
Reverb: Recommending Code-Related Web Pages
Nicholas Sawadsky, Gail C. Murphy, and Rahul Jiresal

Dept. of Computer Science
University of British Columbia

Vancouver, Canada
nsawadsky@gmail.com, {murphy, jiresal}@cs.ubc.ca

Abstract—The web is an important source of development-
related resources, such as code examples, tutorials, and API doc-
umentation. Yet existing development environments are largely
disconnected from these resources. In this work, we explore how
to provide useful web page recommendations to developers by
focusing on the problem of refinding web pages that a developer
has previously used. We present the results of a study about
developer browsing activity in which we found that 13.7% of
developers visits to code-related pages are revisits and that
only a small fraction (7.4%) of these were initiated through a
low-cost mechanism, such as a bookmark. To assist with code-
related revisits, we introduce Reverb, a tool which recommends
previously visited web pages that pertain to the code visible in
the developer’s editor. Through a field study, we found that, on
average, Reverb can recommend a useful web page in 51% of
revisitation cases.

I. INTRODUCTION

Software developers use information resources on the web
to help perform many different programming tasks, including
learning new programming concepts, reminding themselves of
syntactic programming language details and clarifying error
messages, amongst others [1]. Despite the prominence of
web search and exploration in the workday of many soft-
ware developers, the tools of software development and web
browsing remain disconnected from each other. In practice,
retrieval of relevant web pages is an effortful process, requiring
a developer to choose a set of search keywords, enter the
keywords in their browser, evaluate multiple pages returned
from a search and rinse and repeat until appropriate resource(s)
are found.

Ideally, the cost of finding appropriate web pages for a
developer’s task would be negligible. If appropriate web pages
could simply be fetched and be readily available based on the
developer’s current work, a developer could remain focused
on their task-at-hand. The Fishtail tool takes this approach:
Fishtail extracts keywords from a developer’s task context (all
programming constructs on which the developer worked as
part of a task [2]), automatically queries the web with those
keywords and then recommends a selection of pages from
those returned from the search [3]. While this approach greatly
reduces the cost of searching for relevant web pages, Fishtail
is unable to recommend appropriate pages with high accuracy.
As a result, the cost of perusing recommended pages for those
appropriate for the current task remains high, despite some
automation in the creation and execution of a search.

One way to potentially improve the relevancy of web pages
recommended is to limit page recommendations to those that

a developer has previously found useful. In essence, predict
likely revisitations of web pages. Although such an approach
would not be as ideal as recommending appropriate web
pages from the wild, it may still provide value if develop-
ers commonly revisit pages; studies on general web page
revisitation (i.e., including commonly visited pages such as
email and calendar) have found revisitation rates of between
45% [4] and 81% [5]. Unfortunately, no studies have looked at
revisitation for code-related pages. To investigate code-related
revisitation rates, we report in this paper on a study of eleven
software developers in which we analyzed the developers’ web
browsing history for a three-month period. Ignoring revisits
that occurred shorly after an initial visit (i.e., within 15
minutes), we found a mean code-related revisitation rate of
13.7%. Interestingly, 45% of participants had at least three
one-hour periods containing three or more code-related revisits
and 18% had nine or more such periods. As each of these
revisits can require substantial work in re-finding the web
pages of interest from web searches, we believe there is value
in a tool that can predict revisits of code-related pages.

In this paper, we introduce such a tool, called Reverb,
that pro-actively recommends web pages previously used by
a developer as the developer works on source code in a
development environment. Reverb detects code-related web
pages perused by the developer in a web browser, indexes the
keywords used on those pages, and then recalls and displays
pages that are similar to code under active development by the
developer. The recommendations made by Reverb are ranked
and presented based on similarity in the content of the code
being worked on and the page, and the frequency and recency
(frecency) of access to the page by the developer.

To determine if Reverb can provide benefit to software
developers, we conducted a field study during which nine
participants used Reverb in their own development tasks for a
period of six Java programming hours. We found that Reverb,
on average, was able to predict a code-related web page
revisted by the developer in 51% of the cases of revisitation.
For 33% of the developers in our study, the prediction rate
was over 67%. We believe the performance of Reverb shows
the promise of using local code context to drive the pro-active
recommendation of code-related web pages.

This paper makes three contributions:
• it provides empirical data about how often software devel-

opers return to code-related web pages and the methods
they use to perform these revisits,

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

812

• it introduces a tool, Reverb, to support developers in
refinding code-related web pages, by proactively rec-
ommending pages from the developer’s own browsing
history that relate to the code under development, and

• it presents the results of a field study of Reverb that sug-
gest that local code context is helpful in recommending
useful web pages.

We begin with a review of related work on general web
page revisitation and specific support for software developers
using the web (Section II). We then describe the results
of a study into how often code-related web page revisits
happen for software developers (Section III) and introduce
the Reverb tool that we have developed to support the pro-
active recommendations of code-related pages (Section IV).
We follow the tool description with the results of a field study
of the tool (Section V), before concluding with a discussion
of our approach (Section VI) and a summary of the paper
(Section VII).

