
Why Did This Code Change?
Sarah Rastkar and Gail C. Murphy

Department of Computer Science
University of British Columbia, Canada

{rastkar, murphy}@cs.ubc.ca

Abstract—When a developer works on code that is shared
with other developers, she needs to know why the code has
been changed in particular ways to avoid reintroducing bugs.
A developer looking at a code change may have access to
a short commit message or a link to a bug report which
may provide detailed information about how the code changed
but which often lacks information about what motivated the
change. This motivational information can sometimes be found
by piecing together information from a set of relevant project
documents, but few developers have the time to find and read
the right documentation. We propose the use of multi-document
summarization techniques to generate a concise natural language
description of why code changed so that a developer can choose
the right course of action.

I. INTRODUCTION

A developer working as part of a software development team
often needs to understand the reason behind a code change.
This information is important when multiple developers work
on the same code as the changes they individually make to
the code can conflict. Such collisions might be avoided if a
developer working on the code knows why particular code was
added, deleted or modified. Often, the developer can access a
commit message or a bug report with some information on the
code change. However, this information often does not provide
the context about why the code changed, such as which
business objective or feature was being implemented. This
higher-level information is often available in a set of project
documents, perhaps requirements and design documents or
perhaps epics and user stories. But finding and understanding
this information that is spread across multiple documents is
time consuming and cognitively demanding and thus seldom
happens in the context of a code change.

In this paper, we propose the use of multi-document sum-
marization techniques to generate a concise description of the
motivation behind a code change based on the information
in a set of documents relevant to the change. We propose
an extractive summarization approach in which we identify
the most relevant sentences to a change in a set of docu-
ments provided as including motivational information about
the change. This extractive approach uses machine-learning to
identify appropriate sentences in the given set of documents.
We identified a set of sentence-level features to locate the most
relevant sentences in a change-related set of documents to be
included in a summary.

We have experimented with applying this approach to a
corpus of human-generated summaries. Our results show that
our set of features is effective in identifying sentences that

are considered important by human summarizers. This shows
the possibility of providing much broader motivational infor-
mation behind a change than has been possible with previous
approaches allowing a developer to ask and have answered,
“why did this code change?”.

We begin with an example and then describe our initial
approach. We then provide an overview of our experiment
applying the approach to the corpus we developed. We then
review the related work and conclude the paper with discus-
sion.

II. MOTIVATING EXAMPLE

Consider a developer who is working on the open source
project CONNECT.1 This project uses an agile development
process in a way that makes information relevant to code
changes available through explicit links to multiple levels of
tasks, stories and epics that were used to organize the work
that was performed. Imagine that the developer needs to make
a change to the provideAndRegisterDocumentSetb
method of the AdapterDocSubmissionImpl class as part
of the task which she is working on. Since the developer
last looked at the code, a call to deleteFilesFromDisk
has been added to this method. The developer wants to
know why there is this new dependency before determining
how to proceed with her change. She starts by checking the
commit message associated with the last modification to the
method of interest, which states: “GATEWAY-905: Added code
to remove temporary files during streaming”. This gives a
clue about the added code but does not say why streaming
support has been added. The developer decides to investigate
further by following the provided link to GATEWAY-905 in
the project’s issue repository.2 GATEWAY-905, labeled as a
task in the repository and entitled “Create a component to
remove temporary streamed files from the file system”, still
does not provide any high-level reason of why streaming was
needed. GATEWAY-905 is linked to GATEWAY-901 which
is labeled as a user story and is entitled “Create a pilot
implementation for streaming large files for the Document
Submission service”. Finally, GATEWAY-901 is linked to
GATEWAY-473, labeled as a Feature Request and entitled
“As a CONNECT Adopter, I want to process and send large
payload sizes of up to 1 GB to meet the requirements of all
my use cases (User Story: EST010)”. To find this motivational

1http://connectopensource.org, verified 12/12/12, CONNECT is an open
source project promoting IT interoperability in the U.S. healthcare system.

2https://issues.connectopensource.org, verified 12/12/12

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1193

 AdapterDocSubmissionImpl.java

 Last Change

"GATEWAY-905: Added code to remove temporary files during streaming"

NhinDocSubmissionDO bodyDO = new NhinDocSubmissionDO(body, true);

RegistryResponseType response = new

AdapterDocSubmissionOrchImpl().provideAndRegisterDocumentSetB(bodyDO,

assertion);

bodyDO.deleteFilesFromDisk();

return response;

}

 bodyDO.deleteFilesFromDisk();

why?

