Population-based simulation for static inference

François Caron

UBC

November 20, 2007 / MLRG
Overview

1. Introduction

2. Population-based MCMC

3. Sequential Monte Carlo Samplers

4. Comparison of both approaches
Introduction

- Common problem in Bayesian statistics: approximation of

\[\mathbb{E}_\pi [h] = \int_E h(x)\pi(x)dx \]

where \(\pi(x) = \frac{\gamma(x)}{Z} \), \(\gamma(x) \) can be evaluated pointwise and \(Z \) is unknown

- MCMC draw \(T \) samples \(x^{(i)} \), \(i = 1, \ldots, T \) approximately distributed from \(\pi \) with an ergodic Markov kernel \(K \) with invariant distribution \(\pi \) and approximate \(\mathbb{E}_\pi [h] \) with

\[S_T(h) = \frac{1}{T} \sum_{i=1}^{T} h(x^{(i)}) \]
Introduction

- Distribution π is often highly dimensional, multimodal.
Introduction

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves

Example: Mixture models with K elements. $K = 5$ symmetric modes - non convergence of most of the MCMC algorithms. Note that it is only taken as an example, as the exploration of K is redundant from a statistical point of view.
Introduction

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves
- Example: Mixture models with K elements
Introduction

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves
- Example: Mixture models with K elements
- $K!$ symmetric modes - non convergence of most of the MCMC algorithms

![Graph showing iterations vs. mu values]
Introduction

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves
- Example: Mixture models with K elements
- $K!$ symmetric modes - non convergence of most of the MCMC algorithms
- Note that it is only taken as an example, as the exploration of the $K!$ is redundant from a statistical point of view
Population-based simulation

- Sequence of distributions π_n, $n = 1, \ldots N$, defined on E
Population-based simulation

- Sequence of distributions π_n, $n = 1, \ldots, N$, defined on E
- At least one of the distributions is the target distribution π
Population-based simulation

- Sequence of distributions π_n, $n = 1, \ldots N$, defined on E
- At least one of the distributions is the target distribution π
- Idea: generate a collection of samples in parallel
Population-based simulation

- Sequence of distributions π_n, $n = 1, \ldots, N$, defined on E
- At least one of the distributions is the target distribution π
- Idea: generate a collection of samples in parallel
- Population-based MCMC
Population-based simulation

- Sequence of distributions π_n, $n = 1, \ldots, N$, defined on E
- At least one of the distributions is the target distribution π
- Idea: generate a collection of samples in parallel
- Population-based MCMC
- Sequential Monte Carlo Sampler
Example

- For $t = 1, \ldots, T$

 $$z_t \sim \mathcal{N}(x^2, 1)$$

 where

 $$x \sim \mathcal{N}(0, 3)$$

- Bimodal posterior distribution $p(x|z_{1:T})$
Example

- Sequence of distributions for $n = 1, \ldots, T$

$$\pi_n(x) \propto p(z_{1:n} | x) p(x)$$
Example

- Sequence of distributions for \(n = 1, \ldots, N \)

\[
\pi_n(x) \propto p(z_{1:T} | x)^{\xi_n} p(x)
\]

where \(\xi_n \) is a non decreasing sequence in \([0, 1]\) and \(\xi_N = 1 \).
Population-based MCMC

- Sequence of distributions π_n, $n = 1, \ldots, N$

$$\pi^\ast(x_1: N) = N \prod_{n=1}^{N} \pi_n(x_n)$$

where $\pi \equiv \pi_n$ for at least one $n \in \{1, \ldots, N\}$.

Markov kernel which admits π^\ast as its invariant distribution.
Population-based MCMC

- Sequence of distributions π_n, $n = 1, \ldots, N$
- New target

$$\pi^*(x_{1:N}) = \prod_{n=1}^{N} \pi_n(x_n)$$

where $\pi \equiv \pi_n$ for at least one $n \in \{1, \ldots, N\}$.
Population-based MCMC

- Sequence of distributions π_n, $n = 1, \ldots, N$
- New target

$$
\pi^*(x_{1:N}) = \prod_{n=1}^{N} \pi_n(x_n)
$$

where $\pi \equiv \pi_n$ for at least one $n \in \{1, \ldots, N\}$.