II. RELATED WORK

A number of studies have considered general web page
revisitation. Tauscher and Greenberg tracked six weeks of web
usage of 23 participants to compute the likelihood—called the
recurrence rate—that a given page visit was a revisit [6]. In
their study, they observed a recurrence rate of 58%. McKenzie
and Cockburn analyzed the history of 17 web users, finding
a recurrence rate of 81% [5]. This higher recurrence rate
may have been due to a data preprocessing step in which
URLs were truncated, thus ignoring query parameters and
increasing the number of pages to be considered a revisit.
Obendorf and colleagues conducted a long-term study of 25
browser users [4]. They reported a recurrence rate of 45.6%
based on distinct URLs, which included query parameters
and POST data. Adar and colleagues gathered anonymized
browsing information from 612,000 users of the Windows Live
Toolbar over a five-week period. [7]. Instead of computing the
recurrence rate, Adar and colleagues focused on identifying
revisitation patterns associated with particular web pages.
The study of code-related revisitation on which we report in
this paper (Section III) is most similar in style to Obendorf
and colleagues. In focusing on revisitation of one kind of
page, code-related pages, our study shares similarities with
the work of Adar and colleagues. Whereas our focus is on
recommending pages to revisit based on a developer’s current
work, Adar and colleagues focused on understanding user
behaviour from how pages are revisited.

Prompted by the recurrence rates found in the empirical
studies described above, researchers have devised a number of
techniques to assist users in refinding web pages. Most of these
approaches enrich the existing functionality of the browser,
such as extending the functionality of the back button [8].
Others have considered the recurrence of specific navigation
trails in users’ browsing histories (e.g., [9]). For example, a
visit to a user’s web-based email client may frequently be
followed by a visit to an online calendar. A recent study
found that augmenting a frequency- and recency-based ranking

algorithm with page transition probabilities computed from the
user’s browsing history increased the percentage of successful
revisit predictions from 71.7% to 81.8% [10]. Reverb also uses
contextual information to predict pages that a user may wish
to revisit; instead of using the context of previous navigation,
Reverb relates the content of the developer’s code editor with
similar web pages in the user’s browsing history.

A variety of tools have been proposed to assist develop-
ers in their use of the web. Mica [11] and Assieme [12]
facilitate searching for code-related resources on the web.
These tools allow a developer to enter a task-oriented query
(e.g., ”java create zipfile”) and then categorize the search
results by the APIs and types that they reference. Reverb
differs in intent from these tools in eliminating the need
for a search to be performed in at least some situations.
The Codetrail tool watches the pages a developer browsers
to, automatically detects if a page has API documentation
and links that documentation to the source code for easier
access [13]. In addition, Codetrail can detect blocks of code
on visited pages that match code in the developer’s workspace
and can automatically generate a bookmark in the workspace
to capture the link. Similar to Codetrail, Reverb surfaces web
pages related to the developer’s current work. In contrast
to Codetrail, Reverb can surface useful web pages in more
situations because it bases recommendations on automatically-
generated queries rather than on temporal access and because
it is not restricted to pages detected as describing an API.
HyperSource maps web pages visited to corresponding source
code edits and maintains these associations over time [14].
Consequently, HyperSource provides a precise picture of code
provenance which is not available with Reverb. In contrast,
Reverb’s associations are based on shared keywords, rather
than temporal locality, allowing a web page last visited in
an earlier project to be recommended based on newly-added
code. Finally, Blueprint embeds the web search interface
in the development environment and integrates results from
search atop the source code editor [15]. It does not provide
results proactively like Reverb, but does use local context to
augment the user-entered query, such as adding the name of
the programming language.

III. HOW MANY VISITS ARE REVISITS?

Do software developers revisit code-related web pages? If
revisits occur, what is the recurrence rate? What mechanisms
do developers use to revisit pages? These are the questions
we needed to answer to understand if a tool that recommends
previously visited web pages might have value for software
developers. For instance, if revisits do not occur or are infre-
quent, little value might be gained from tool support. If revisits
occur, but are through developer-created bookmarks, the cost
of refinding the web pages would be minimal and little value
might be gained from a tool. To answer these questions, we
conducted a study of software developer browsing behaviour.

813

A. Method

We investigated the questions of interest by analyzing
detailed browsing history databases maintained by the Mozilla
Firefox1 and Google Chrome2 web browsers. Both browsers
use the SQLite database engine3 for managing browsing
history. Each time the user visits a page, an entry containing
the timestamp and a location ID is added to a table of page
visits. The full URL of each page visit (including query
parameters and anchor, if present) is stored in a separate table
of locations. By analyzing browsing history, we only needed
to have participants access data that was already collected,
avoiding the risk of users changing their behaviour because
they knew they were participating in a study.

We provided each participant in our study a tool that
we had written which prompted the participant to choose a
browsing history window of at least two months in which
the participant was actively coding. The tool extracted a list
of web page visits within that window from the browser’s
history database. Redirects and Google search page visits were
filtered from the list. The tool then attempted to download
the content of each page in the list. Downloaded pages were
filtered to remove <script> elements as these elements
are not displayed to the user and can contain tokens which
could make a page appear code-related. The text content
of the page was then extracted and the page classified as
code-related or non-code-related using the heuristics described
below. To estimate the accuracy of this classification, a random
sample of 25 pages classified as code-related was presented
to the participant and the participant was asked to flag any
incorrectly-classified pages. A report was then uploaded to our
server that contained the participant’s anonymized browsing
history, the page classifications and the manual classifications
performed by the participant. The source code for the tool used
by participants in this study is available on Google Project
Hosting.4

Several possibilities exist for determining if a web page
is code-related. One could try to identify code based on the
density of delimiter tokens or presence of keywords from com-
mon programming languages. This approach would need to be
customized for each language to be supported. Alternatively,
an approach based on latent semantic indexing (LSI) could
be used. However, this approach requires the training of the
indexer on a corpus of documents. Furthermore, Bacchelli
and colleagues found that LSI performed well on recall, but
fared poorly in precision of its results [16]. We required an
approach with high precision since we were using the classifier
to determine the recurrence rate of code-related pages.

