
Managing Software Change Tasks: An Exploratory Study

Jonathan Sillito, Kris De Volder, Brian Fisher, Gail Murphy
Department of Computer Science
University of British Columbia

{sillito, kdvolder, fisher, murphy}@cs.ubc.ca

Abstract

Programmers often have to perform change tasks
that involve unfamiliar portions of a software system’s
code base. To help inform the design of software de-
velopment tools intended to support programmers in
this context, we conducted a qualitative study of how
programmers manage such change tasks. In the study
we observed Java programmers using a state-of-the-
practice IDE to work on real change tasks to a medium-
sized open source software system. In this paper we
present our results, describing eight observations about
the programmers’ behavior and the impact of the devel-
opment environment on their behavior. We also high-
light several key challenges faced by the programmers
and discuss the implications of our results on the design
of development tools.

1 Introduction

Programmers often have to perform change tasks
that involve unfamiliar portions of a software system’s
code base. This situation arises when newcomers join
a development team and are assigned change tasks to
learn about the system and the project [11]. This sit-
uation also arises for experienced programmers when
making changes having a non-localized impact, such as
might occur when changing an API used by other pro-
grammers.

Aspects of today’s development environments are
aimed at supporting programmers in these situations as
they learn about and work with a code base. However,
this support has its limitations and programmers work-
ing on change tasks continue to experience significant
difficulties [6]. To explore this situation, we under-
took a qualitative grounded theory study in which we
observed experienced Java programmers use a state-of-
the-practice Java development environment to work on
real change tasks to a medium-sized open source soft-

ware system. Our analysis focused on the goals of the
programmers in performing these tasks and on how the
tools provided by the development environment were
used to accomplish these goals.

In this paper, we present three contributions resulting
from this study. First, we report eight observations that
characterize the activities the programmers performed
to manage change tasks and how they were influenced
by the development environment. Example observa-
tions include how programmers decomposed goals into
ones that were supported directly by the tools and how
programmers tried to minimize the amount of source
code they needed to understand in detail. Second, based
on these observations, we describe five key challenges
that the programmers faced while performing the tasks,
such as cognitive overload and working from false as-
sumptions. Third, we describe four directions for tool
development that may help overcome the challenges we
have identified.

We begin with a comparison of our study to earlier
work (Section 2). We then describe our study approach
(Section 3) and the results (Section 4). Next we high-
light the key challenges (Section 5.1) and our sugges-
tions for development environment tools (Section 5.2).
Finally we present the limitations of our study (Sec-
tion 6) and end with a summary (Section 7).

2 Related Work

The situation of programmers performing change
tasks has been studied from a number of perspectives.
Some researchers have focused on proposing and vali-
dating cognitive models of how a programmer compre-
hends a program (e.g., [17]). Other work has attempted
to bridge the gap between comprehension theories and
tool design (e.g., [13, 18]). In comparison, we report on
the broader process of how change tasks are managed,
of which comprehension activities are just one piece.
As a result, we are able to consider tool implications
that go beyond aiding comprehension.

0-7803-9508-5/05/$20.00c©2005 IEEE

A
CB

D

Figure 1. A screenshot of the Eclipse Development Environment, with several major tools
labeled: (A) package explorer, (B) source code editor with tabs, (C) content outline view, and
(D) call hierarchy browser.

More similar to our study are efforts that qualita-
tively examine the work practices of programmers. For
example, Flor et al. used distributed cognition to study
a single pair of programmers performing a straight-
forward change task [3]. We extend their methods to
a larger participant pool and a more involved set of
change tasks with the goal of more broadly understand-
ing the challenges programmers encounter. As another
example, Singer et al. studied the daily activities of soft-
ware engineers [12]. We focus more closely on the ac-
tivities directly involved in performing a change task,
producing a complementary study at a finer scale of
analysis.

Three recent studies have focused more directly on
the use of current development environments. Robillard
et al. characterize how programmers who are successful
at maintenance tasks typically navigate a code base [9].
Deline et al. report on a formative observational study
also focusing on navigation [2]. Our study differs from
these in considering the change management process
rather than focusing exclusively on navigation. Ko et
al. report on a study in which expert Java programmers
used the Eclipse development environment to work on
five maintenance tasks on a small program [6]. Their
intent was to gather design requirements for a mainte-
nance development environment. Our study differs in
focusing on a more realistic situation involving a larger
code base, more involved tasks and a study format that

enables tracking of the reasons behind the actions and
intent of the programmers, resulting in a different set of
observations.