- Markov kernel which admits π^* as its invariant distribution
Population-based MCMC

- Sequences of densities chosen so that they are easy to sample compared to the target density π
- Population of samples allows more global moves than a single chain
Population moves

- Mutation: update a single component of the population with a Markov kernel $K(x_n, \cdot)$ which is π_n stationary
Population moves

- **Mutation**: update a single component of the population with a Markov kernel $K(x_n, \cdot)$ which is π_n stationary

- **Exchange**: Swap the value of two chains n and q, accepted with probability $\min(1, \frac{\pi_n(x_q)\pi_q(x_n)}{\pi_n(x_n)\pi_q(x_q)})$
Population moves

- **Mutation**: update a single component of the population with a Markov kernel $K(x_n, \cdot)$ which is π_n stationary
- **Exchange**: Swap the value of two chains n and q, accepted with probability $\min(1, \frac{\pi_n(x_q)\pi_q(x_n)}{\pi_n(x_n)\pi_q(x_q)})$
- **Crossover**: Crossover the l^{th} position in the vector for chains n and q such that

\[
x_n' = (x_1n, \ldots, x_{(l-1)n}, x_{lq}, \ldots, x_{dq}) \\
x_q' = (x_1q, \ldots, x_{(l-1)q}, x_{ln}, \ldots, x_{dn})
\]
Population moves

- **Mutation:** update a single component of the population with a Markov kernel $K(x_n, \cdot)$ which is π_n stationary
- **Exchange:** Swap the value of two chains n and q, accepted with probability $\min(1, \frac{\pi_n(x_q)\pi_q(x_n)}{\pi_n(x_n)\pi_q(x_q)})$
- **Crossover:** Crossover the l^{th} position in the vector for chains n and q such that
 \[
 x_n' = (x_{1n}, \ldots, x_{(l-1)n}, x_{lq}, \ldots, x_{dq}) \\
 x_q' = (x_{1q}, \ldots, x_{(l-1)q}, x_{ln}, \ldots, x_{dn})
 \]
- **Snooker moves:** Propose moves close to other members of the population
Population-based MCMC algorithm

- Initialize the chain $x_{1:N}$
- For $t = 1, \ldots, T$,
 1. (Mutation)
 - Select a chain n with a fixed probability and update x_n with a Markov kernel which admits π_n as its invariant distribution
 2. Make a random choice between step 3 or 4
 3. (Crossover)
 - Select two chains n and q randomly and perform a crossover move between x_n and x_q
 4. (Exchange)
 - Select two chains n and q randomly and perform an exchange move between x_n and x_q
Issues

- Tempering or data point tempering?
- How to set the schedule of the tempering approaches?
- Number of distributions?
- Exchange and/or crossover moves?
Sequential Monte Carlo Samplers

- Sequence of distributions π_n, $n = 1, \ldots, p$, defined on \mathcal{E}
Sequential Monte Carlo Samplers

- Sequence of distributions π_n, $n = 1, \ldots, p$, defined on E
- $\pi_p = \pi$ the target of interest
Sequential Monte Carlo Samplers

- Sequence of distributions π_n, $n = 1, \ldots, p$, defined on E
- $\pi_p = \pi$ the target of interest
- Objective: use sampling/importance sampling/resampling methods to sequentially draw weighted samples from $\pi_1, \pi_2, \ldots, \pi_p$
Sequential Monte Carlo Samplers

Define new target densities \(\tilde{\pi}_n(x_{1:n}) = \pi_n(x_n) \prod_{j=2}^{n} L_{j-1}(x_j, x_{j-1}) \) defined on \(E^n \)
Sequential Monte Carlo Samplers

- Define new target densities $\tilde{\pi}_n(x_{1:n}) = \pi_n(x_n) \prod_{j=2}^{n} L_{j-1}(x_j, x_{j-1})$ defined on E^n
- Arbitrary backward kernels L_n such that $E_1 \subset E_2 \subset \ldots \subset E_p$
Sequential Monte Carlo Samplers