To achieve high precision, we chose an approach based on
the camelCase naming conventions prevalent in current coding
practice. We constructed a regular expression to match words
containing a medial capital letter (capitals that are not the

1http://www.mozilla.org/en-US/firefox/new/, verified 16/08/12
2www.google.com/intl/en/chrome/browser/, verified 16/08/12
3sqlite.org, verified 16/08/12
4code.google.com/p/reverb-bookmarks, verified 16/08/12

first letter in the word) or underscores; we refer to this as an
identifier filter. Although the identifier filter was constructed
to avoid matching ordinary capitalized words and acronyms,
the filter generated many false positives due to company and
product names on web pages. To avoid these false positives,
we extended the filter to match only patterns that resembled
method declarations or invocations with parameters. This
pattern constrained of the identifier filter, followed by an open
bracket, at most 40 non-close-bracket characters and a second
instance of the identifier filter.

Restricting the filter to method declarations and invocations
came at a further cost in recall. To compensate, we combined
this with a pattern that looked for method declarations and
invocations with no parameters. Experiments with our own
browsing histories indicated that empty brackets were uncom-
mon in non-code related pages. As a result, this pattern could
allow identifiers without camelCase or underscores.

At least two matches to the two patterns—method declara-
tion/invocation with parameters and without—had to be found
for a web page to be classified as code-related. The full set of
heuristics used in our classifier is available elsewhere [17].

B. Participants and Data

We recruited participants for this study from within the
UBC Computer Science Department and from one software
development company. Recruiting participants for this kind of
study can be difficult given the reluctance of individuals to
have their browsing history analyzed despite the fact that our
study method uploaded only anonymized URLs. Of the eleven
participants in this study, eight (73%) were graduate students
and three (27%) were professional software developers. Seven
participants (64%) used the Google Chrome web browser
and four (36%) used Mozilla Firefox. Although Java was
the programming language used by the largest number of
participants (seven), a range of other programming languages
were represented: C, C++, Javascript, Perl, Ruby, PHP and
Python.

The average browsing history window used from these
participants was 82 days. In total, we analyzed 906 days of
browsing history.

C. Results

To answer the question of whether developers revisit code-
related web pages, we compute the recurrence rate as defined
in previous work [6]:

R =
total URLs visited− different URLs visited

total URLs visited
× 100%

This computation depends heavily on the definition of a
URL. In our study, a page was identified by a full URL, includ-
ing query parameters and fragment. For a visit to be classified
as a revisit, the full URL had to be matched. However, if
the URL was reached through a form submission, the POST
parameters were not considered part of the page identifier. In
addition, because the Firefox history database does not record

814

visits initiated through the browser’s forward and back buttons,
these visits are not included in our calculations.

Over the 906 days of browsing history analyzed, our par-
ticipants visited a mean of 6048 web pages of which a mean
of 250 visits were code-related. The overall recurrence rate
averaged across all participants was 41% (±14%), in-line with
the findings of earlier studies [4]. For just those pages flagged
as code-related, the recurrence rate was 23% (±12%). When
code revisits occur close in time to the original visit, we think
it is unlikely that tool support to help predict the revisit will
be useful. More likely, a user will revisit the page based
on a search results page that is still open in the browser,
via a back or forward button or some similar mechanism.
As a result, we also analyzed the browsing history data to
understand recurrence rates for revisits occurring more than
15 minutes after a previous visit. With this 15-minute window,
the overall recurrence rate is 27.3% (±11.0%) and the code-
related recurrence rate is 13.7% (±10.6%).

We were also interested in gaining insight into the frequency
of code-related page revisits. Using the 15-minute window,
we measured the number of one-hour periods in which at
least three code-related revisits were observed. For five (45%)
participants, the count of these periods was three or greater.
For two (18%) participants, the count was nine or greater.
Because our classifier was optimized for precision over recall,
we can consider that the actual code-related page revisits may
be even higher.

Overall then, a reasonable number, greater than 13%, of
code-related page visits are revisits. These revisits happen
for some participants at a rate of more than three per hour.
Given that revisits are occurring, we wanted to know which
mechanisms developers were using to perform the revisits. To
determine this information, we analyzed the browsing histo-
ries of the participants for code-related revisits where more
than 15-minutes separated the visits to the pages. Because
the Chrome history database provides a more fine-grained
categorization of page transition types, we were only able
to analyze the seven participants using Chrome. Figure 1
shows the breakdown of mechanisms used for revisits by these
participants. Notable in this chart is the small percentage of
revisits (3.7%) performed using bookmarks. The bookmark
category represents visits initiated through a bookmark in
the browser, including frequently-visited locations shown on
Chrome’s ”New Tab” page. This small value shows that
developers are not taking specific actions to remember code-
related web pages. More often, in 27.7% of the cases, revisits
fell into the Typed category, which captures visits initiated
by typing into the address bar. Auto-complete is thus an
important tool for developer to refind code-related web pages.
The dominant mechanism at 54.4% for revisiting code-related
pages was through a link from another page. Unfortunately,
the anonymized history data we collected does not allow us
to characterize the previous pages leading to these revisits. In
some cases, these will be search results pages (instances of re-
searching in the terminology of Obendorf et al. [4]). In other
cases, these will be pages in a navigation trail the user follows

Link 54.4%

Typed 27.7%

Submit 2.9%

Start Page 3.7%

Bookmark 3.7%

Fwd/Back 7.5%

Fig. 1. Developer actions leading to code-related revisits

to refind the page (re-tracing). In either case, the developer is
likely expending effort to peruse a search results page or to
follow multiple links.

