
public void test2502355_zoom() {
 DefaultXYDataset dataset = new DefaultXYDataset();
 JFreeChart chart = ChartFactory.createXYLineChart(
"TestChart", "X","Y", dataset, PlotOrientation.VERTICAL,
false, false, false);
 ChartPanel panel = new ChartPanel(chart);
 chart.addChangeListener(this);
 this.chartChangeEvents.clear();
 panel.zoom(new Rectangle2D.Double(1.0, 2.0, 3.0,
4.0));
 assertEquals(1, this.chartChangeEvents.size());
}

public void test2502355_zoomInBoth() {

 DefaultXYDataset dataset = new DefaultXYDataset();
 JFreeChart chart = ChartFactory.createXYLineChart(

"TestChart", "X","Y", dataset, PlotOrientation.VERTICAL,
false, false, false);

 ChartPanel panel = new ChartPanel(chart);
 chart.addChangeListener(this);
 this.chartChangeEvents.clear();
 panel.zoomInBoth(1.0, 2.0);
 assertEquals(1, this.chartChangeEvents.size());

}

Summary for test case: test2502355_zoom:

Calls zoom on a panel object using a Rectangle2D.Double
object.
Checks the size of the chartChangeEvents object is equal to 1.

Summary for test case: test2502355_zoomInBoth:

Calls zoomInBoth (1.0, 2.0) on a panel
Checks the size of the chartChangeEvents object is equal to 1.

Towards Generating Human-Oriented Summaries
 of Unit Test Cases

Manabu Kamimura
Software Innovation Laboratory

Fujitsu Laboratories Ltd
Kawasaki, Japan

kamimura.manabu@jp.fujitsu.com

Gail C. Murphy
Department of Computer Science
University of British Columbia

Vancouver, Canada
murphy@cs.ubc.ca

Abstract—The emergence of usable unit testing frameworks
(e.g., JUnit for Java code) and unit test generators (e.g., CodePro
for Java code) make it easier to create more comprehensive unit
testing suites for applications. Unfortunately, test code, especially
generated test code, can be difficult to comprehend. In this paper,
we propose generating human-oriented summaries of test cases.
We suggest an initial approach based on a static analysis of the
source code of the test cases. Our goal is to help improve a
human’s ability to quickly comprehend unit test cases so that
appropriate decisions can be made about where to place effort
when dealing with large unit test suites.

Index Terms—Test case comprehension, summarization

I. INTRODUCTION
The emergence of usable unit testing frameworks, such as

JUnit1 for Java code, makes it easier to create comprehensive
unit test suites for applications. For example, the JFreechart
application2 (v. 1.0.14) includes 2217 test methods, a ratio of
approximately 3.5 test methods per class in the application.

More unit tests are typically seen as good; for instance,
more unit tests should catch regressions caused by code
changes earlier in development. But are more unit tests good in
all dimensions? Imagine that you are a developer who joins a
software development project with lots of unit test cases. When
a code change causes many test cases to fail, which test case
should you investigate first? What if you need to update the test
cases as you change the code? How do you learn what all of the
cases test? What if your test case suite includes generated tests
from the growing number of test generation tools (e.g.,
CodePro3 and JTest 4)?

If you are lucky, as much or more care was taken in writing
or annotating the test cases as the code to which the tests apply:
the names of the test cases are meaningful, the code within the
test case is clean and straightforward and all variables are well-
named. A simple scan of the test case code allows a developer
to determine what the test case is doing. Unfortunately, such
test case code is not that common. Figure 1 shows two

1 http://www.junit.org
2 http://www.jfree.org/jfreechart/
3 https://developers.google.com/java-dev-tools/codepro/doc/
4 http://www.parasoft.com/jsp/products/jtest.jsp

examples of unit test cases from JFreechart. From the names of
these test cases, a developer can determine that they are about
zoom, but it is difficult to tell, without reading the contents of
each test case in depth, how the test cases compare and whether
the test cases consider more than zoom functionality.