- Define new target densities \(\tilde{\pi}_n(x_{1:n}) = \pi_n(x_n) \prod_{j=2}^n L_{j-1}(x_j, x_{j-1}) \) defined on \(E^n \)
- Arbitrary backward kernels \(L_n \) such that \(E_1 \subset E_2 \subset \ldots \subset E_p \)
- Approximate \(\tilde{\pi}_n(x_{1:n}) \), for \(n = 1, \ldots, p \) by the empirical distribution

\[
P_n(dx_{1:n}) = \sum_{i=1}^N W_n^{(i)} \delta_{x_{1:n}^{(i)}}(dx_{1:n})
\]
Sequential Monte Carlo Samplers

0 Initialization

- Set $n = 1$
- For $i = 1, \ldots, N$, draw $X_1^{(i)} \sim \nu$
- Set $W_1^{(i)} \propto \frac{\pi_1(x_1^{(i)})}{\nu(x_1^{(i)})}$ with $\sum_i W_1^{(i)} = 1$

Iterate steps 1 and 2

1 Selection

- If ESS $<$ Threshold, resample the particles and set the weights to $1/N$

2 Mutation

- Set $n = n + 1$
- For $i = 1, \ldots, N$, draw $X_n^{(i)} \sim K_n(x_{n-1}, \cdot)$
- Compute

$$W_n^{(i)} \propto W_{n-1}^{(i)} \frac{\tilde{\pi}_n(x_{1:n}^{(i)})}{\tilde{\pi}_{n-1}(x_{1:n-1}^{(i)}) K_n(x_{n-1}^{(i)}, x_n^{(i)})}$$

$$\propto W_{n-1}^{(i)} \frac{\pi_n(x_n^{(i)}) L_{n-1}(x_n^{(i)}, x_{n-1}^{(i)})}{\pi_{n-1}(x_{n-1}^{(i)}) K_n(x_{n-1}^{(i)}, x_n^{(i)})}$$
Sequential Monte Carlo Samplers

Kernel K_n

- MCMC kernel with invariant distribution π_n
- Mixture of Markov kernels
- Approximate Gibbs move (similar to the approximate optimal importance distribution in standard SMC)
- non-MCMC kernels, etc.
Sequential Monte Carlo Samplers

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution

\[L_{n-1} = \nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n) \]

\[\nu_n = \nu_{K_n} \]

- Cannot be computed

- Selecting L_{n-1} as close as possible to $L_{opt,n-1}$ is crucial for the method to be efficient

Francois Caron (UBC)
Sequential Monte Carlo Samplers

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights

\[\nu_{n-1} = \nu_{2:n} \]

Cannot be computed.

Selecting L_{n-1} as close as possible to $L_{opt_{n-1}}$ is crucial for the method to be efficient.
Sequential Monte Carlo Samplers

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights
 - Optimal backward kernel

$$L^{opt}_{n-1} = \frac{\nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\nu_n(x_n)}$$

where $\nu_n = \nu K_{2:n}$
Sequential Monte Carlo Samplers

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights
 - Optimal backward kernel

$$L_{n-1}^{opt} = \frac{\nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\nu_n(x_n)}$$

where $\nu_n = \nu K_{2:n}$
- Cannot be computed
Sequential Monte Carlo Samplers

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights
 - Optimal backward kernel

\[
L^{opt}_{n-1} = \frac{\nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\nu_n(x_n)}
\]

where $\nu_n = \nu K_{2:n}$

- Cannot be computed
- Selecting L_{n-1} as close as possible to L^{opt}_{n-1} is crucial for the method to be efficient
If K_n is an MCMC kernel with invariant distribution π_n, a good approximation is

$$L_{n-1}(x_n, x_{n-1}) = \frac{\pi_n(x_{n-1})K_n(x_{n-1}, x_n)}{\pi_n(x_n)}$$
 Sequential Monte Carlo Samplers

- If K_n is an MCMC kernel with invariant distribution π_n, a good approximation is

$$L_{n-1}(x_n, x_{n-1}) = \frac{\pi_n(x_{n-1})K_n(x_{n-1}, x_n)}{\pi_n(x_n)}$$

- Good approximation of L_n may be difficult to construct for non-MCMC moves and may lead to fast impoverishment
Comparison of both approaches

- MCMC is often easier to calibrate
- SMC requires no burn-in
- SMC is a richer method, allowing more freedom to design good samplers