D. Limitations

The method we used to investigate code-related revisits may
miss revisits to code-related pages. By having participants
identify which of 25 randomly sampled pages marked as code-
related were indeed code-related, we aimed to ensure that
we did not over-estimate the code-related recurrence rate by
including false positives. We chose this approach to minimize
the effort our participants needed to expend on the study.
However, it may have resulted in pages that were code-related
being marked as not (i.e., false negatives). Our method also
relies on the database maintained by the browser to determine
which pages are visited. In some cases, we may not know that
a developer re-consulted a page. For instance, if a page is in
a browser tab and the tab is reactivated, we do not see this
reactivation in the browser’s database. We consider such cases
low-cost revists and missing this information does not unduly
affect our results.

Our participants represent a range of software development
experience and settings, but are not representative of the
total software developer population. The external validity of
our results may thus be limited and the study should be
extended to include a wider range of software developers.
In particular, gaining a wider range of participants using a
browser for which we can track how revisits occur, such as
Google Chrome, would be beneficial to gain more insight into
the costs associated with revisits.

Despite these limitations, this study provides the first in-
sights into the behaviour of code-related revisits undertaken
by software developers.

IV. REVERB: THE TOOL

Finding a web page needed for particular software devel-
opment situation, such as a web tutorial about an API to
understand how the API should be used or a project wiki
page describing a feature being worked on, is a chore that
takes a developer away from their task-at-hand. A developer
typically has to use a search engine to find the appropriate

815

page, but most search engines return a lot of results, requiring
the developer to scan through potentially multiple pages of
results to find the one or two most relevant web pages for
their task. Doing this once to initially find a page is one thing,
but having to do it over and over again to refind the page as
you go back to work on similar code is tedious.

Reverb makes it easy to re-find these pages the developer
has previously determined to be useful. Figure 2 shows Reverb
in action. The tab labelled WebPageDownloader.java
shows the code on which the developer is currently working.
Reverb automatically detects and extracts code elements from
the active viewport of the editor to form a query against
the user’s previous browsing history. In Figure 2, the code
elements used for querying by Reverb are highlighted for
clarity but Reverb does not typically highlight these elements.
Reverb uses these code elements to query the user’s browsing
history. Pages whose content has a high similarity to these code
elements and that might have been visited by the developer
when working with on this or other similar code, are then
ranked according to the frequency and recency with which a
developer has visited the pages. The tab labelled Reverb in
Figure 2 shows the display of results: the results are grouped
under the query which the page matched. When an interaction
with the code leads to the display of different code in the
editor, Reverb refreshes the recommendations.

To function, Reverb must index the web pages visited by
a developer, monitor activity in the code editor, form queries
against the developer’s browsing history and rank and group
results for presentation to the developer. We describe each step
in turn.

A. Indexing Web Pages

Reverb includes extensions for the Google Chrome and
Mozilla Firefox browsers. These extensions monitor page
loads and transfer the content of each page to Reverb’s index-
ing service, which runs locally on the developer’s computer.
Only pages that are displayed for at least five seconds are
sent to the indexer to ensure the page is likely of interest to
the developer, to ensure that any dynamic content is loaded
and to ensure that the browser extension does not impact page
load time. We chose to index all web pages visited by the
developer to ensure all pages with code would be included in
the index. Based on data we have analyzed, the size of the
index is unlikely to exceed 60MB in size with six months of
browsing history.

Reverb’s indexing service uses a general-purpose text index-
ing engine, Lucene5, and is thus code-structure unaware. We
chose this approach over a program structure aware indexing
approach as used in search engines like Sourcerer [18] because
structural links in web pages are often not resolvable. The
Lucene records created by the service contain two fields: page
title and page content. Preprocessing of the page prior to
indexing is minimal: <script> elements are removed and
then the text content of the remaining HTML elements is

5lucene.apache.org/core/, verified 16/08/12

concatenated and indexed. The indexing service also maintains
a database of locations visited. In addition to the last visit
time and the number of visits, this database also contains
a frecency column, which assigns a score to the web page
based on frequency and recency of page visits (Section IV-C).
An advantage of using Lucene is that it supports near real-
time retrieval of newly-added content, meaning a page may
be recommended in the development environment almost
immediately after a developer has visited it for the first time.

B. Monitoring Activity and Forming Queries

Reverb also involves an Eclipse plugin that monitors mouse
events in the Java code editor. Whenever the developer clicks
in the editor, the plugin checks to see if the viewport has
changed. If it has, the plugin retrieves the AST for the portion
of the source code file that is visible and extracts the names of
specific code elements. Reverb currently extracts the following
elements:

• type declarations,
• type references (e.g., in field, variable or parameter dec-

larations),
• static field references,
• method declarations that override a method in a parent

class or implement a method from an interface, and
• method invocations.
Once extracted, Reverb translates the code elements into a

programming language-independent representation and sends
them to the indexing service. In this representation, each code
element is described by a structure containing four fields:

1) code element category (type declaration, type reference,
static field reference, etc.),

2) package name (if code was compilable and information
was available in the AST),

3) type name, and
4) method or field name (if applicable for the code element

category).
Reverb does not distinguish between code elements that

are part of the project’s internal code base and those that
belong to external libraries. Because many of the applications
developers use to manage their workflow are now web-based,
generating queries for internal code elements has an interesting
side benefit: Reverb may suggest links to workflow items that
relate to the current code, such as bug reports, code reviews,
and internal wiki pages.

