
Software Reexion Models:

Bridging the Gap between Source and High-Level Models

�

Gail C. Murphy and David Notkin Kevin Sullivan

Dept. of Computer Science & Engineering Dept. of Computer Science

University of Washington University of Virginia

Box 352350 Charlottesville VA, USA 22903

Seattle WA, USA 98195-2350 sullivan@cs.virginia.edu

fgmurphy, notking@cs.washington.edu

Abstract

Software engineers often use high-level models (for in-

stance, box and arrow sketches) to reason and com-

municate about an existing software system. One

problem with high-level models is that they are al-

most always inaccurate with respect to the system's

source code. We have developed an approach that

helps an engineer use a high-level model of the struc-

ture of an existing software system as a lens through

which to see a model of that system's source code. In

particular, an engineer de�nes a high-level model and

speci�es how the model maps to the source. A tool

then computes a software reexion model that shows

where the engineer's high-level model agrees with and

where it di�ers from a model of the source.

The paper provides a formal characterization of re-

exion models, discusses practical aspects of the ap-

proach, and relates experiences of applying the ap-

proach and tools to a number of di�erent systems.

The illustrative example used in the paper describes

the application of reexion models to NetBSD, an im-

plementation of Unix comprised of 250,000 lines of C

code. In only a few hours, an engineer computed sev-

eral reexion models that provided him with a useful,

global overview of the structure of the NetBSD vir-

tual memory subsystem. The approach has also been

applied to aid in the understanding and experimen-

tal reengineering of the Microsoft Excel spreadsheet

product.

�

This research was funded in part by the NSF grant

CCR-8858804 and a Canadian NSERC post-graduate

scholarship.

0

Permission to make digital/hard copies of all or part of this mate-

rial without fee is granted provided that the copies are not made or dis-

tributed for pro�t or commercial advantage, the ACM copyright/server

notice, the title of the publication and its date appear, and notice is

given that copyright is by permission of the Association for Comput-

ing Machinery, Inc. (ACM). To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee.

SIGSOFT '95 Washington, D.C., USA

c
1995 ACM 0-89791-716-2/95/0010...$3.50

1 Introduction

Software engineers often think about an existing

software system in terms of high-level models.

Box and arrow sketches of a system, for instance,

are often found on engineers' whiteboards. Al-

though these models are commonly used, rea-

soning about the system in terms of such models

can be dangerous because the models are almost

always inaccurate with respect to the system's

source.

Current reverse engineering systems derive

high-level models from the source code. These

derived models are useful because they are, by

their very nature, accurate representations of the

source. Although accurate, the models created

by these reverse engineering systems may di�er

from the models sketched by engineers; an exam-

ple of this is reported by Wong et al. [WTMS95].

We have developed an approach, illustrated in

Figure 1, that enables an engineer to produce

su�ciently accurate high-level models in a di�er-

ent way. The engineer de�nes a high-level model

of interest, extracts a source model (such as a

call graph or an inheritance hierarchy) from the

source code, and de�nes a declarative mapping

between the two models. A software reexion

model is then computed to determine where the

engineer's high-level model does and does not

agree with the source model.

1

An engineer in-

terprets the reexion model and, as necessary,

modi�es the input to iteratively compute addi-

tional reexion models.

1

The old English spelling di�erentiates our use of \re-

exion" from the �eld of reective computing [Smi84].

Produces

Input

Input

Input Produces

Defines

Input

Interpreted By

Reflexion
Model
Tools

Extraction
Tool

Defines

High−level Model

Mapping

Source
Code

Source
Model

Reflexion Model

Figure 1: The Reexion Model Approach

In essence, a reexion model summarizes a

source model of a software system from the view-

point of a particular high-level model. This form

of summarization is useful to engineers perform-

ing a variety of software engineering tasks. In

one case, an engineer at Microsoft Corporation,

prior to performing a reengineering task, applied

reexion models to help understand the struc-

ture of the Excel spreadsheet product. In an-

other case, computing a sequence of reexion

models highlighted several places where calls be-

tween modules violated the layers of the software

architecture that an engineer had perceived to

exist.

We have developed several techniques for sim-

plifying the engineer's task of de�ning high-level

models and mappings. We have also developed

tools that compute reexion models for large sys-

tems in a minute or two. As described in Sec-

tion 2, these techniques and tools have made it

possible for an engineer, in a few hours, to bet-

ter understand a system of several hundreds of

thousands of lines of code.

