
© 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This work appeared as “Reengineering with Reflexion Models: A Case Study”, Computer 30, 8, 1997,
pp.29-36.

0018-9162/97/$10.00 © 1997 IEEE August 1997 29

Reengineering
with Reflexion
Models: A
Case Study

To effectively perform most software engineer-
ing tasks on an existing system, a software
engineer must have some understanding of the

system’s source code. However, gaining insight into
the source code of large and complex systems typically
takes too long and costs too much. In an attempt to
address this problem, we developed the software
reflexion model technique,1 which lets software engi-
neers rapidly and cost-effectively gain task-specific
knowledge about a system’s source code. In this arti-
cle we give an overview of our technique and then
relate how a Microsoft engineer used it to aid an exper-
imental reengineering of Excel—a product that com-
prises about 1.2 million lines of C code.

Our technique begins with a high-level model,
which users define on the basis of a desired software
engineering task. We had often seen software engineers
use an informal structural model, say sketched on a
white board, to begin reasoning about systems.
However, reasoning about a task in this way carries
significant risk because the model is disconnected from
the source. Thus, the next steps in our technique are to
extract a model of the source, define a map, and,
through a set of computation tools, compare the two
models. This lets software engineers effectively vali-
date their high-level reasoning with information from
the source code.

To satisfy the need for a quick and inexpensive
method, we made the technique “lightweight” and
iterative. The user can easily and rapidly access the
structural information of interest and can balance the
cost of refinement with the potential benefits of a more
complete and accurate model. The engineer in our case
study—a developer with 10-plus years at Microsoft—
specified and computed an initial reflexion model of
Excel in a day and then spent four weeks iteratively

refining it. He estimated that gaining the same degree
of familiarity with the Excel source code might have
taken up to two years with other available approaches.

The case study demonstrates not only that our tech-
nique and tools can scale up to large real-world prob-
lems, but also that our technique is flexible and robust
enough to withstand adaptations to suit a particular
task or environment.

MOTIVATION
Tool-supported reengineering is usually based on

bottom-up reverse engineering approaches in which
the source code is analyzed and abstractions of the sys-
tem are produced using automated and semiauto-
mated techniques. Automated techniques identify
structural high-level components by applying either
numerical methods2 or knowledge of structural pat-
terns.3 With a semiautomated technique,4 the user is
more involved in selecting information of interest from
the source code and in clustering it to gradually
develop a high-level model.

C
o

m
p

u
ti

n
g

 P
ra

c
ti

c
e

s

Reengineering large and complex software systems is often very costly.
Reflexion models let software engineers begin with a structural high-level
model that they can selectively refine to rapidly gain task-specific
knowledge about the source code. The authors describe how a Microsoft
engineer used this technique in an experimental reengineering of Excel.

Gail C.
Murphy
University of
British Columbia

David Notkin
University of
Washington

.

30 Computer

Both styles apparently have limitations with respect
to handling real-world reengineering tasks. Automated
techniques are usually based on precoded structural
source information (such as data bindings), which is lim-
iting when the reengineering task requires other infor-
mation (such as event interactions). Semiautomated
techniques tend to become increasingly hard to apply
as the information extracted from the source grows.

Our technique differs from these by attempting to
simultaneously take a top-down and bottom-up
approach. Software engineers can quickly form
hypotheses from a variety of sources and can then con-
centrate their effort on getting information about the
parts of the system that are relevant to the task at hand.

TECHNIQUE OVERVIEW
The software reflexion model technique has been

used to support design conformance tasks and to
assess system structure before implementing changes.5

The software systems involved were fairly large—from
several thousand to a quarter million lines of code. As
we describe in the next section, we have also success-
fully applied our technique to a larger system under
real-world schedule pressures.

To derive a software reflexion model and iteratively
refine it, the user performs five steps, as Figure 1
shows.