Fig. 1. Some Unit Test Cases from JFreechart

Fig. 2. Summaries for the Test Methods in Fig. 1

We hypothesize that a developer can benefit from a
consumable and understandable textual summary of a test case.
In this paper, we provide an initial step towards generating
such summaries. Our focus is on identifying interesting facts

978-1-4673-3092-3/13

c� 2013 IEEE

ICPC 2013, San Francisco, CA, USA

Accepted for publication by IEEE.

c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

215

about the test cases, largely centering on how similar test cases
are different from each other (Section III). Figure 2 shows the
summaries we can currently generate for the two similar test
cases shown in Figure 1. From the summaries, a developer can
see that the end result of each test case is the same; the size of
the object referred to by chartChangeEvents is 1.
However, each method, as indicated by the name, operates
primarily on testing a different zoom method: zoom on a panel
object in the first test case versus zoomInBoth on a panel
object in the second test case. In this particular case, one could
infer part of this information from the method names, however,
this information is not always so apparent; the names of the test
methods do not always correspond to the most important
methods in the test case. Our approach is able to pick out this
pertinent information from an analysis of the method bodies of
the test cases (Section IV).

II. OUR PREVIOUS WORK
Existing work on helping developers comprehend test cases

has focused on the generation of graphical representations (e.g.,
[1]) (Section VI). To our knowledge, this work is the first to
consider the generation of textual summaries for test cases. In
earlier work at UBC, we have shown that textual summaries of
crosscutting source code and bugs can help in source code
change [2] and bug duplication tasks [3]. The work described
in this paper introduces a new abstractive summarization
approach summarize a previously unconsidered software
artifact, test cases.

III. APPROACH
Our approach to generating a test case summary is based on

static analysis of the test case’s source code. Our current focus
is on generating summaries for Java unit test cases written to
the JUnit test framework. Given this focus, the input to our
approach is a JUnit test suite for which our approach generates
a textual summary for each test method in the test suite.

We consider each test method (i.e., test case) in the test
suite in turn. We focus on method invocations, including
arguments to the method invocations, present in the test case.
We extract each method invocation in the test method and
identify which are verification statements; that is, statements
which check whether an expected value has occurred. We
categorize all other method invocations as operations.

We then determine how unique a particular method
invocation is relative to other test cases. The uniqueness of a
method invocation helps identify the focus of a given test case.
For example, Figure 1 shows two test cases. Both test cases are
similar, yet one includes a zoom method invocation and the
other a zoomInBoth method invocation. This difference in
method invocation captures the essential difference between
the test cases. To better explain our approach, we provide more
detail on the three most notable steps: classifying method
invocations, comparing the difference between the test cases,
and identifying key facts about the test case. We then briefly
describe how we generate the textual summary.

A. Classifying Method Invocations
A unit test case typically has four phases: setup, exercise,

verify and teardown [4]. The verify phase is critical because it
is the phase that determines whether there is a problem with the
system under test. We refer to each statement in the verify
phase as a verify statement. For JUnit test cases, we recognize
verify statements as those using assert* calls, such as
assertEquals. The differences between the setup, exercise
and teardown phases are not as obvious as the verify phase.
The classification of method invocations into the other three
phases may depend on which part is interesting in the test case.
Many patterns have been proposed to classify the phases from
various viewpoints [4]. In our approach, we separate method
invocations into verify and operation (i.e., all non-verify)
statements.

B. Determining Unique Method Invocations
To identify which method invocations in a test case are

relatively unique, we store the number of occurrences of each
method invocation across the test suite. It is stored as a hash
table that contains the method invocation as the key and the
number of occurrences as the value. The key for a method
invocation includes the method name, the class name of the
object on which the method is invoked and the arguments to
the invocation. We also include information about whether the
method invocation is inside “try/catch” or “if or loop”
statements; this information indicates whether the statement
executes under some particular condition checked in the
method.

We also need to represent information about the arguments
to each method invocation. Our first choice is to use the
variable name or constant value present in the source code. We
use a heuristic to determine if the name is sufficient to
comprehend. For example, if the variable name is short, such as
two characters like “a1”, we think this name is too short to
comprehend. We follow the data flow in the method to see if
the value comes from a variable named more meaningfully. If
we cannot find a longer name, we use the argument type. When
we follow the data flow and reached to the class name, we also
determine whether the class is meaningful or not by using user-
defined information that classifies meaningful class name. The
user-defined information as not meaningful is set as
“ArrayList” or “Hashtable” in this paper so we will
determine this class name as not meaningful and use the
variable name instead.

Separate hash tables are used for method invocations in
verify and operation statements.

C. Determining Key Facts
To form the textual summary for a test case, we

successively consider the least occurring verify and operation
method invocations. The least occurring invocations are the
most unique for each test case. If there are two method
invocations with the same number of occurrences, we pick the
invocation that appears later in the source code for the test case,
similar to [4]. We repeat the process of picking invocations
until the generated summary reaches a predefined length,

216

which is set to one tenth of the character number of the target
test case for this paper.