As a CONNECT Adopter, I w ant to process and send large

payload sizes of up to 1 GB to meet the requirements of all my

use cases (User Story: EST010)

-

Create a pilot implementation for streaming large files for the

Document Submission service

-

When an end to end run of document submission is run, no

temporary files should exist in the f ile system after the

transaction has been completed.

Log Message:

Fig. 1. A summary describing the motivation behind a code change of interest appearing as a pop-up in an IDE.

information, the developer has to trace the change to a chain
of three inter-linked documents in the issue repository, each
at a different level of abstraction, and has to read through the
description and comments of those documents. If a summary
could be automatically created with this information, it could
be made accessible to the developer at the site of the code
change. For example, imagine that a developer highlights a
code change of interest in an IDE and the pop-up shown
in Figure 1 appears making the information immediately
accessible to the developer. This summary can help a developer
immediately understand the motivation behind the change with
very little effort on her part.

III. APPROACH

We see the problem of generating a summary of a set of
documents related to a code change as a specific case of
the more general problem of multi-document summarization,
which often is defined as the automatic generation/extraction
of information from multiple texts written about the same
topic. Multi-document summarization techniques often deal
with summarizing a set of similar documents that are likely to
repeat much the same information while differing in certain
parts; for example, news articles published by different news
agencies covering the same event of interest. Our approach is
different in that it investigates summarizing a set of documents
each at a different level of abstraction.

To account for the fact that each document is at a different
level of abstraction, we model the set as a hierarchical chain.
For the example discussed in Section II, GATEWAY-473 (a
feature request) and the commit message are the top-most and
the bottom-most documents in the chain of relevant documents
respectively.

Once a chain of relevant documents is formed, we then find
the most informative sentences to extract to form a summary.
We identified a set of eight sentence-level features to locate the
most relevant sentences. Based on the values of these features,
sentences can be ranked and then a summary can be produced
by extracting the highest-ranked sentences.

The eight features we investigated are:
1) fOverlap. This feature measures the content overlap be-

tween a sentence and the adjacent documents in a chain.
There is often some content overlap in terms of common
words between adjacent documents in a chain as one has
motivated the creation of the other one (e.g., an epic
motivating a user story). We hypothesize that sentences
containing these words are more likely to explain the
motivation behind the corresponding code change and
should be scored higher. To locate these sentences we
look for overlaps in terms of words between adjacent
documents in a chain. This is similar to the idea of clue
word score (CWS) previously shown to be an effective
feature in summarizing conversational data (e.g., [1]).
For word w in document D in a chain of documents,
overlapScore is computed as follows:

overlapScore(w,D) = IDF (w)×
[TF (w,Parent(D)) + TF (w,Child(D))]

TF (w,D) and IDF (w) are defined as:
TF (w,D) = number of times w appears in D

IDF (w) = log(number of documents
number of documents containing w)

For sentence s, fOverlap is computed as:
fOverlap =

∑
w∈s overlapScore(w,D)

2) fTF -IDF . For a sentence s in document D, this score
is computed as the sum of the TF -IDF scores of all
words in the sentence:

fTF -IDF =
∑

w∈s TF (w,D)× IDF (w)

It is hypothesized that a higher value of fTF -IDF for
a sentence indicates that the sentence is more represen-
tative of the content of the document and hence is more
relevant to be included in the summary.

3) fT itleSim. This feature measures the similarity be-
tween each sentence and the title of the enclosing
document. If document titles are chosen carefully, the
title of each document in a chain is a good representative
of the issue discussed in the document. Hence it is

1194

hypothesized that the similarity between a sentence in
a document and the title of the document is a good
indicative of the relevance of the sentence. Similarity
to the title has been previously shown to be helpful
in summarizing email threads [2] and bug reports [3].
fT itleSim is computed as the cosine between the TF -
IDF vectors of the sentence and the document’s title.

4) fCentroidSim. While fT itleSim is a local feature as
it computes the similarity of a sentence with the title
of the containing document, fCentroidSim is a global
feature as it measures the similarity of the sentence with
the centroid of the chain. A centroid is a vector that
can be considered as representative of all documents
in a chain. Centroid-based techniques have extensively
been used in multi-document summarization (e.g, [4]).
We take the approach of multi-document summarization
system MEAD [4] to compute fCentroidSim. The
chain centroid is computed as a vector of words’ average
TF -IDF scores in all documents in the chain. For each
sentence, fCentroidSim is computed as the sum of all
centroid values of common words shared by the sentence
and the centroid.