Define high-level model
The high-level model describes aspects of the sys-

tem’s structure that aid in reasoning about the soft-
ware engineering task at hand. This step may involve

reviewing artifacts (source code, documents), inter-
viewing experts, or looking at similar architectures—
anything that may give information about the system.
For example, if the desired activity is to assess how
difficult it would be to modify a compiler to generate
code for a new platform, the user may choose to rea-
son about the compiler in terms of a dataflow archi-
tecture. The High-Level Model window in Figure 2
shows a model of a compiler in which a parser pro-
duces an abstract syntax tree (AST) that interacts with
a symbol table and code generator to produce object
code. This step typically takes 15 minutes to an hour.

Extract source model
The user applies a tool like a call graph extractor

or a file dependency extractor to extract interaction
information from the source code. This information
forms the source model that will be compared with
the high-level model. In the compiler example, the user
is employing a source model that captures calls
between C++ methods as an approximation of the
dataflow relationships in the high-level model.

Define map
The user then defines a map that describes how enti-

ties in the source and high-level models relate. To make
this map easier to state, a user may refer to informa-
tion about both the physical and logical software
structures. The user may also employ regular expres-
sions to make it easier to state the map. Figure 2 shows
9 of the 33 lines comprising a map for the compiler. As
an example, the first line states that all classes and
methods in files with scanner in their name will be
associated with the Parse high-level model entity. The
map is produced manually, but initially it often takes
only 10 to 30 minutes to define.

Compute reflexion model
Given a high-level model, a source model, and a

map, the user invokes a set of tools to compute a soft-
ware reflexion model. The reflexion model lets the user
see interactions in the source code from the viewpoint
of the high-level model. The tools push the interac-
tions in the source model through the map, compar-
ing the mapped interactions in the high-level model
with the hypothesized high-level model interactions.
The tools consist of three filter programs and eight
support programs. They are packaged as separate exe-
cutables and are accessible through a textual com-
mand-line interface as well as a graphical user
interface, which is loosely integrated with AT&T’s
graphviz graph display program.6

The Reflexion Model Viewer window in Figure 2
shows the software reflexion model for the compiler
example. The model consists of the entities defined in
the high-level model and three kinds of arcs.
Convergences—solid arcs, such as from Parse to
AST—are mapped interactions that agree with the
stated high-level model. Divergences—dashed arcs,
such as from CodeGen to SymTab—are mapped
interactions not stated in the high-level model.
Absences—dotted arcs, such as from CodeGen to

Figure 1. Software
reflexion model tech-
nique. The user
defines a high-level
model, extracts a
source model, states
a map, and then com-
putes a reflexion
model. Upon investi-
gation of the reflexion
model, the user may
iteratively refine the
inputs and recompute
a new reflexion
model.

Defines
Defines

Extraction
tool

Reflexion model
computation tools

Reflexion model
display and
query tools

1
2

4

3

5

High-level
model

Source
model

Unmapped
arcs

Image
arcs

Mapped
arcs

Map

Selects

System artifacts
(source code,
documents,
and so on)

Reflexion
model

Investigates
and
refines

Computes

.

Object—are interactions stated in the high-level
model that do not correspond to any mapped inter-
action.

The numbers associated with the reflexion model
arcs show the number of source model interactions
mapped to an arc. This information helps the user
assess the system’s structure. The “2” associated with
the divergence from CodeGen to SymTab, for exam-
ple, lets the user assess the degree of unexpected cou-
pling between the modules.

Investigate and refine
Simply viewing a displayed reflexion model does

not generally provide sufficiently detailed information
for a user to assess, plan, and perform a software engi-
neering task. Typically, she must also investigate the
source model interactions mapped to particular arcs
in the reflexion model. Sometimes, the information in
the reflexion model may reveal missing interactions in
the high-level model or deficiencies in the map. For
example, a map entry may associate source model
entities with the wrong high-level model entity or the
map may not be specific enough in capturing the user’s
intent. This often leads to refinement of the source
model, the high-level model, or the map.