To clarify the meaning and computation of re-

exion models, we present a formal characteri-

zation of a reexion model system in Section 3.

The exibility of our approach is demonstrated

in Section 4 through descriptions of the use of re-

exion models in a variety of settings. Section 5

considers the theoretical and practical perfor-

mance aspect of the approach and our tools. In

Section 6, we discuss key aspects of the approach

that provide software engineers with the needed

exibility. Section 7 considers related work.

2 An Example

To convey our basic approach, we describe how

a developer with expertise in Unix virtual mem-

ory (VM) systems used reexion models to fa-

miliarize himself with an unfamiliar implementa-

tion, NetBSD. The system is composed of about

250,000 lines of C [KR78] source code spread over

approximately 1900 source �les.

The developer �rst speci�ed a model he be-

lieved, based on his experience, to be characteris-

tic of Unix virtual memory systems. This model

consists of a modularization of a virtual mem-

ory implementation and the calls between those

modules (Figure 2a).

A calls relation between NetBSD functions

was then computed using the cross-reference

database tool (xrefdb) of Field [Rei95], and a

small awk [AKW79] script was written to trans-

late the output of Field into our input format.

The extracted calls relation consisted of over

15,000 tuples over 3,000 source entities.

2

Next, the developer de�ned the followingmap-

ping:

[file=.*pager.* mapTo=Pager]

[file=vm_map.* mapTo=VirtAddressMaint]

[file=vm_fault\.c mapTo=KernelFaultHdler]

[dir=[un]fs mapTo=FileSystem]

[dir=sparc/mem.* mapTo=Memory]

[file=pmap.* mapTo=HardwareTrans]

[file=vm_pageout\.c mapTo=VMPolicy]

Each line in this declarative map associates en-

tities in the source model (on the left) with enti-

ties in the high-level model (on the right). The

seeming di�culty of de�ning a mapping given

the thousands of entities in the NetBSD source

2

Each tuple contained the name of the calling function,

the name of the called function, and the �le and directory

information for both functions.

model is mitigated in three ways. First, the engi-

neer only named entities in subsystems of inter-

est. For example, the mapping above does not

consider entities from the I/O subsystem. Sec-

ond, the physical (e.g., directory and �le) and

logical (e.g., functions and classes) structure of

the source are used to name many source model

entities in a single line of the mapping. In this

case, only physical structure is used since C pro-

vides little logical structure. Finally, regular ex-

pressions are used to obviate the need to enu-

merate a large set of structures. For instance,

the �rst line of the mapping states that all func-

tions found within �les whose name includes the

string pager should be associated with the high-

level model entity Pager.

Given these three inputs, a reexion model was

computed to compare the source and high-level

models (Figure 2b). The solid lines show the con-

vergences , where the source model agrees with

the high-level model. For instance, as the de-

veloper expected, there were calls found in the

source between functions in modules implement-

ing VMPolicy and functions in modules imple-

menting Pager. The dashed arrows show the

divergences , where the source model includes

arcs not predicted by the high-level model. For

instance, the dashed line from FileSystem to

Pager indicates that functions within modules

mapped to FileSystem make calls to functions

within modules mapped to Pager. The dotted

lines show the absences , where the source model

does not include arcs predicted by the high-level

model. For instance, no calls were found be-

tween modules mapped to Pager and modules

mapped to FileSystem. The number associated

with each arc in the �gure is the number of source

model relation values mapped to the convergence

or divergence; absence arcs are annotated with

the value zero.

Computation and display of the reexion

model shown in Figure 2 takes twenty seconds

on a DEC 3000/300 with our tools, which con-

sist of several small C++ [Str86] programs and a

user interface implemented in TCL/TK [Ous94].

Computed reexion models are displayed using

AT&T's graphviz package. The tools allow the

engineer to select arcs in a reexion model, pro-

ducing displays of the associated source model

tuples. The screen snapshot in Figure 3 includes

a window \Arc Values" that shows the result

of selecting the divergence between FileSystem

and Pager. Values in this window show the call-

ing and called functions, including their directory

and �le information.

In a one hour session, the VM developer was

able to iteratively specify, compute and interpret

several reexion models. (The source model was

extracted beforehand, and it was not changed

during this session.) Informally, the developer

found the representation of the source code as

a reexion model useful in providing a global

overview of the structure of the NetBSD im-

plementation. For example, from studying spe-

ci�c divergences, the developer concluded that

the implementation of FileSystem included op-

timizations that rely on information from Pager.