5) fDocPos. This feature captures the relative position of
a sentence in the enclosing document. The motivation
is that it might be the case that opening or concluding
sentences are more important than the rest of sentences.
fDocPos is computed by dividing the number of pre-
ceding sentences in the document by the total number
of sentences in the document.

6) fChainPos. This feature is similar to fDocPos, but it
measures the relative position of a sentence in the chain.

7) fDocLen. Usually longer sentences are more informa-
tive. fDocLen is the length of the sentence normalized
by dividing it by the length of the longest sentence in
the document.

8) fChainLen. Similar to fDocLen with the length of the
sentence divided by the length of the longest sentence
in the chain.

IV. DOES THE APPROACH WORK?

To investigate if the features discussed in Section III can
be effective in identifying important sentences, we created a
corpus of human generated summaries of chains of documents
related to code changes. As an initial corpus, we identified
eight chains in the CONNECT project, each linking together
three documents from the project’s issue repository and one
commit log message. The average length of selected chains is
386±157 words. This is four times the size of the example
chain summary shown in Figure 1.

We recruited seven human summarizers (all from the UBC
Department of Computer Science) and asked them, for each
chain of documents related to a code change, to create a
summary explaining the motivation behind the change by
highlighting sentences that should be included in such a
summary. Similar to the approach taken by Carenini and
colleagues [1], human summarizers were asked to distinguish

 0

 0.05

 0.1

 0.15

 0.2

 0.25

fTitleSim
fOverlap

fCentroidSim

fDocPos
fDocLen

fTF-IDF
fChainLen

fChainPos

F-
st

a
ti

st
ic

s

Fig. 2. F-statistics value for sentence features

between selected sentences by labeling them as essential for
critical sentences that always have to be included in the sum-
mary or optional for sentences that provide additional useful
information but can be omitted if the summary needs to be kept
short. Human summarizers were advised to choose at most
one third of sentences in a chain (whether labeled as essential
or optional). Each chain was summarized by three different
people. For each chain, we merged these three summaries
to a gold standard summary by extracting sentences with
the following set of labels: {optional, essential}, {essential,
essential}, {optional, optional, optional}, {optional, optional,
essential}, {optional, essential, essential} and {essential, es-
sential, essential}.

We used the feature analysis technique introduced by Chen
and Lin [5] to compute the F-statistics measure for all 8
sentence features based on the gold standard summaries in
our corpus. Figure 2 shows F-statistics values for each feature.
Based on these values fT itleSim and fOverlap are the two
most helpful features in identifying the important sentences.
As we hypothesized earlier, fT itleSim is a useful feature
because the titles of the documents were well-chosen and well-
phrased. fOverlap is a useful feature because the document
authors have used repetition and similar phrases to discuss
motivation. On the other hand, fChainLen and fChainPos
are the two least helpful features. Removing the two least
helpful features, we trained a classifier based on Support
Vector Machines (SVMs) using the libSVM3 toolkit. This
classifier has a 10-fold cross validation accuracy of over 82%
showing a high level of effectiveness in identifying important
sentences.

V. RELATED WORK

A. Analyzing Code Changes

Various approaches have addressed analyzing source code
changes to gain insight about past and current states of a
software project. Examples include identification (e.g., [6]),
impact analysis (e.g., [7]) and visualization (e.g., [8]) of code
changes. While these approaches mainly focus on the ‘what’
and ‘how’ of a code change, the approach presented in this
paper tries to address the ‘why’ behind a code change.

3http://csie.ntu.edu.tw/∼cjlin/libsvm, verified 12/12/12

1195

B. Summarizing Software Artifacts

While our proposed approach focuses on generating sum-
maries to address a particular question (‘why did this
code change?’), other approaches have considered generating
general-purpose summaries of software artifacts. This includes
efforts on producing summaries of source code, for example
term-based summaries for methods and classes [9], natural lan-
guage summary comments for arbitrary Java methods [10] and
natural language summaries for crosscutting concerns [11].
Other work investigated extractive summarization of bug re-
ports, including a supervised summarization approach relying
on the conversational nature of bug reports [12] and an
unsupervised approach based on the PageRank algorithm [3].

C. Multi-document Summarization

In contrast to other work on summarizing software artifacts
which investigates summarization of a single document, the
approach proposed in this paper focuses on multi-document
summarization of software artifacts. Most multi-document
summarization system rely on content similarity among doc-
uments. Examples include centroid-based (e.g., MEAD [4]),
cluster-based (e.g., [13]) and graph-based (e.g., [14]) summa-
rization approaches. Our approach differs in the sense that
the summary is generated from a set of documents each at a
different level of abstraction.