The kind of coupling between the CodeGen and
SymTab modules in Figure 2, for example, might
affect how the code generator is modified to produce
code for a different platform. The Source Model
Values window shows the result of a user query about
this interaction. Using this information, the user can
visit these code locations to help determine the com-

plexity of the task to be performed.
As Figure 1 shows, three files support the display

and investigation of a reflexion model.

• The image arc file describes the arcs between enti-
ties of the high-level model that result from apply-
ing the map to the source model.

• The mapped arc file describes how interactions
in the source model map to arcs described in the
image arc file. The information appears when the
user clicks on a convergence or divergence.

• The unmapped arc file describes the interactions in
the source model that are not mapped as part of the
computation. A user may access this information
to help assess the completeness of the defined map.

Generally, the user iteratively computes and inves-
tigates successive reflexion models until she acquires
enough structural information for the task being per-
formed.

EXCEL EXPERIMENTAL REENGINEERING
The Excel case study was timely. Although our tech-

nique showed promise, we still had many questions
about the feasibility of applying it to large systems
under the constraints of an industrial environment.
About that time, a group at Microsoft was facing the
challenge of performing an experimental reengineer-
ing of Microsoft Excel. Specifically, they needed to
identify and extract components from the source code.
To perform this activity within the few months avail-
able, the team needed to understand some of the struc-

August 1997 31

Figure 2. Interface of
the software reflexion
model tools. The user
has specified a high-
level model for a
compiler and a map;
the figure shows the
reflexion model com-
puted from these
inputs and a source
model. The user has
selected the arc from
CodeGen to SymTab
for investigation. The
tools display the calls
mapped to this arc.
AT&T’s graphviz is
used for visualizing
models. The open
circles on arcs are
graphviz’s arc
handles.

.

32 Computer

ture of the 1.2 million lines of C code. An engineer in
this group had heard us present our technique and
decided to use it to aid the experimental reengineering.

Figure 3 shows how the engineer adapted the
process in Figure 1 to his effort.

Define high-level model
The engineer needed to understand how Excel’s C

source code divides into static modules and how those
modules interact at execution. Traditionally, a
Microsoft developer would become familiar with
these aspects of Excel’s structure by reading a docu-
ment called “Excel Internals,” or he would rely on
oral tradition or study the source code. Jon De Vaan
describes this process:7

Excel Internals . . . explains the philosophy of a few
of the basic things in Excel, like the cell table formu-
las, memory allocation, a little bit about the layer [a
special interface with the operating system that allows
Microsoft to use the same Excel core on both
Windows and Macintosh platforms]. . . . It’s very
sparse. We don’t necessarily rely on that for people
to learn things. I’d say we have a strong oral tradi-
tion, and the idea is that the mentor teaches people
or people learn it themselves by reading code. . . .
Over the course of a project, it goes from mostly
truthful to less truthful, and then we have to fix it up.
We don’t fix it up as we go along on a project. We will
give it some attention between projects.

Although this approach may be effective when
developing and evolving Excel, it was not appropri-
ate for the experimental reengineering because of the
time constraints and because the engineer could not
rely on consistent interaction with a mentor from the
Excel development group.

Instead, he relied on brief discussions with Excel
developers and his development experience. He found
it “natural,” on the basis of this information, to record
an initial high-level model that described some of the
modules comprising Excel and the call dependencies
between them. Figure 4 shows the high-level model,
which consisted of 13 modules and 19 interactions.
For proprietary reasons, we have removed the names
of all but three modules. Our qualitative examples
focus on the interactions among these three, but the
statistics we report consider the full set.

Extract source model
Because the Excel high-level model captured calls

between modules, the engineer selected calls between
functions as the basis for a compatible source model.
As Figure 3 shows, he used an internal Microsoft tool
to extract the source model. The extracted model con-
sisted of 77,746 calls between the approximately
15,000 functions comprising Excel.

