Population-based simulation for static inference

François Caron

UBC

November 20, 2007 / MLRG

Overview

- 2 Population-based MCMC
- 3 Sequential Monte Carlo Samplers
- 4 Comparison of both approaches

• Common problem in Bayesian statistics: approximation of

$$\mathbb{E}_{\pi}\left[h\right] = \int_{E} h(x)\pi(x)dx$$

where $\pi(x) = \frac{\gamma(x)}{Z}$, $\gamma(x)$ can be evaluated pointwise and Z is unknown

 MCMC draw T samples x⁽ⁱ⁾, i = 1,..., T approximately distributed from π with an ergodic Markov kernel K with invariant distribution π and approximate E_π[h] with

$$S_T(h) = \frac{1}{T} \sum_{i=1}^T h(x^{(i)})$$

 \bullet Distribution π is often highly dimensional, multimodal

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves
- Example: Mixture models with K elements

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves
- Example: Mixture models with K elements
- K! symmetric modes non convergence of most of the MCMC algorithms

- Distribution π is often highly dimensional, multimodal
- Lead to poor mixing properties of MCMC algorithms, based on local moves
- Example: Mixture models with K elements
- *K*! symmetric modes non convergence of most of the MCMC algorithms
- Note that it is only taken as an example, as the exploration of the K! is redundant from a statistical point of view

• Sequence of distributions π_n , n = 1, ..., N, defined on E

- Sequence of distributions π_n , n = 1, ..., N, defined on E
- $\bullet\,$ At least one of the distributions is the target distribution $\pi\,$

- Sequence of distributions π_n , n = 1, ..., N, defined on E
- At least one of the distributions is the target distribution $\boldsymbol{\pi}$
- Idea: generate a collection of samples in parallel

- Sequence of distributions π_n , n = 1, ..., N, defined on E
- At least one of the distributions is the target distribution $\boldsymbol{\pi}$
- Idea: generate a collection of samples in parallel
- Population-based MCMC

- Sequence of distributions π_n , n = 1, ..., N, defined on E
- At least one of the distributions is the target distribution $\boldsymbol{\pi}$
- Idea: generate a collection of samples in parallel
- Population-based MCMC
- Sequential Monte Carlo Sampler

Example

• For $t = 1, \ldots, T$

 $z_t \sim \mathcal{N}(x^2, 1)$

where

 $x \sim \mathcal{N}(0,3)$

• Bimodal posterior distribution $p(x|z_{1:T})$

Example

• Sequence of distributions for $n = 1, \ldots, T$

 $\pi_n(x) \propto p(z_{1:n}|x)p(x)$

Example

• Sequence of distributions for $n = 1, \ldots, N$

$$\pi_n(x) \propto p(z_{1:T}|x)^{\xi_n} p(x)$$

where ξ_n is a non decreasing sequence in [0, 1] and $\xi_N = 1$.

• Sequence of distributions π_n , $n = 1, \dots N$

- Sequence of distributions π_n , $n = 1, \dots N$
- New target

$$\pi^*(x_{1:N}) = \prod_{n=1}^N \pi_n(x_n)$$

where $\pi \equiv \pi_n$ for at least one $n \in \{1, \ldots, N\}$.

- Sequence of distributions π_n , $n = 1, \dots N$
- New target

$$\pi^*(x_{1:N}) = \prod_{n=1}^N \pi_n(x_n)$$

where $\pi \equiv \pi_n$ for at least one $n \in \{1, \ldots, N\}$.

• Markov kernel which admits π^* as its invariant distribution

- Sequences of densities chosen so that they are easy to sample compared to the target density π
- Population of samples allows more global moves than a single chain

 Mutation: update a single component of the population with a Markov kernel K(x_n, ·) which is π_n stationary

- Mutation: update a single component of the population with a Markov kernel K(x_n, ·) which is π_n stationary
- Exchange: Swap the value of two chains *n* and *q*, accepted with probability $\min(1, \frac{\pi_n(x_q)\pi_q(x_n)}{\pi_n(x_n)\pi_q(x_q)})$

- Mutation: update a single component of the population with a Markov kernel K(x_n, ·) which is π_n stationary
- Exchange: Swap the value of two chains *n* and *q*, accepted with probability $\min(1, \frac{\pi_n(x_q)\pi_q(x_n)}{\pi_n(x_n)\pi_q(x_q)})$
- Crossover: Crossover the *I*th position in the vector for chains *n* and *q* such that

$$\begin{aligned} x'_n &= (x_{1n}, \dots, x_{(l-1)n}, x_{lq}, \dots, x_{dq}) \\ x'_q &= (x_{1q}, \dots, x_{(l-1)q}, x_{ln}, \dots, x_{dn}) \end{aligned}$$

- Mutation: update a single component of the population with a Markov kernel K(x_n, ·) which is π_n stationary
- Exchange: Swap the value of two chains *n* and *q*, accepted with probability $\min(1, \frac{\pi_n(x_q)\pi_q(x_n)}{\pi_n(x_n)\pi_q(x_q)})$
- Crossover: Crossover the *I*th position in the vector for chains *n* and *q* such that

$$\begin{aligned} x'_n &= (x_{1n}, \dots, x_{(l-1)n}, x_{lq}, \dots, x_{dq}) \\ x'_q &= (x_{1q}, \dots, x_{(l-1)q}, x_{ln}, \dots, x_{dn}) \end{aligned}$$

• Snooker moves: Propose moves close to other members of the population

Population-based MCMC algorithm

- Initialize the chain x_{1:N}
- For t = 1, ..., T,
 - (Mutation)
 - * Select a chain *n* with a fixed probability and update x_n with a Markov kernel which admits π_n as its invariant distribution
 - 2 Make a random choice between step 3 or 4
 - (Crossover)
 - ★ Select two chains n and q randomly and perform a crossover move between x_n and x_q
 - ④ (Exchange)
 - Select two chains n and q randomly and perform an exchange move between x_n and x_q

- Tempering or data point tempering?
- How to set the schedule of the tempering approaches?
- Number of distributions?
- Exchange and/or crossover moves?