D. Generating the Summary
Given the key method invocations, we can generate a

textual summary using a pre-defined template. All operation
invocations are described first using a “calls <methodname> on
<objectname>” format. We then output all verification
invocations using templates for various verification operations,
such as “checks the <methodname> of <object> is equal to
<value>”.

IV. PRELIMINARY EVALUATION
Can the key information in a test case be identified to

enable the generation of a useful summary? To investigate this
question, we considered the application of our approach to the
JFreechart application, which has largely reasonable Javadoc
summary comments with reasonably well-named methods.
This application thus provides a case to study in which we can
compare against the developer-provided documentation given
by the test method name and the method’s summary Javadoc.

We first considered whether the information identified as
key using our approach is the same as the information provided
in the developer-provided text consisting of the test method
name and the method’s summary Javadoc. As a target, we
picked the 14 test methods in the ChartPanelTest class.
We applied our approach to generate key facts for each test
case. We then analyzed the developer-provided text, extracting
as key developer-provided facts the method name. Figure 1
provides an example. The key facts generated by our approach
for this example are “Call zoom and check the size of
chartChangeEvents is equal to 1”. The developer-
generated provided key facts in the comments for this test
method are “a call to the zoom() method” and “generates just
one ChartChangeEvent”. There is a description “just one” in
the developer-provided comment and we consider the
generated summary thus captures the right facts because our
generated facts express that chartChangeEvent is 1. In
this case, the key facts generated by our approach match the
key facts in the developer-provided documentation.

We found that 13 of the 14 generated summaries captured
the relevant features in the developer-provided documentation.
The inconsistency in one summary was that the developer-
provided documentation used the word “Constructor”, whereas
the generated summary used the class name ChartPanel.

We also compared the length (in terms of number of
characters) of the generated textual summaries and the length
of the original test method to see how much shorter the
summary is than the original method. For the 14 test cases
considered, the summaries are 18-23% of the original length;
some specific examples are shown in Table 1.

Next, we considered whether our technique can help a
developer comprehend generated test cases. We generated test
cases for XYSeriesCollection from the JFreechart
application using the CodePro5 tool. The test class generated

5 https://developers.google.com/java-dev-tools/codepro/doc/

using CodePro has 2371 lines with 86 methods. It is larger
than the developer-created test class, which has 431 lines with
16 methods.

TABLE I. COMPRESSION RATE OF TEST CASE SUMMARIES

Test case
name

Length and Compression Rate of Summaries
Number of

characters in the
test case

Number of
characters of the

summaries

The length of
summaries per

method (%)

zoom 607 137 22.57
zoomIn
Both 591 121 20.47

zoomOut
Both 594 123 20.71

zoomIn
Domain 742 135 18.19

zoomIn
Range 737 133 18.04

Figure 3 and Figure 4 shows the key facts our approach

extracts from the generated test case code. In Figure 3, we can
see from the summaries where the test cases for
XYSeriesCollection differ. The first and third tests are
highly similar but differ in the argument when constructing an
instance of XYSeriesCollection. The key facts can help
a developer understand the variety of test cases generated.
Figure 4 alerts the developer to a potential problem. In Figure 4,
the key facts about the test cases for addSeries are the same.
On deeper inspection, it turns out that the test generation tool
failed to run and only the initialization process of each case
was generated. Scanning the facts extracted by our approach
can point the developer to look at these cases to see if there is a
problem.

testAddSeries_1
XYSeriesCollection (XYSeries(Day())) on
XYSeriesCollection(), addSeries (series) on
XYSeriesCollection()

testAddSeries_2
XYSeriesCollection (XYSeries(Day())) on
XYSeriesCollection(), addSeries (series) on
XYSeriesCollection()

Fig. 3. Looking into Test Cases with Summaries (Raw Facts)

testXYSeriesCollection_1

XYSeriesCollection,
Check Equals for (0.5,
result.getIntervalPositionFactor(), 1.0) ,
Check Equals for (false, result.isAutoWidth())

testXYSeriesCollection_2

XYSeries (Day()) ,
XYSeriesCollection (series) ,
Check Equals for (1, result.getSeriesCount()) ,
Check Equals for (false, result.isAutoWidth())

testXYSeriesCollection_3

XYSeriesCollection (series) ,
Check Equals for (0.5,
result.getIntervalPositionFactor(), 1.0) ,
Check Equals for (false, result.isAutoWidth())