VI. DISCUSSION

In this paper we proposed an approach based on multi-
document summarization techniques to produce a summary
providing the motivational information behind a code change.
The proposed approach relies on input in the form of a set of
documents related to the change. It is also assumed that the
documents in that set are at different levels of abstractions and
thus can be ordered in the form of a chain. In some projects,
like CONNECT which was used in this paper, there are explicit
links between documents that can be used to track and form a
chain of relevant document to a code change. In cases where
relevant information is spread across documents in different
repositories with no explicit links between documents, tech-
niques like text mining and information retrieval (e.g., [15])
could be used to retrieve a set of documents related to a code
change.

In this paper, as a first step, we took an extractive approach
where full sentences are extracted to form a summary. Another
option would be to form a shorter and easier to go through
summary by extracting keywords or phrases from a set of
change-related documents. It is yet to be investigated whether
such summaries can effectively be generated and whether they
can address the information need of developers.

There are several unanswered questions regarding the ap-
proach presented in this paper. For example, it is unclear
how well the classifier trained on our human-annotated corpus
generalizes to data from other projects. Also, it needs to be
investigated whether developers find the generated summaries
helpful. As the first step towards answering these questions,
we performed an exploratory study in which we used the

classifier to generate summaries for a few chains from a
different open source project, Eclipse Mylyn.4 For each chain,
we asked the Mylyn developer who had made the code change
whether the chain summary contained information relevant
to the reason behind the change. Our initial results show
that overall the developers found the summaries to contain
information related to the reason behind the code change. The
developers suggested altering the approach to include more
technical details related to the code changes they examined.

ACKNOWLEDGMENT

We would like to thank Julius Davies and the reviewers for
comments on an earlier version of this paper. This work was
funded by NSERC.

REFERENCES

[1] G. Carenini, R. Ng, and X. Zhou, “Summarizing email conversations
with clue words,” in WWW’07: Proc. of the 16th International World
Wide Web conf., 2007, pp. 91–100.

[2] S. Wan and K. McKeown, “Generating overview summaries of ongoing
email thread discussions,” in COLING’04: Proc. of the 20th Interna-
tional conf. on Computational Linguistics, 2004, pp. 549–556.

[3] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’ bug
report reading process to summarize bug reports,” in ICSM’12: Proc. of
the 28th International conf. on Software Maintenance, 2012.

[4] D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Celebi, S. Dim-
itrov, E. Drabek, A. Hakim, W. Lam, D. Liu et al., “MEAD-a platform
for multidocument multilingual text summarization,” in LREC’04: Proc.
of the International conf. on Language Resources and Evaluation, 2004.

[5] Y.-W. Chen and C.-J. Lin, “Combining SVMs with various feature
selection strategies,” in Feature extraction, foundations and applications.
Springer, 2006, pp. 315–324.

[6] B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” Software
Engineering, IEEE Trans. on, vol. 33, no. 11, pp. 725 –743, nov. 2007.

[7] R. Purushothaman and D. Perry, “Toward understanding the rhetoric of
small source code changes,” Software Engineering, IEEE Transactions
on, vol. 31, no. 6, pp. 511 – 526, june 2005.

[8] S. L. Voinea, A. Telea, and M. Chaudron, “CVSscan: Visualization of
code evolution,” in Softviz’05: Proc. of the 2005 ACM Symposium on
Software Visualization, 2005, pp. 47–56.

[9] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in WCRE’10: Proc. of the 17th Working conf. on Reverse Engineering,
2010, pp. 35–44.

[10] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in ASE’10: Proc. of the 25th international conf. on Automated
software engineering, 2010, pp. 43–52.

[11] S. Rastkar, G. Murphy, and A. Bradley, “Generating natural language
summaries for crosscutting source code concerns,” in ICSM’11: Proc. of
the 27th International conf. on Software Maintenance, 2011, pp. 103–
112.

[12] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports,” in ICSE’10: Proc. of the 32nd
International conf. on Software Engineering, 2010, pp. 505–514.

[13] X. Wan and J. Yang, “Multi-document summarization using cluster-
based link analysis,” in SIGIR’08: Proc. of the 31st annual international
ACM SIGIR conf. on research and development in information retrieval,
2008, pp. 299–306.

[14] G. Erkan and D. Radev, “Lexpagerank: Prestige in multi-document text
summarization,” in EMNLP’04: Proc. of the 2004 conf. on Empirical
Methods on Natural Language Processing, 2004, pp. 365–371.

[15] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
Sep. 2007.

4www.eclipse.org/mylyn, verified 12/12/12

1196