• Sequence of distributions π_n , $n = 1, \ldots, p$, defined on E

- Sequence of distributions π_n , $n = 1, \ldots, p$, defined on E
- $\pi_p = \pi$ the target of interest

- Sequence of distributions π_n , n = 1, ..., p, defined on E
- $\pi_p = \pi$ the target of interest
- Objective: use sampling/importance sampling/resampling methods to sequentially draw weighted samples from π₁, π₂,..., π_p

• Define new target densities $\widetilde{\pi}_n(x_{1:n}) = \pi_n(x_n) \prod_{j=2}^n L_{j-1}(x_j, x_{j-1})$ defined on E^n

- Define new target densities $\widetilde{\pi}_n(x_{1:n}) = \pi_n(x_n) \prod_{j=2}^n L_{j-1}(x_j, x_{j-1})$ defined on E^n
- Arbitrary backward kernels L_n such that $E_1 \subset E_2 \subset \ldots \subset E_p$

- Define new target densities $\widetilde{\pi}_n(x_{1:n}) = \pi_n(x_n) \prod_{j=2}^n L_{j-1}(x_j, x_{j-1})$ defined on E^n
- Arbitrary backward kernels L_n such that $E_1 \subset E_2 \subset \ldots \subset E_p$
- Approximate $\widetilde{\pi}_n(x_{1:n})$, for $n = 1, \dots, p$ by the empirical distribution

$$P_n(dx_{1:n}) = \sum_{i=1}^N W_n^{(i)} \delta_{x_{1:n}^{(i)}}(dx_{1:n})$$

0 Initialization

► Set
$$n = 1$$

► For $i = 1, ..., N$, draw $X_1^{(i)} \sim \nu$
► Set $W_1^{(i)} \propto \frac{\pi_1(x_1^{(i)})}{\nu(x_1^{(i)})}$ with $\sum_i W_1^{(i)} = 1$

Iterate steps 1 and 2 $% \left(1-\frac{1}{2}\right) =0$

Selection

• If ESS<Threshold, resample the particles and set the weights to 1/N

Mutation

- ▶ Set n = n + 1
- For $i = 1, \ldots, N$, draw $X_n^{(i)} \sim K_n(x_{n-1}, \cdot)$

Compute

$$W_{n}^{(i)} \propto W_{n-1}^{(i)} \frac{\widetilde{\pi}_{n}(x_{1:n}^{(i)})}{\widetilde{\pi}_{n-1}(x_{1:n-1}^{(i)}) \mathcal{K}_{n}(x_{n-1}^{(i)}, x_{n}^{(i)})} \\ \propto W_{n-1}^{(i)} \frac{\pi_{n}(x_{n}^{(i)}) \mathcal{L}_{n-1}(x_{n}^{(i)}, x_{n-1}^{(i)})}{\pi_{n-1}(x_{n-1}^{(i)}) \mathcal{K}_{n}(x_{n-1}^{(i)}, x_{n}^{(i)})}$$

• Kernel K_n

- MCMC kernel with invariant distribution π_n
- Mixture of Markov kernels
- Approximate Gibbs move (similar to the approximate optimal importance distribution in standard SMC)
- non-MCMC kernels, etc.

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights
 - Optimal backward kernel

$$L_{n-1}^{opt} = \frac{\nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\nu_n(x_n)}$$

where $\nu_n = \nu K_{2:n}$

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights
 - Optimal backward kernel

$$L_{n-1}^{opt} = \frac{\nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\nu_n(x_n)}$$

where *v_n* = *vK*_{2:n}
▶ Cannot be computed

- Backward Kernel L_{n-1}
 - Introduced to have nested intervals and to avoid computing the marginal importance distribution
 - Arbitrary, but need to be optimized with respect to K_n to minimize the variance of the weights
 - Optimal backward kernel

$$L_{n-1}^{opt} = \frac{\nu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\nu_n(x_n)}$$

where $\nu_n = \nu K_{2:n}$

- Cannot be computed
- Selecting L_{n-1} as close as possible to L_{n-1}^{opt} is crucial for the method to be efficient

18 / 20

• If K_n is an MCMC kernel with invariant distribution π_n , a good approximation is

$$L_{n-1}(x_n, x_{n-1}) = \frac{\pi_n(x_{n-1})K_n(x_{n-1}, x_n)}{\pi_n(x_n)}$$

• If K_n is an MCMC kernel with invariant distribution π_n , a good approximation is

$$L_{n-1}(x_n, x_{n-1}) = \frac{\pi_n(x_{n-1})K_n(x_{n-1}, x_n)}{\pi_n(x_n)}$$

 Good approximation of L_n may be difficult to construct for non-MCMC moves and may lead to fast impoverishment

Comparison of both approaches

- MCMC is often easier to calibrate
- SMC requires no burn-in
- SMC is a richer method, allowing more freedom to design good samplers