Define map
The engineer defined a map that associated func-

tions in the source model with modules in the high-
level model. The map file included entries like

[file=^shtreal\.c mapTo=Sheet]
[file=^textfil[ez]\.c$ mapTo=File]

that states that all functions in the shtreal.c file
are related to the Sheet module, and that all func-
tions in the textfile.c and textfilz.h files are
related to the Filemodule. Mappings were based on
the names of directories, files, and functions.

The engineer defined an initial map of 170 lines after
perusing the approximately 400 files comprising the
Excel source code. He defined the map in a few hours
and did so before installing the reflexion model tools.
His inability to compute reflexion models immediately
may have affected how he defined the initial map; in
other applications of our technique, users have started
with maps as small as 10 to 20 lines, which let them begin
the iterative investigation and refinement steps earlier.

The engineer spent about a day defining the initial
high-level model and map.

Compute reflexion model
Figure 5 shows a small piece of the initial software

reflexion model computed for Excel. As expected, the
engineer found calls in the source between functions

Figure 3. Software
reflexion model tech-
nique as applied in
the Excel experimen-
tal reengineering.
This process diagram
is somewhat different
from the generic
process diagram in
Figure 1. The gold
tools and files repre-
sent elements the
Microsoft engineer
added. For example,
he created Query
and Filter scripts
to support
refinements to the
reflexion model
process and an
exceptions file to
keep track of the
interactions he had
reviewed.

Reflexion model
computation tools

Reflexion model
display tools

Logical
remodularization

script

Microsoft
extraction

tool

Recompute
image arcs

script

High-level
model

Source
model

Unmapped
arcs

Image
arcs

Mapped
arcs

Map

Exceptions

Filter
script

Query
results

Query
script

Reflexion
model

.

associated with the Filemodule and functions asso-
ciated with the Sheetmodule (solid arc). The dashed
arc from Sheet to File indicates that functions
mapped to the Sheet module unexpectedly make
calls to functions mapped to the Filemodule. Finally,
the engineer found no calls between functions mapped
to the Graphmodule and those mapped to the Sheet
module (dotted arc).

The initial Excel reflexion model had 15 conver-
gences, 83 divergences, and four absences. The model
summarized about 61 percent of the function calls in
the source model. The remaining 39 percent did not
match any arc in the map; these unmapped entries are
reported in the unmapped arc file, and can be assessed
by the user in the context of the task at hand.

The engineer computed the initial reflexion model
in 20 minutes using the DOS version of our tools run-
ning under Windows NT on a 90-MHz Pentium with
40 Mbytes of memory.

Investigate and refine reflexion model
In investigating the initial reflexion model, the engi-

neer updated both the high-level and source models
and refined the map. He then recomputed the reflex-
ion model and continued the iterative cycles. A cycle
typically began with selecting an arc for investigation
and ended with a refined reflexion model, although
an iteration often skipped steps.

Selecting an arc. The engineer used two methods
to select an arc for investigation. Occasionally, mostly
in the first week or so, he considered the divergences
in the reflexion model. If an interaction was missing
from the high-level model, he updated it to reflect the
interaction. For example, had the divergence from
Sheet to File represented a reasonable interaction,
the engineer might have updated the high-level model
to reflect it. This type of investigation and update
became less frequent in later refinements because the
high-level model stabilized quickly.

More frequently, the engineer selected arcs by sort-
ing through the image arc file (which contains descrip-
tions of convergences and divergences). He selected
the arc with the highest number of mapped calls and

investigated it using the query script in Figure 3, which
he wrote to query the mapped arc file for all calls
mapped to the arc. He then qualitatively assessed a
subset of these calls by looking at the source code.