This information is useful for planning modi�ca-

tions to either module.

3 Formal Characterization

To make precise the meaning and computation

of a reexion model, we present a formal speci-

�cation of a reexion model system using the Z

speci�cation language [Spi92].

3.1 Reexion Model

A static schema in Z describes a state the sys-

tem can occupy as well as invariants that must

be maintained across state transitions. Any sys-

tem implementing the reexion model approach

must maintain the state components and in-

variants described in the ReexionModel schema

presented below.

The ReexionModel schema uses two basic

types, HLMENTITY , which represents the type

of a high-level model entity and SMENTITY ,

which represents the type of a source model

entity. Four type synonyms are also de�ned:

HLMRelation and SMRelation, which de�ne re-

lations over high-level model entities and source

model entities respectively, and HLMTuple and

SMTuple, which de�ne the types of tuples in the

HLMRelation and SMRelation.

Memory

Pager

FileSystem

User

VMPolicy

HardwareTrans

KernelFaultHdler

VirtAddressMaint

Memory

HardwareTrans

00

51

VMPolicy

6

KernelFaultHdler

0

6

3

Pager

3

8

2

VirtAddressMaint

2

2

User

0

0

0

10

4

0

61

7

6

3

21

FileSystem

0

16

9

11

575

Module

Calls

Module

Absence

Convergence

Divergence

(a) High−level Model (b) Reflexion Model

Figure 2: High-level and Reexion Models for the NetBSD Virtual Memory Subsystem

Figure 3: The Reexion Model Tool User Interface

[HLMENTITY ; SMENTITY]

HLMRelation == HLMENTITY $ HLMENTITY

SMRelation == SMENTITY $ SMENTITY

HLMTuple == HLMENTITY � HLMENTITY

SMTuple == SMENTITY � SMENTITY

ReexionModel

convergences : HLMRelation

divergences : HLMRelation

absences : HLMRelation

mappedSourceModel : HLMTuple $ SMTuple

convergences \ divergences = ?

divergences \ absences = ?

convergences \ absences = ?

dommappedSourceModel =

convergences [divergences

The variables (above the dividing line) in the

schema de�ne the information that must be

maintained by a reexion model system. The

relation described by the convergences variable

de�nes where a high-level model agrees with

a given source model; the relation described

by the divergences variable describes where a

source model di�ers from a high-level model;

and the relation described by the absences vari-

able de�nes where a high-level model di�ers

from a source model. The fourth variable,

mappedSourceModel , de�nes a relation that de-

scribes which source model values contribute to

a convergent or divergent arc in the reexion

model. The information in mappedSourceModel

is used to support operations that aid an engi-

neer in interpreting a reexion model. For ex-

ample, the information in mappedSourceModel is

necessary to support a query of the form shown

in Figure 3.

In addition to declaring the state components

of a reexion model, the static schema includes

the de�nition of constraints (below the divid-

ing line) that must be satis�ed by all reexion

model systems. The �rst three constraints state

that the values of the convergences, divergences

and absences relations are disjoint. The fourth

constraint states that the investigation of the

source model values contributing to a reexion

model arc is only meaningful for values in the

convergences and divergences relations; absences

have no contributing source model values.

3.2 Computing a Reexion Model

The dynamic schema, ComputeReexionModel ,

presented below, describes the computation of a

reexion model from three inputs: a high-level

model, a source model, and a mapping from

the source to the high-level model. The high-

level model (hlm?) is described as a relation over

high-level model entities, and the source model

(sm?) is described as a relation over source model

entities. The mapping (map?) is an ordered

list of map entries. Each map entry|de�ned

by the type MapEntry|names zero or more

source model entities and associates with these

entities, one or more high-level model entities.

3

SMENTITYDESC represents the type of a de-

scription naming zero or more source model en-

tities (e.g., a regular expression over logical and

physical software structure in our tools).

[SMENTITYDESC]

MapEntry ==

SMENTITYDESC � (PHLMENTITY)

ComputeReexionModel

�ReexionModel

hlm? : HLMRelation

sm? : SMRelation

map? : seqMapEntry

mapFunc : (seqMapEntry � SMENTITY)!