Fig. 4. Completely same Test Cases with Summaries (Raw Facts)

217

V. DISCUSSIONS
We have provided initial steps towards generating a human-

oriented summary of a test case based on an analysis of the
source code of the test case. We believe that test case
summaries show promise to help a developer understand test
cases more efficiently and more effectively. In some cases,
there may be other means of presenting the extracted facts than
text; for instance, the facts can be presented by highlighting the
relevant code in a test case in a development environment.
Such highlighting has been shown to be effective in other cases
[8]. Highlighting may be particular effective for understanding
generated test cases, where with our approach, very different
parts of a test case---the method name and arguments called
only in those test cases---could be drawn to the attention of a
developer. We have developed a preliminary approach of this
highlighting for the Eclipse development environment.

Much more work is needed to characterize the kinds of test
cases and to understand how this affects the human-oriented
descriptions generated.

VI. RELATED WORK
Many testing techniques have been developed to help in

specialized cases. For example, Rothermel and colleagues have
considered relating test cases to faults to determine which test
case mostly reveals the faults [5]. These specialized approaches
can be very effective at responding to regression test situations.
In this paper, we are more interested in the general case of test
case comprehension. Similar to studies that show how good
comments can help programmers quickly understand what a
method does [6] [7], we believe that test case descriptions can
help support a developer to understand test cases more
efficiently and more effectively. Others have also considered
how to help in test case comprehension. For example,
Cornelissen and colleagues have considered how to depict the
behavior of a test case through sequence diagrams created from
trace information [1]. This method may help to see how objects
interact in a test case but does not necessarily help a developer
deal with large test suites. We are not aware of any other work
that focuses on generating textual descriptions of test cases.

VII. SUMMARY
Unit test cases are not write-once, read-once. After initial

development, just like code, unit test cases must be evolved.
Unfortunately, unit test case code is not always easy to
comprehend. In this paper, we have introduced the idea of
generating summaries of test cases to ease comprehension. We
have provided initial steps towards generating such a summary

based on an analysis of the source code of the test case. We
investigated our approach by applying it to the open source
JFreeChart application, which has several hundred classes,
showing we can capture the facts expressed by the developer as
important and that we can pinpoint issues with test cases
generated for the application.

Much more work is needed to make truly usable human-
oriented summaries. For instance, what do developers need in a
generated summary to ease their work? How do developers use
test case generation tools? We will use our method to find what
the key summary information is for the developer. When a
code change causes many test cases to fail, how does the
developer find the test case to investigate first? Is static
analysis information sufficient to generate useful descriptions
or is execution information needed? Are different summaries
needed to support developers in different tasks? How can
generated summaries augment the use of specialized testing
support, such as test case prioritization? Work in this area will
further the emerging area of software artifact summarization.

REFERENCES
[1] Bas Cornelissen, Arie van Deursen, Leon Moonen and Andy

Zaidman: Visualizing Testsuites to Aid in Software
Understanding , In Proc. of CSMR 2007, pp. 213-222, 2007.

[2] Sarah Rastkar, Gail C. Murphy, and Alexander W. J. Bradley
Generating Natural Language Summaries for Crosscutting
Source Code Concerns, In Proc. of ICSM 2011 pp.103 - 112
2011.

[3] Sarah Rastkar, Gail C. Murphy, Gabriel Murray. Summarizing
Software Artifacts: A Case Study of Bug Reports. In Proc. of
ICSE2010, pp 505-514, 2010.

[4] Gerard Meszaros: xUnit Test Patterns: Refactoring Test Code
Addison-Wesley Signature Series (Fowler), 2007.

[5] Gregg Rothermel, Roland H. Untch, Mary Jean Harrold:
Prioritizing Test Cases For Regression Testing. In IEEE TSE
27(10), pp. 929-948, 2001.

[6] Giriprasad Sridhara, Lori Pollock and K. Vijay-Shanker:
Automatically Detecting and Describing High Level Actions
within Methods, In Proc. of ICSE 2011, pp. 101-110, 2011.

[7] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock
and K. Vijay-Shanker: Towards Automatically Generating
Summary Comments for Java Methods, In Proc. of ASE 2010,
pp. 43-52, 2010

[8] Gerard K. Rambally, The influence of color on Program
Readability and Comprehensibility In Proc. Technical
Symposium on Computer Science Education (SIGCSE), pp.
173–181. ACM Press.1986

218