Refining the map. The engineer encountered many
cases in which functions had been placed in files that
no longer represented the module the file was supposed
to represent. As a result, he spent significant time refin-
ing the map to logically remodularize the Excel sys-
tem. He wrote a script that inserted an entry in the map
that specifically associated a particular function with
the appropriate module (Figure 3). Because the entries
in the map are ordered, he could insert these logical
remodularizations into the top of the map file, leaving
the existing map entry for the file unchanged. Then,
when one of these functions was seen in the source
model, matching stopped at the new map entry.

For example, the engineer found that most of the
functions in the fdefs.c file should be associated

August 1997 33

Figure 4. High-level
model of Excel. The
high-level model pro-
vides a hypothesized
view of the system
structure. The
Microsoft engineer
wanted to know how
Excel’s C source code
divides into static
modules and how
those modules inter-
act at execution. For
proprietary reasons,
the model shows only
three named
modules.

File

Sheet

Graph

Figure 5. Snippet of the initial reflexion model for Excel. The
solid arc from File to Sheet is a convergence; the
dashed arc from Sheet to File is a divergence; the dotted
arc from Graph to Sheet is an absence.

Graph

Sheet

File

912

0

38734

1210

.

34 Computer

with a user interface module. But, some functions in
fdefs.c, such as ExplodeMergeCells, should be
associated with the Sheetmodule. Logically remod-
ularizing this function to the Sheetmodule involved
adding the entry

[function=^ExplodeMergeCells$
mapTo=Sheet]

to the top of the map file.
The engineer refined the Excel map to consist of

more than 1,000 entries (from the original 170 entries),
refining specific areas of interest and ignoring areas
outside the task at hand. Consequently, some parts of
the reflexion model represented detailed summaries of
the interactions between modules, but other interac-
tions remained fuzzy. In this way, the engineer eco-
nomically managed the investigation process.

Documenting exceptions. As part of the iterative
process, the engineer maintained a file of information
that he had investigated and categorized. He called these
exceptions, using regular expressions to describe par-
ticular source model entries mapped to particular arcs
in the high-level model. For example, in investigating
the divergences from Sheet to File, the engineer
found and categorized calls related to an event-style
interaction. He wrote a simple script (Figure 3) to
remove the entries in the mapped arc file that correspond
to exceptions. Removing these helped him focus on the
uninvestigated and unexplained interactions in a reflex-
ion model. We have since added annotations, a gener-
alized version of exceptions, to our tools.5

Augmenting the source model. Just over two weeks
into the use of the technique, the engineer decided he
wanted to consider not only information about the calls
between functions in the Excel source, but also refer-
ences from functions to global variables. He extracted
this information using the Microsoft source model
extraction tool (Figure 3) and added it into the source
model. The resulting source model contained 119,637
entries. Adding the references to global variables to the
source model implicitly changed the meaning of the
high-level model from a “calls between modules”

model to a “communicates with” model. However,
even with this semantics change, the engineer had no
problem interpreting the later reflexion models.

Results. Figure 6 shows part of the reflexion model
after several weeks of refinement. The refined model
shows additional source model information, changes
to the map, and changes to the high-level model. The
new high-level model, for example, includes a
Wks_File module that comprises some specialized
file-handling routines. The interactions summarized
between modules have also increased, as indicated by
the larger numbers associated with the reflexion
model arcs. This increase is the result of augmenting
the source model with global data reference infor-
mation and making the map more specific.

The engineer reported that the technique helped him
refine an architectural view of the system and investi-
gate the connection between the architectural view
and the source code. He used this view, with the asso-
ciated map file, as a basis for reasoning about the
experimental reengineering activity and for assessing
the feasibility of various changes. He also used the
map to automate parts of the experimental reengi-
neering activity itself. For example, he used the entries
in the map that corresponded to logical remodular-
izations to place conditional compilation statements
into the source code. This aided in isolating potential
components for extraction.