When Reverb’s indexing service receives code elements,
it constructs a Lucene query. Lucene’s query processing
uses a vector space model to match queries with docu-
ments (i.e., indexed web pages), but allows Boolean oper-
ators in the query to require specific terms to be present
or absent. When the package name of a code elements is
available, the query for a code element specifies that the
document must either contain the fully-qualified name of the
type (e.g., org.apache.http.client.HttpClient)
or both the package name and the type name (e.g.,
org.apache.http.client and HttpClient). For

816

Fig. 2. Reverb. The code elements highlighted in editor on the top left are used to build a query against the developer’s browsing history. Result links shown
in the bottom right are grouped according to the query they matched.

example, the Lucene query generated for calls to the
execute()) and getParams() methods of HttpClient
is as follows:

+(org.apache.http.client.HttpClient OR
(org.apache.http.client AND HttpClient)

execute getParams

When the package name is not provided by the Eclipse
plugin (because it is not available in the AST), the indexing
service may still generate a query provided the type name is
deemed selective on its own, using the identifier filter describe
earlier (Section III). Multiple code elements associated with
the same Java type (e.g., invocations of different methods
belonging to the type) are grouped into a single query. Multiple
queries may be generated if code elements extracted by the
Eclipse plugin belong to multiple Java types.

C. Ranking and Grouping Query Results

The queries executed using Lucene result in zero or more
web pages identified as relevant from the developer’s browsing
history. At a high-level, the pages resulting from the query
are ranked according to the similarity of their content to the
developer’s current code, as well as the frequency and recency
of page visits; the top ten ranked results are then grouped
according to the types in the code that they match. We explain
this process in more detail.

Given a query, Lucene assigns a relevance score to doc-
uments in its index according to how frequently the query
terms appear in each document (i.e., Lucene uses a vector
space model with TF/IDF nomalization). We made a few
customizations to the default Lucene scoring function based
on Reverb’s specific requirements:

1) The Lucene scoring function allows for per-field boosts.
Reverb assigns a multiplier of 3.0 to matches that occur

in the title field of the page, as compared with matches
in the page content, which have a boost of 1.0. We made
this choice as pages with code element names in their
titles are very likely to be code-related and relevant to
the developer’s current code.

2) The coord part of Lucene’s scoring function boosts a
result based on the fraction of the query terms that it
matches. Result scores then vary approximately as the
square of the number of query terms matched. Such a
strong dependence is more appropriate for manually-
generated queries, where the user expects results that
match all of the query terms to be strongly favored. We
forced the coord value to one, resulting in a dependence
that was closer to linear.

3) The lengthNorm part of Lucene’s scoring function
boosts matches that occur in shorter documents over
those that occur in longer documents. By default, the
overall score is inversely proportional to the square root
of the number of terms in the document. In initial exper-
iments with our own browsing histories, this adjustment
was unhelpful, dramatically favoring shorter web pages
over longer ones. As with the coord value, we forced
the lengthNorm to one.

Reverb gathers the top 20 results for each query run against
the Lucene index and then processes all of those results to
determine the top ten results which will be displayed to the
developer. We perform this reduction in search results to
ensure that we do not overwhelm the developer with recom-
mendations. First, Reverb merges results from separate queries
which correspond to the same web page. When merging,
Reverb assigns a score to the page which is the sum of
all Lucene relevance scores from the separate queries. This
approach ensures that web pages that match more elements in

817

the current code context score higher than pages that match
fewer.

Next, Reverb adjusts result scores according to the fre-
quency and recency of page visits. In general, frequency and
recency of page visits are the variables most commonly used
in predicting revisits. For example, in Firefox, the dropdown
menu to the right of the address bar ranks pages according
to a frecency score. A simple approach to deriving a frecency
score is to sum over past visits to the page, weighting each one
with an exponential time decay [19]. We follow this approach
in Reverb. At time t, the frecency score for a web page is
calculated as a sum over previous visit times ti:

f(t) =
∑
i

e−τ(t−ti)

The time constant τ was chosen to ensure a fairly long
half-life of six months, weighting frequency more heavily than
recency. For scoring purposes, two visits six months ago are
worth one today. We chose this value to ensure that if the
developer started using a library again, a few months after the
previous use, the tool would still be able to recommend pages
visited during the earlier work. Tuning the value of this time
constant is best done through empirical data; we discuss this
tuning later in the paper (Section V).

To combine the Lucene relevance score and the frecency
value of a page, we chose a geometric weighting scheme. The
overall score υ is calculated as the weighted product of the
Lucene relevance r and the frecency f : υ = rαf .

An advantage of a geometric weighting scheme over a
linear one is robustness to inflation or deflation in the baseline
values for either relevance or frecency. For example, with
a linear scheme, if a new version of Lucene were released
which tended to give higher relevance scores, the influence of
frecency would be attenuated. We hope to eventually derive
appropriate values for the weighting constant α from empirical
data. For the initial version of the tool, we set α = 1. However,
we also set a hard maximum on f of 5. We were concerned
about the potential for frequently visited pages to outscore
more relevant ones, and tried to control this risk with a hard
cap on frecency.

Finally, we group the top ten results together that are highly
ranked according to the queries they matched as follows:

1) since a given result may have matched more than one
query, each result is first associated with the query that
gave it the highest Lucene relevance score,

2) then queries are ranked according to their highest scor-
ing result page, and finally

3) if all of the hits for a given query also match a higher-
ranked query, then the results for the lower-ranked query
are merged with those of the higher-ranked query.