(PHLMENTITY)

mappedSourceModel

0

=

S

f t : SMTuple j t 2 sm? �

(mapFunc (map?; �rst t)�

mapFunc (map?; second t))�

f tg g

convergences

0

=

hlm? \ (dom mappedSourceModel

0

)

divergences

0

=

(dom mappedSourceModel

0

) n hlm?

absences

0

= hlm? n (dom mappedSourceModel

0

)

3

An additional invariant which constrains a map entry

to name only high-level model entities speci�ed in hlm?

has been elided for presentation purposes.

Computing a reexion model also requires a

function (mapFunc) that matches entities from

the source model to the speci�ed map, producing

a set of associated high-level model entities.

The value of mappedSourceModel is computed

by pushing the elements of each source model

tuple through the map, resulting in two sets of

high-level model entities. The cross-product of

these sets is taken and each element in the re-

sultant set is associated (through another cross-

product) with the original source model tuple.

Once the mappedSourceModel is computed, the

values of the convergences, divergences, and

absences relations are easily determined through

set intersection and set di�erence operations.

3.3 A Family of Reexion Models

This Z speci�cation de�nes a family of reex-

ion model systems. Di�erent kinds of reexion

model systems result depending on the choices

made for representing the source model entity de-

scriptions in a map (SMENTITYDESC) and for

de�ning the mapping function (mapFunc). Our

reexion model system describes source model

entities using a combination of structural infor-

mation and regular expressions. Our tools sup-

port the use of two di�erent mapping functions.

The most common mapping function used pro-

duces the set of high-level model entities associ-

ated with the �rst match of a given source model

entity to an entry in the map. Alternatively, our

tools support the use of a mapping function that

returns the set of high-level model entities result-

ing from the union of all matches found in the

map. Our tools can thus be con�gured to provide

implementations of two di�erent reexion model

systems.

4 Experience

The reexion model approach has been applied

to aid engineers in performing a variety of soft-

ware engineering tasks on a number of di�erent

software systems that vary in size and implemen-

tation language.

Reengineering A software engineer at Mi-

crosoft Corporation applied reexion models to

assess the structure of the Excel spreadsheet

product prior to a reengineering activity. The

Excel product consists of over one million lines

of C source code. The engineer computed reex-

ion models several times a day over a four week

period to investigate the correspondence between

a posited high-level model and a model of almost

120,000 calls and global data references extracted

from the source. A detailed mapping �le con-

sisting of almost 1000 entries was produced and

is being used to guide the extraction of compo-

nents from the source. The engineer found the

approach valuable for understanding the struc-

ture of Excel and planning the reengineering ef-

fort.

Design Conformance We used a sequence of

reexion models to compare the layered archi-

tectural design of Griswold's program restructur-

ing tool [GN95] with a source model consisting

of calls between modules. The reexion model

highlighted, as divergences, a few cases where

modules in the source code did not adhere to the

layering principles. We are unaware of any other

approach that would allow such violations to be

found so directly.

An industrial partner applied reexion mod-

els to check if a 6,000 line C++ implementation

of a subsystem matched design documentation

(in the form of a Booch object diagram [Boo91])

prepared prior to implementation. This case was

unique in that the reexion model was fully con-

vergent with the source model.

System Understanding We used reexion

models to try to determine why a compiler used

in undergraduate education at the University

of Washington was di�cult for the students to

change. We computed a reexion model com-

paring an extracted Ada �le imports relation

with a conventional model of a compiler [PW92].

The reexion model contained meaningful diver-

gences between almost all pairs of high-level en-

tities. This high degree of coupling explains, in

part, why the students had di�culty changing

the system.

We later applied reexion models to a newer

version of the compiler, written in C++. The

reexion models for this compiler were far less

cluttered than the Ada version. However, some

unexpected interactions were identi�ed using the

reexion model; these may provide the basis for

either minor restructuring of the compiler or at

least additional warnings to the students.

5 Performance

Engineers iteratively specify, compute, and in-

terpret reexion models. The rate at which an

engineer can interpret and iterate reexion mod-

els is dependent, in part, upon the the speed of

the computation.

