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Population-based simulation

Sequence of distributions πn, n = 1, . . .N, defined on E

At least one of the distributions is the target distribution π

Idea: generate a collection of samples in parallel

Population-based MCMC

Sequential Monte Carlo Sampler
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Example
For t = 1, . . . ,T

zt ∼ N (x2, 1)

where
x ∼ N (0, 3)

Bimodal posterior distribution p(x |z1:T )
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Example

Sequence of distributions for n = 1, . . . ,T

πn(x) ∝ p(z1:n|x)p(x)

François Caron (UBC) Population-based simulation for static inference November 20, 2007 / MLRG 7 / 20



Example

Sequence of distributions for n = 1, . . . ,N

πn(x) ∝ p(z1:T |x)ξnp(x)

where ξn is a non decreasing sequence in [0, 1] and ξN = 1.
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Population-based MCMC

Sequence of distributions πn, n = 1, . . .N

New target

π∗(x1:N) =
N∏

n=1

πn(xn)

where π ≡ πn for at least one n ∈ {1, . . . ,N}.
Markov kernel which admits π∗ as its invariant distribution
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Population-based MCMC

Sequences of densities chosen so that they are easy to sample
compared to the target density π

Population of samples allows more global moves than a single chain
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Population moves

Mutation: update a single component of the population with a
Markov kernel K (xn, ·) which is πn stationary

Exchange: Swap the value of two chains n and q, accepted with

probability min(1,
πn(xq)πq(xn)
πn(xn)πq(xq) )

Crossover: Crossover the l th position in the vector for chains n and q
such that

x ′n = (x1n, . . . , x(l−1)n, xlq, . . . , xdq)

x ′q = (x1q, . . . , x(l−1)q, xln, . . . , xdn)

Snooker moves: Propose moves close to other members of the
population
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Population-based MCMC algorithm

Initialize the chain x1:N

For t = 1, . . . ,T ,

1 (Mutation)

F Select a chain n with a fixed probability and update xn with a Markov
kernel which admits πn as its invariant distribution

2 Make a random choice between step 3 or 4
3 (Crossover)

F Select two chains n and q randomly and perform a crossover move
between xn and xq

4 (Exchange)

F Select two chains n and q randomly and perform an exchange move
between xn and xq
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Issues

Tempering or data point tempering?

How to set the schedule of the tempering approaches?

Number of distributions?

Exchange and/or crossover moves?
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Sequential Monte Carlo Samplers

Sequence of distributions πn, n = 1, . . . , p, defined on E

πp = π the target of interest

Objective: use sampling/importance sampling/resampling methods to
sequentially draw weighted samples from π1, π2, . . . , πp
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Sequential Monte Carlo Samplers

Define new target densities π̃n(x1:n) = πn(xn)
∏n

j=2 Lj−1(xj , xj−1)
defined on En

Arbitrary backward kernels Ln such that E1 ⊂ E2 ⊂ . . . ⊂ Ep

Approximate π̃n(x1:n), for n = 1, . . . , p by the empirical distribution

Pn(dx1:n) =
N∑

i=1

W
(i)
n δ

x
(i)
1:n

(dx1:n)
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Sequential Monte Carlo Samplers
0 Initialization

I Set n = 1
I For i = 1, . . . ,N, draw X

(i)
1 ∼ ν

I Set W
(i)
1 ∝ π1(x

(i)
1 )

ν(x
(i)
1 )

with
∑

i W
(i)
1 = 1

Iterate steps 1 and 2

1 Selection
I If ESS<Threshold, resample the particles and set the weights to 1/N

2 Mutation
I Set n = n + 1
I For i = 1, . . . ,N, draw X

(i)
n ∼ Kn(xn−1, ·)

I Compute

W (i)
n ∝W

(i)
n−1

π̃n(x
(i)
1:n)

π̃n−1(x
(i)
1:n−1)Kn(x

(i)
n−1, x

(i)
n )

∝W
(i)
n−1

πn(x
(i)
n )Ln−1(x

(i)
n , x

(i)
n−1)

πn−1(x
(i)
n−1)Kn(x

(i)
n−1, x

(i)
n )

with
∑

i W
(i)
n = 1François Caron (UBC) Population-based simulation for static inferenceNovember 20, 2007 / MLRG 16 / 20



Sequential Monte Carlo Samplers

Kernel Kn

I MCMC kernel with invariant distribution πn

I Mixture of Markov kernels
I Approximate Gibbs move (similar to the approximate optimal

importance distribution in standard SMC)
I non-MCMC kernels, etc.
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Sequential Monte Carlo Samplers

Backward Kernel Ln−1

I Introduced to have nested intervals and to avoid computing the
marginal importance distribution

I Arbitrary, but need to be optimized with respect to Kn to minimize the
variance of the weights

I Optimal backward kernel

Lopt
n−1 =

νn−1(xn−1)Kn(xn−1, xn)

νn(xn)

where νn = νK2:n

I Cannot be computed
I Selecting Ln−1 as close as possible to Lopt

n−1 is crucial for the method to
be efficient
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Sequential Monte Carlo Samplers

If Kn is an MCMC kernel with invariant distribution πn, a good
approximation is

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)

Good approximation of Ln may be difficult to construct for
non-MCMC moves and may lead to fast impoverishment
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Comparison of both approaches

MCMC is often easier to calibrate

SMC requires no burn-in

SMC is a richer method, allowing more freedom to design good
samplers
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