The merging step allows results for different, but related
types to be merged under specific conditions. In practice, we
have found that this algorithm leads to reasonable groupings.
Types that appear in the same web pages, because they are
used together frequently, will tend to be grouped together in
the result list. This grouping strategy is easy to implement,

and seems likely to give more meaningful groupings than one
that relies on, for example, package structure. In the Reverb
view, the header for a group is a summary of the query
that the results matched. More precisely, the header contains
the (unqualified) type name and the field and method names
used in the query. When query merging occurs, the header
concatenates the summaries for all of the queries that were
merged. Since page topics may not be clear from the page title
alone, the header provides an important hint to the developer
about which code elements the web pages discuss.

We also apply some special processing to deal with distinct
URLs with near-identical content. In Reverb, this problem
shows up frequently for online API documentation, where
the same content can be hosted at separate locations, or
multiple versions of a page can exist, corresponding to dif-
ferent versions of an API. We have implemented a couple of
mechanisms to mitigate this issue. If two URLs have the same
Lucene relevance score for a query, the same page title, and
the same final URL segment, then the result with the higher
frecency value is returned. If two URLs differ only in a single
segment, and that segment appears to be a version number, the
page corresponding to the higher version number is returned. A
regular expression is used to identify segments that correspond
to version numbers.

V. REVERB: EVALUATION

Reverb is a recommender. The most common way to eval-
uate a recommender is using precision and recall: how many
of the web pages returned by Reverb are applicable in a given
situation (precision) and how many of the possible web pages
that could be applicable were returned (recall). For Reverb,
we were interested in precision over recall. Specifically, we
were interested in whether Reverb can return one code-related
page of interest within a set of recommendations presented to
the developer as a developer is likely to stop using the web
when an answer to their question of interest is found. We call
a revisit that occurs a hit when it is one of the top 10 results
suggested by Reverb when the revisit occurs. The hit rate—
whether Reverb can return a web page of interest—is equal to
the number of hits divided by the total number of code-related
revisits initiated by the developer.

To investigate Reverb’s hit rate, we conducted a field study
of the tool in which participants had the tool installed during
at least six hours of Java programming. Participants in the
study could choose to have the Reverb view in which recom-
mendations appear visible or not. If visible, we tracked how
often developers took recommendations presented by Reverb.
Given the difficulty of having developers use new tools, we
also tracked the recommendations Reverb was making and
the pages participants were visiting in their browsers. This
information allowed us to track Reverb’s blind hits: code-
related revisits that were not initiated through Reverb, but
which Reverb successfully predicted.

818

A. Study Setup

Each participant installed Reverb on their own computer.
This version of Reverb logged all recommendations generated,
web pages that were actually visited by a developer in their
browser and whether visited pages were code-related or not
based on the heuristics used in the code revisitation study
(Section III). This version of Reverb also logged mouse and
keyboard events in the Java code editor of Eclipse. If, in a
15-minute interval, a developer had at least one interaction
in the Java code editor, we counted that interval towards the
quota of use before a developer was accepted into our study.
We tracked Reverb’s performance until a quota of six hours of
programming in Java had occurred for a participant. We chose
six hours based on the rate of code revisitations in our earlier
study: with one to two code revisits per hour on average, six
hours would likely enable a reasonable number of revisitations
to occur while respecting the time of our participants. In the
study, it took participants between one and seven days to
accumulate the six hours of coding activity.

At the half-way and end points of the study, participants
were prompted to rate and comment on each recommendation
on which they had clicked. The rating scale was from 1 to 5
with 1 labeled as ”not useful” and 5 labeled as ”very useful”.
At the end of the study period, participants were asked to
complete a survey about their impressions of the tool and the
ways it could be improved.

To allow participants to receive useful recommendations
right away, we pre-populated their browsing history index
using the same approach as taken in the page classification
tool in our earlier study. The content of each page in the
browser’s history database for the three-months previous was
downloaded and added to the index.

B. Participants

We advertised the study on Eclipse mailing lists, through
contacts at various companies and within the UBC computer
science department. To be eligible, participants had to be
working on the Windows operating system6 and be coding
actively in Java using the Eclipse development environment.
Ten participants completed the study. For one of these partici-
pants, his or her activity required 103 days to produce 6 hours
of Java coding. We decided not to include this participant’s
data in our analysis as we deemed that they did not meet the
requirements of coding actively in Java. The remaining nine
participants for whom we analyzed data met the six hour quota
of Java programming in a mean of 4 days ± 2.3.

C. Results

Table I summarizes the results of the field study. The first
two rows, ”View open %” and ”Recommendations clicked”,
provide insight into the use of the Reverb recommendation
view in Eclipse. Although the view was often open for
five (55.5%) of the participants, few recommendations were

6This constraint was a result of the secure approach we took in connecting
the browser to the development environment.

clicked. Two of the three participants who completed com-
ments about the tool noted that it was difficult to identify
links from the page title alone, potentially causing them not to
use the view more often. Designing an interface for presenting
recommendations is difficult; as a result, we were not surprised
that the number of recommendations clicked was low across
participants. These difficulties might also have affected the
user’s ratings of recommendations. The average rating from
four (44.4%) of the participants was just over three, indicating
that the developer’s saw the recommendations as potentially
but not overwhelmingly useful. Given the issues developers
had with the simple interface through which we provided
recommendations, we focus the rest of our analysis of the
data on Reverb’s hit rate.

The second last row of Table I reports on the precision
of Reverb’s recommendations as Reverb was deployed to the
participants. The row marked ”Reverb Hit Rate, initial” reports
on the precision of Reverb using the parameters as described
in Section IV and includes both web pages whose visit was
initiated through the Reverb view and whose visit occurred
through the web browser, but at the same time that Reverb
had made the recommendation. The hit rate reported is the
average hit rate across all cases of Reverb making up to ten
recommendations. The data shows that the mean hit rate for
Reverb was 42% (±32.6%).