The formal characterization presented in Sec-

tion 3 provides a basis for considering the

theoretical complexity of computing a reex-

ion model. From the dynamic Z schema,

ComputeReexionModel , we can see that the

time complexity of computing a reexion model

is dependent upon the cost of computing the

mappedSourceModel relation and the cost of

comparing that computed relation to the high-

level model. An upper bound, then, on the com-

plexity of computing the mappedSourceModel re-

lation is given by:

O(#sm � #map � t

comparison

) � O((#hlm)

2

)

where #sm is the cardinality of the source model

relation, #map is number of entries in the map,

t

comparison

is the cost of comparing a source

model entity to a source model entity descrip-

tion in a map entry, and #hlm is the cardinality

of the high-level model relation. Since the num-

ber of entities in the high-level model is gener-

ally small and constant, the O((#hlm)

2

) can, in

practice, be ignored, yielding:

O(#sm � #map � t

comparison

)

Our initial implementation of tools for com-

puting reexion models performed the compu-

tation of a reexion model in the straightfor-

ward manner described by the dynamic schema

in Section 3.2. This implementation was su�-

ciently fast for moderately large systems (with

source models consisting of tens of thousands of

tuples) and small maps (tens of lines), but was

not fast enough to support the iterative compu-

tation of reexion models for larger systems or

larger maps. For example, an early version of

our tools required 40 minutes on a Pentium to

compute a reexion model for Excel.

By trading space for time in the implementa-

tion of our tools, we have been able to support

the computation of reexion models for large

software systems and large maps in a minute or

two (see Table 1). Speci�cally, our tools hash

the match of high-level model entities for a given

source model entity the �rst time a source model

entity is seen. The additional space requirements

depend upon the naming scheme used for source

model entities and the number of unique entities

in the source model. In the case of Excel and

the naming scheme used by our tools, there are

18,118 unique source model entities each requir-

ing on the order of 100 bytes (less than 2 Mb in

total). Our tools provide a variety of options to

let the engineer determine the appropriate space

time tradeo�.

6 Discussion

Reexion models permit an engineer to easily ex-

plore structural aspects of a large software sys-

tem. The goal of the approach is to provide engi-

neers with the exibility to produce, at low-cost,

high-level models that are \good enough" for

performing a particular software engineering task

(restructuring, reengineering, or porting, etc.).

Three aspects of the approach critical to meet-

ing this goal are the use of syntactic models, the

use of expressive declarative maps, and support

for querying a reexion model.

Syntactic Models As described in the formal

characterization, reexion models are computed

without any knowledge of the intended semantics

of the high-level or the source model. A bene�t of

this syntactic approach is the ability of an engi-

neer to use reexion models to investigate many

di�erent kinds of structural interactions in a soft-

ware system (calls, data dependences, or event

interactions, etc.). It also means, however, that

it is the engineer's responsibility to ensure that

it makes sense to compare a selected high-level

model with an extracted source model. For ex-

ample, comparing the speci�ed calls diagram of

Figure 2a with an extracted calls relation makes

sense, but comparing the same high-level model

with a source model representing the #include

structure of NetBSD would probably be mean-

ingless.

In practice, engineers have exploited this ex-

ibility by changing the meaning of their mod-

els over time. For example, both the VM de-

veloper and the Microsoft engineer �rst used

a calls source model and later augmented the

source models with static dependences of func-

tion de�nitions on global data. By adding static

dependences, both developers implicitly shifted

their high-level model from a calls diagram to a

communicates-with diagram. In both cases, the

changes were driven by the need to understand,

for the task being performed, additional aspects

of the system structure.

To aid the engineer in interpreting reexion

models computed with models containing di�er-

ent kinds of information, we are adding support

for typing relations in both source and high-level

models.

Maps The declarative maps used in comput-

ing a reexion model enable an engineer to focus

on information of interest in the source in two

ways. First, an engineer may specify a partial

map that contains entries for only those parts of

the system relevant to the task at hand. Second,

an engineer may iteratively re�ne a map to the

appropriate level of detail necessary for the task

being performed.

Generally, an initial reexion model is com-

puted with a rough and partial map. Then,

based on an investigation of the reexion model,

an engineer re�nes the map in the areas of in-

terest until the necessary information about the

system is obtained. Sometimes, as was the case

when we applied reexion models to assess the

structure of the compiler implemented in Ada, a

System Language Approx. Source Mapping High-Level SPARC 20/50 486 PC

Lines of Model Model 100 MHz

Code (Tuples) (Lines) (Entities) (min:sec) (min:sec)

UW

compiler

C++ 3,700 607 33 5 :00.5 :01

UW

compiler

Ada 4,200 72 9 5 :00.2 :01

Restructuring

Tool

CLOS 47,000 5,855 215 9 :04.3 :06

NetBSD

(VM)

C 250,000 15,657 7 8 :04.0 :19

Excel C 1,200,000 119,637 971 15 2:13.0 4:05

Table 1: Performance of Reexion Model Tools

fairly rough map was su�cient. In contrast, in

the case of Excel, a detailed map was desired to

plan reengineering activities.