The reflexion model also heightened the engineer’s
understanding of the code base and alleviated the dan-
ger of his reasoning in terms of the high-level model
alone. For example, he learned that the Sheet mod-
ule requires functionality located in the Filemodule
in addition to the expected functionality dependence
from the File to Sheet module. He could use this
information during planning to upwardly revise any
estimates of the complexity involved in separating the
Sheet component from the code base. This infor-
mation about the unexpected structural interaction
was not available in the high-level model, and it might
have been hard to find from the source code alone.

The engineer continued to use the technique even
after the original one month. The high-level model
grew to 16 entities and 114 interactions; the source
model ended up with 131,042 call and data interac-
tions; the map grew to 1,425 entries. The final reflex-
ion model summarized 99.7 percent of the source
model entries.

LESSONS LEARNED
The case study gave us several insights into the

needs of a user faced with a reengineering activity.

Task-specific views are important
In e-mail communication to us about the technique,

the engineer wrote

Figure 6. Snippet of a
refined reflexion
model for Excel. After
successive
refinements, the
reflexion model now
includes the
Wks_File module.
The number of inter-
actions summarized
has also increased
(larger numbers are
associated with the
arcs).

File

Sheet

Wks_File

2207

497

713

87

88

69

1160 5

1242

.

Definitely confirmed suspicions about the structure
of Excel . . . allowed me to pinpoint deviations . . .
very easy to ignore stuff that is not interesting and
thereby focus on the part of Excel that I want to know
more about.

The engineer found it useful to be able to view the
system in terms of a refined reflexion model, yet he also
found it valuable to build up an understanding of how
the high-level view connected to the source code.
Consistent with previous studies on program compre-
hension, he moved between these levels repeatedly.8

He also liked having the opportunity to summarize a
large database of interaction information from the
source code, as long as he was able to refine select parts.

An important side effect of this flexibility is econ-
omy. Because the engineer could keep parts of the
model fuzzy and refine only select parts, he was able
to avoid wasting time collecting information not per-
tinent to the task at hand.

Graphical and text interfaces are needed
We provided both textual and graphical interfaces

to the reflexion model tools. Surprisingly, the engineer
drove almost all the investigation of the reflexion
model and the source code from textual information.
Thus, it might be important to rethink the general
belief that graphical interfaces to reverse- and reengi-
neering tools are the best approach.

Explicit, declarative maps help task performance
The engineer used the map to help isolate potential

components in the source. We had viewed the map
primarily as an input to our technique. Its use to place
conditional compilation statements in the source
helped the isolation process. This highlights the value
of the information that connects the overall view to
the source.

Tools and process must adapt to the task
The Microsoft engineer introduced exceptions to

better support his exploration of the Excel source
code. He also introduced two scripts to support faster
recomputation of reflexion models from some of the
intermediate files. The architecture of our reflexion
model tools as a set of filter programs and the flexi-
bility of our technique made these adaptations possi-
ble.

The engineer’s use of the reflexion model tools in
practice helped focus improvements to both the tech-
nique and tools. For instance, we have improved the
performance of our tools so that the computation of
the reflexion model for Excel now takes fewer than
five minutes, compared to the 20 to 40 minutes it first
took. This improved speed removes the need for the
engineer to define and use specially crafted scripts.

The experimental reengineering case study
shows that our technique has practical appli-
cation. First, the engineer chose to use the

technique even when facing extreme pressure.
Second, he continued to use the technique beyond the
original time (one month) to refine additional parts of
the reflexion model for Excel and to compute reflex-
ion models for successive Excel versions. Finally, the
engineer stated that the slowdowns he did encounter
while performing the experimental reengineering
were often due to a lack of up-front understanding.
Had the reflexion model technique been used more
during planning, he felt that he might have been able
to perform the task in less time.

We believe our technique was successful in large part
because it uses approximation. This ensures a smooth
feedback from the time invested in applying the tech-
nique to the results. The more time the Microsoft engi-
neer spent refining the map, the more information he
derived. Although this curve is not completely smooth,
the engineer was able to gauge the accuracy of the
results and use that information to manage the time
and effort invested in using the technique.