The final row marked ”Reverb Hit Rate, optimized” reports
on Reverb’s precision when the tool is tuned. In the con-
figuration provided to participants, Reverb generated a new
set of recommendations each time a click event occurred in
the Java editor, provided that the visible region in the code
editor was different from the previous click. We say this im-
plementation has a recommendation window of 10. However,
since we logged all recommendations that Reverb generated,
we could experiment with gathering recommendations over
a varying number of recommendation windows. Specifically,
we considered the recommendations that would have occurred
given the last two visible code regions (i.e., window of 20) and
the last three visible code regions (i.e., window of 30) and used
our ranking engine to produce the top ten recommendations
resulting from the different window sizes. We also wanted to
tune the ranking parameters τ , the constant used in calculating
the decay of the frecency boost and α, the geometric weighting
of the relevance relative to frecency in the ranking function.
Through simulations, we determined that the best hit rate
was achieved with a recommendation window of 30 and a
shorter time constant, corresponding to a half-life of 15 days
(as opposed to the 6 months chosen initially). The final row
shows that with these optimized settings, the mean precision
for Reverb was 51% (±30.3%) and reached a high of 100%
for one participant. This 51% hit rate is promising, suggesting
that local code context can help to predict code-related page
revisits.

D. Limitations

Our field study involved a limited number of participants.
As accessing web data, even when anonymized is sensitive for

819

TABLE I
RESULTS OF FIELD STUDY OF REVERB

Participant
1 2 3 4 5 6 7 8 9 Average

View Open % 78 35 89 0 78 81 50 73 0 54 ±34.76
Recommendations Clicked 2 2 3 0 1 0 0 6 0 1.6 ±2.01
Average Rating (out of 5) 2.5 3.5 3 3.5 3.13 ±.48

Reverb hit rate, initial (in %) 25 57 22 17 100 0 31 83 43 42 ±32.60
Reverb hit rate, optimized (in %) 50 57 22 33 100 0 81 67 50 51 ±30.29

users, we chose to run the study as anonymously as possible.
As a result, we are not able to report on the background of
these developers. We also architected the tool to be highly
secure resulting in constraints on the environments in which
the tool could run (e.g., Windows and two popular browsers),
leading to difficulties in recruiting participants to the study.
The small numbers and potentially very diverse population
of participants may have lead to the high values of standard
deviation in the hit rates computed.

The classifier we used to determine if a page is code-related
is not perfect. There may have been pages mis-characterized as
code-related and pages mis-characterized as not code-related.
Both kinds of mis-characterizations affect the hit rate we
computed for Reverb.

Changes in the list of recommendations presented to devel-
opers using Reverb could affect their behavior. The 51% hit
rate includes revisits that participants initiated through Reverb.
Given a different set of recommendations based on tuned
algorithm parameters, participants might not have clicked on
the links that they did in the original study. To investigate this
effect, we also computed the hit rate when revisits initiated
through Reverb are ignored. Revisits initiated outside of the
tool are unlikely to be affected by the recommendation set
presented in the tool. When only these revisits are included,
the optimized algorithm achieves a mean hit rate of 47% (±
32%).

It is important to note that the hit rate in the simulations
we ran is limited by the data we collected in the field study.
Only the recommendations that were actually presented to the
user are included in the logs. So the simulation is limited to
recommending pages that scored in the top 10, based on the
ranking parameters initially chosen for the study. A higher hit
rate might be achievable if the logs included a larger range of
pages matching the generated queries.

VI. DISCUSSION

Is an average hit rate of 51% for the optimized version
of Reverb sufficient to provide value to developers? This hit
rate means that the Reverb view will often contain at least
one web page of likely use to a developer at work and often
that one page is sufficient to continue or complete the current
work. For six (67%) developers in our study, the hit rate
was over 50% with three (33%) developers having a hit rate
over 67%. What might help improve the hit rate for a greater
population of developers? We discuss possible improvements

for Reverb’s recommendation engine. We also discuss possible
improvements to the presentation of results to the user.

Currently, Reverb looks for similarities in the content of
code being worked on and web pages that have been visited.
An alternative, similar to that taken in Codetrail [13], is to also
incorporate temporal associations between code interactions
and web page visits. In many cases, a content-based associ-
ation may not exist, even though the page and the code are
frequently visited together. A web page describing a particular
design pattern or bug report (which does not mention particular
code elements) are examples where the temporal association
with source files or projects may be stronger than one based
on content.

Developers did not click on many recommendations shown
by Reverb in the field study. This low click through rate may
be due to developers not having sufficient time to get used
to the tool or it might be related to a lack of detail provided
about the web pages recommended. Possible improvements to
the existing user interface of Reverb include providing page
snippets and/or thumbnails in the Reverb view. A more radical
change would be to surface Reverb recommendations inside
the browser, rather than in Eclipse. Although this strategy
moves the recommendations away from the context to which
they relate, it may increase the likelihood of developers using
the recommendations. Or, if developers tend to alternate code-
related refinding with searches for new content, it may also
be beneficial to embed the recommendations in the browser.

A natural extension to Reverb would be the ability to access
code-related pages other developers found useful. For example,
a developer could flag a frequently-visited page through the
tool, and then other members of her team would see that page
at the top of their recommendations when working with related
code. This approach might improve the hit rate, by softening
the requirement that a page must have been previously visited
before it can be recommended.