The reexion model approach enables an en-

gineer to balance the cost of re�ning the map

with the level of detail necessary for performing

a particular software engineering task. We plan

to track the use of some declarative maps across

the evolution of several systems to determine the

degree of sensitivity of our mapping language to

changes made in the source. This will aid an en-

gineer in judging the amortization costs of cre-

ating detailed maps for large systems.

Querying ReexionModels Reexion mod-

els bridge the gap between an engineer's high-

level model and a model of the source. The

convergences, divergences, and absences summa-

rize selected interactions in the source, while

the mappedSourceModel captures the connec-

tions between the high-level and source model

arcs. Based on the summary information, the

engineer intersperses two kinds of queries to in-

terpret a reexion model for a speci�c software

engineering task.

In the �rst kind of query, an engineer investi-

gates the source model values contributing to a

convergence or divergence. In the second kind,

an engineer performs queries to determine the

source model entities and values that were not

included in the reexion model. This query en-

ables an engineer to assess whether the map is

su�ciently complete and to investigate whether

absences in the computed reexion model are the

result of incompleteness in the map.

Based on the results of the interpretation, an

engineer may either decide to re�ne one or more

of the inputs, computing a subsequent reexion

model, or else may decide that su�cient informa-

tion has been obtained to proceed with the over-

all task. To better support an engineer in the in-

terpretation process, we are currently developing

techniques to improve the querying and investi-

gation of a series of computed reexion models.

7 Related Work

Reverse Engineering The reverse engineer-

ing approaches closest to ours use clustering in-

formation, which is generally culled from a com-

bination of human input and numerical com-

putation, to create abstract representations for

the engineer. Examples of this approach include

Rigi [MK89] and Schwanke's statistically-based

architectural recovery technique [Sch91].

Reexion models di�er in a number of ways.

First, in our approach the engineer speci�es the

high-level entities explicitly, whereas the archi-

tectural recovery systems instead infer them.

Second, we focus on comparing high-level and

source models, rather than on discovering high-

level models. Third, our mappings are declara-

tive, associating source and high-level entities, in

contrast to approaches such as Rigi, which uses

operational mappings.

Rigi di�ers from our approach by enabling an

engineer to build explicit hierarchical models of

the software structure of a system. We instead

support the investigation of substructure (i.e.,

a subsystem) by computing di�erent reexion

models at various levels of abstraction.

Model Comparison Ossher has considered

the comparison of relational models of software

structure for a �xed type of high-level model, a

GRID [Oss84]. The intent of a GRID description

of a system is to \specify, represent, document

and enforce the structure of large, layered sys-

tems" [Oss87, pg. 219]. The GRID mechanism

permits an engineer to choose a concise descrip-

tion of the software structure and then to anno-

tate how the actual structure of the system de-

viates from the description. Our approach is not

intended to specify or enforce a desired structure

of the system, but rather to compare two models

of the structure using an explicit mapping be-

tween the two models provided by the engineer.

Jackson's Aspect system [Jac93] compares

partial program speci�cations (high-level mod-

els) to data ow models extracted from the

source to detect bugs in the source code that

cannot be detected using static type checking.

Aspect uses dependences between data stores as

a model of the behavior of a system and as-

sumes that this model is correct, focusing on how

the source model di�ers from the posited behav-

ior. In contrast, we focus on high-level structural

models, and we are interested in both how the

source model di�ers from the high-level model

and also how the high-level model di�ers from

the source.

Jackson has also developed a semantic di�er-

ence approach for comparing the di�erences in

input and output behavior between two versions

of a procedure [JL94]. This approach derives

an approximate model of the semantic e�ect of

a procedure consisting of a binary relation that

summarizes the dependence of variables after ex-

ecuting the procedure upon the value of variables

at the entry to the procedure. The semantic

di�erencing tool compares the binary relations

resulting from di�erent versions of a procedure.