One question surrounding any case study is whether
or not you can generalize its results. We believe our
technique can be applied to future efforts similar to
the experimental reengineering for several reasons.
The source comprising Excel was implemented in C,
which is a commonly used language. Like many sys-
tems, the Excel source code had been evolving over
years and had been implemented by many develop-
ers. Finally, the task performed—identifying and
extracting components from an existing system—is
one that many organizations face. ❖

Acknowledgments
We thank several people at Microsoft for participating

in the case study and reviewing drafts of this article: the
members of the experimental reengineering team who
asked to remain anonymous, and Daniel Weise of
Microsoft Research. We also thank Kevin Sullivan for
his work on reflexion models, and Alan Borning, William
Griswold, Nancy Leveson, Nancy Staudenmayer, and
the Computer reviewers who commented on earlier case
study descriptions and earlier drafts of this article.

This research was funded in part by NSF grants
CCR-8858804 and CCR-9506779, in part by a
Canadian NSERC postgraduate scholarship, and in
part by a University of Washington Department of
Computer Science & Engineering Educator’s fellow-
ship. Microsoft Corp. also provided equipment.

References
1. G.C. Murphy, D. Notkin, and K. Sullivan, “Software

Reflexion Models: Bridging the Gap between Source and

August 1997 35

.

High-Level Models,” Proc. SIGSOFT Symp. Foundations
of Software Eng., ACM Press, New York, 1995, pp. 18–28.

2. D.H. Hutchens and V.R. Basili, “System Structure Analy-
sis: Clustering with Data Bindings,” IEEE Trans. Soft-
ware Eng., Aug. 1985, pp. 749–757.

3. D.R. Harris, H.B. Reubenstein, and A.S. Yeh, “Reverse
Engineering to the Architectural Level,” Proc. Int’l Conf.
Software Eng., ACM Press, New York, 1995, pp. 186–195.

4. H.A. Müller and K. Klashinsky, “A System for Pro-
gramming-in-the-Large,” Proc. Int’l Conf. Software Eng.,
IEEE CS Press, Los Alamitos, Calif., 1988, pp. 80–86.

5. G.C. Murphy, “Lightweight Structural Summarization
as an Aid to Software Evolution,” PhD dissertation,
CS&E Dept., Univ. of Washington, Seattle, 1996.

6. Y-F. Chen et al., “Intertool Connections,” in Practical
Reusable Unix Software, B. Krishnamurthy, ed., John
Wiley & Sons, New York, 1995, pp. 299–336.

7. M.A. Cusumano and R.W. Selby, Microsoft Secrets:
How the World’s Most Powerful Software Company
Creates Technology, Shapes Markets, and Manages Peo-
ple, The Free Press, New York, 1995, p. 109.

8. A. von Mayrhauser and A.M. Vans, “Identification of
Dynamic Comprehension Processes During Large Scale
Maintenance,” IEEE Trans. Software Eng., June 1996,
pp. 424-437.

Gail C. Murphy is an assistant professor of computer
science at the University of British Columbia. Her
research interests are in software engineering. Her cur-
rent projects include work on source code analysis,
reverse engineering, and software design techniques.
She was at the University of Washington while doing
the work reported in this article.

Murphy received an MS and a PhD in computer sci-
ence and engineering from the University of Wash-
ington, and a BSc from the University of Alberta. She
is a member of the IEEE Computer Society and ACM.

David Notkin is a professor of computer science and
engineering at the University of Washington. His
research interests are in software engineering with a
focus on software evolution. His current projects
include work on software model checking, software
design, and software tools and techniques.

Notkin received an ScB from Brown University and
a PhD from Carnegie Mellon University, both in com-
puter science. He is a member of the IEEE, ACM, and
Sigma Xi.

Contact Murphy at murphy@cs.ubc.ca or Notkin at
notkin@cs.washington.edu.

.

Reader Service Number 7