VII. SUMMARY

We have explored the problem of web page revisitation
in the sphere of software development. Our formative study
characterized how frequently developers return to code-related
web pages and the methods they use to find these pages.
We found that 13.7% (± 10.6%) of visits to code-related
pages were revisits. Only a small fraction of these revisits
(7.4%) were initiated through bookmarks, indicating that many
code-related pages must be refound through more onerous

820

means. Our dataset also contains many one-hour periods
with three or more code-related revisits, suggesting that the
number of revisits may rise during certain periods. Our study
suggests that developers may benefit from revisitation support,
particularly during certain coding activities.

To assist developers with code-related revisits, we intro-
duced Reverb, which proactively recommends previously-
visited web pages, based on the code currently visible in the
developer’s code editor. It extracts code elements from the
code currently visible in the editor, constructs queries using
the names of those elements, and runs those queries against a
full text index of the developers browsing history. It combines
cosine similarity with frequency and recency of page visits to
determine the rank of recommendations, and aggregates results
according to the code element queries they match.

To understand if Reverb can recommend appropriate web
pages, we conducted a field study of Reverb. Our results
suggest that local code context is indeed predictive of web
page revisits, with an average 51% of code-related revisits
being predicted by an optimized version of Reverbs ranking
algorithm.

ACKNOWLEDGEMENTS

The authors would like to thank Microsoft for a Software
Engineering Innovation award that helped fund this work, the
individuals who were willing to install research prototypes
in their work environments and participate in the studies
on which we report and the anonymous reviewers of the
submission for their helpful comments.

REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proc. of the 27th Int’l Conf. on Human
Factors in Computing Systems. New York, NY, USA: ACM, 2009, pp.
1589–1598.

[2] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in Proc. of the 14th ACM SIGSOFT Int’l Symp. on
Foundations of Software Engineering, ser. SIGSOFT ’06/FSE-14. New
York, NY, USA: ACM, 2006, pp. 1–11.

[3] N. Sawadsky and G. C. Murphy, “Fishtail: From task context to source
code examples,” in Proc. of the 1st Workshop on Developing Tools as
Plug-ins. New York, NY, USA: ACM, 2011, pp. 48–51.

[4] H. Obendorf, H. Weinreich, E. Herder, and M. Mayer, “Web page
revisitation revisited: Implications of a long-term click-stream study of
browser usage,” in Proc. of the SIGCHI Conf. on Human Factors in
Computing Systems. New York, NY, USA: ACM, 2007, pp. 597–606.

[5] B. McKenzie and A. Cockburn, “An empirical analysis of web page
revisitation,” in Proc. of the 34th Annual Hawaii Int’l Conf. on System
Sciences (HICSS-34)-Volume 5 - Volume 5. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 5019–.

[6] L. Tauscher and S. Greenberg, “How people revisit web pages: Empirical
findings and implications for the design of history systems,” Int. J. Hum.-
Comput. Stud., vol. 47, no. 1, pp. 97–137, Jul. 1997.

[7] E. Adar, J. Teevan, and S. T. Dumais, “Large scale analysis of web
revisitation patterns,” in Proc. of the Twenty-sixth Annual SIGCHI Conf
on Human Factors in Computing Systems. New York, NY, USA: ACM,
2008, pp. 1197–1206.

[8] S. Greenberg and A. Cockburn, “Getting back to back: Alternate
behaviours for a web browser’s back button,” in Proc. of the 5th Annual
Human Factors and the Web Conf., 1999.

[9] N. Milic-Frayling, R. Jones, K. Rodden, G. Smyth, A. Blackwell, and
R. Sommerer, “Smartback: Supporting users in back navigation,” in
Proc. of the 13th Int’l Conf. on World Wide Web. New York, NY,
USA: ACM, 2004, pp. 63–71.

[10] R. Kawase, G. Papadakis, E. Herder, and W. Nejdl, “Beyond the usual
suspects: Context-aware revisitation support,” in Proc. of the 22nd ACM
Conf. on Hypertext and Hypermedia. New York, NY, USA: ACM,
2011, pp. 27–36.

[11] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding
api components and examples,” in Proc. of the Visual Languages and
Human-Centric Computing. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 195–202.

[12] R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme: Finding and lever-
aging implicit references in a web search interface for programmers,” in
Proc. of the 20th Annual ACM Symp. on User Interface Software and
Technology. New York, NY, USA: ACM, 2007, pp. 13–22.

[13] M. Goldman and R. C. Miller, “Codetrail: Connecting source code and
web resources,” J. Vis. Lang. Comput., vol. 20, no. 4, pp. 223–235, Aug.
2009.

[14] B. Hartmann, M. Dhillon, and M. K. Chan, “Hypersource: Bridging the
gap between source and code-related web sites,” in Proc. of the 2011
Int’l Conf. on Human Factors in Computing Systems. New York, NY,
USA: ACM, 2011, pp. 2207–2210.

[15] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: Integrating web search into the development
environment,” in Proc. of the 28th Int’l Conf. on Human Factors in
Computing Systems. New York, NY, USA: ACM, 2010, pp. 513–522.

[16] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proc. of the 32nd ACM/IEEE International Conf. on
Software Engineering - Volume 1. New York, NY, USA: ACM, 2010,
pp. 375–384.

[17] N. Sawadsky, “Reverb: Dynamic bookmarks for software develop-
ers,” M.Sc. Thesis, Dept. of Computer Science, University of British
Columbia, 2012.

[18] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: A search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN Symp.
on Object-oriented Programming Systems, Languages, and Applications.
New York, NY, USA: ACM, 2006, pp. 681–682.

[19] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu, “Forward decay:
A practical time decay model for streaming systems,” in Proc. of the
2009 IEEE Int’l Conf. on Data Engineering. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 138–149.

821