We focus on the comparison of relations at di�er-

ent levels of abstraction through an explicit and

declarative mapping.

8 Summary

A reexion model summarizes information ex-

tracted from source code into a high-level model

that is su�ciently accurate to support an engi-

neer in performing a software engineering task.

The engineer de�nes three inputs to a reexion

model computation: a high-level model, a source

model, and a map. The reexion model presents

the summary information in the context of the

high-level model de�ned by the engineer. The

engineer interprets and iteratively computes suc-

cessive reexion models until satis�ed. The fea-

sibility and exibility of the approach have been

demonstrated through its application in a num-

ber of di�erent settings on systems ranging from

several thousand to over one million lines of code.

Acknowledgments

Robert Allen, Kingsum Chow, David Garlan,

Bill Griswold, Michael Jackson, Kurt Partridge,

Bob Schwanke, and Michael VanHilst each pro-

vided helpful comments on earlier drafts of

the paper. Conversations with Daniel Jackson

helped clarify a number of aspects of our work.

An anonymous Microsoft engineer applied reex-

ion models to Excel. Dylan McNamee was our

VM developer. Pok Wong applied reexion mod-

els as part of a design conformance task. Stephen

North of AT&T provided the graphviz graph dis-

play and editing package. We also thank the

anonymous referees for their constructive com-

ments.

References

[AKW79] A.V. Aho, B.W. Kernighan, and P.J.

Weinberger. Awk { A Pattern Scan-

ning and Processing Language. Software

{ Practice and Experience, 9(4):267{280,

1979.

[Boo91] G. Booch. Object-oriented Design

with Applications. Benjamin-Cummings,

1991.

[GN95] W.G. Griswold and D. Notkin. Architec-

tural Tradeo�s for a Meaning-Preserving

Program Restructuring Tool. IEEE

Transactions on Software Engineering,

21(4):275{287, April 1995.

[Jac93] D. Jackson. Abstract Analysis with As-

pect. In Proceedings of the 1993 Inter-

national Symposium on Software Testing

and Analysis, pages 19{27, 1993.

[JL94] D. Jackson and D.A. Ladd. Semantic

Di�: A Tool For Summarizing the Ef-

fects of Modi�cations. In Proceedings of

the International Conference on Software

Maintenance, September 1994.

[KR78] B. Kernighan and D. Ritchie. The C Pro-

gramming Language. Prentice Hall, 1978.

[MK89] H.A. M�uller and K. Klashinsky. A Sys-

tem for Programming-in-the-large. In

Proceedings of the 10th International

Conference on Software Engineering,

pages 80{86. IEEE Computer Society

Press, April 1989.

[Oss84] H.L. Ossher. A New Program Structuring

Mechanism Based on Layered Graphs.

PhD thesis, Stanford University, Decem-

ber 1984.

[Oss87] H. Ossher. A Mechanism for Speci-

fying the Structure of Large, Layered

Systems. In Bruce Shriver and Pe-

ter Wegner, editors, Research Directions

in Object-Oriented Programming, pages

219{252. MIT Press, 1987.

[Ous94] J.K. Ousterhout. TCL & the TK Toolkit.

Addison-Wesley, 1994.

[PW92] D.E. Perry and A. Wolf. Founda-

tions for the Study of Software Architec-

ture. ACM Software Engineering Notes,

17(4):40{52, October 1992.

[Rei95] S.P. Reiss. The Field Programming En-

vironment: A Friendly Integrated Envi-

ronment for Learning and Development.

Kluwer Academic Publishers, 1995.

[Sch91] R. Schwanke. An Intelligent Tool for Re-

engineering Software Modularity. In Pro-

ceedings of the 13th International Con-

ference on Software Engineering, pages

83{92, May 1991.

[Smi84] B.C. Smith. Reection and Semantics

in LISP. In Proceedings of the 1984

ACM Principles of Programming Lan-

guages Conference, pages 23{35. ACM,

December 1984.

[Spi92] J.M. Spivey. The Z Notation. Prentice

Hall, second edition edition, 1992.

[Str86] B. Stroustrup. C++ Programming Lan-

guage. Addison-Wesley, 1986.

[WTMS95] K. Wong, S.R. Tilley, H.A. M�uller, and

M.D. Storey. Structural Redocumenta-

tion: A Case Study. IEEE Software,

12(1):46{54, January 1995.