3 Study Method

The goal of our study was to characterize how pro-
grammers manage complex change tasks, including the
way they use tools and the challenges they face. In
the study, pairs of programmers performed assigned
change tasks on a moderately-sized open-source sys-
tem. We choose to study pairs of programmers because
we believed that the discussion between the pair as they
worked on the change task would enable us to find out
whyparticular actions were being taken during the task,
similar to earlier efforts (e.g., [3] and [7]). We studied
how multiple pairs approached the same change task,
and we studied different pairings of our participants.

To structure our data collection and analysis in this
exploratory study, we used a grounded theory approach
which has been described as anemergent processin-
tended to support the production of a theory that “fits”
or “works” to explain a situation of interest [4, 14]. In
this approach, data collection, coding and analysis do
not happen strictly sequentially, but are overlapping ac-
tivities. As data is reviewed and compared, important
themes or ideas emerge (calledcategories) that help
contribute to an understanding of the situation. As cat-

Table 1. Study tasks. Numbers refer to IDs in the ArgoUML issue tracking system.

Task Description
484 Make the font size for the interface configurable from the GUI.
1021 Add drag and drop support for changing association ends.
1622 Add property panel support for change, time and signal event types.
1622a Add textual annotation support for change, time and signal event types.
2718 Fix a model saving error that occurs after a use case with extends relationships is deleted from

the model.

egories emerge, further selective sampling and adaptive
coding can be performed to gather more information.
Further analysis aims to organize and understand the
relationships between the identified categories, possibly
producing higher-level categories in the process.

3.1 Study Setup

Participants in our study used the Eclipse Java devel-
opment environment1 (version 3.0.1) which is a widely
used IDE. A screenshot of Eclipse is shown in Fig-
ure 1 showing several commonly-used views or tools:
the package explorer (showing the package, file and
class structure), the tabbed source code editor, the con-
tent outline view (showing the structure of the cur-
rently open file) and the call hierarchy browser. Other
commonly-used views not shown in the screenshot in-
clude a type hierarchy view, a search results view, a
breakpoint view, a variable view, and a launch view
(which shows the execution stack while executing an
application in debug mode).

The study involved twelve sessions (S1. . . S12). In
each session two participants performed an assigned
task as a pair working side-by-side at one computer.
Following the terminology of Williams et al. [19], we
use the term “driver” for the participant assigned to con-
trol the mouse and keyboard and “observer” for the
participant working with the driver. In most sessions,
the least experienced programmer was asked to be the
driver.

In each session, the programming pair was given
forty-five minutes to work on a change task. Partici-
pants were stopped after the forty-five minutes elapsed
regardless of how much progress had been made on
the task. An audio recording was made of discussion
between the pair of participants, a video of the screen
was captured, and a log was made automatically of the
events in Eclipse related to navigation and selection.
The experimenter, who was present during each session,
then briefly interviewed the participants about their ex-

1http://www.eclipse.org

perience. The interviews were informal and focused on
the challenges faced by the pair, their strategy, how they
felt about their progress and what they would expect
to do if they were continuing with the task. An audio
recording of the interview was made.

3.2 Change Tasks

Table 1 describes the change tasks, which were all
enhancements or bug fixes to the ArgoUML2 code base
(versions 0.9, 0.13 and 0.16). ArgoUML is an open-
source UML modeling tool implemented in Java that
comprises roughly 60KLOC. The tasks were completed
tasks chosen from ArgoUML’s issue-tracking system.
The tasks were based on complex, non-local changes.
We did not expect that the participants would be able to
complete the tasks in the time allotted, but we believed
they would be able to make significant progress. Partic-
ipants were asked to accomplish as much as possible on
the one task, but not to be concerned if they could not
complete the task. In four of the sessions, S4, S7, S11
and S12, participants were asked to work on the same
task they had worked on in a previous session, allow-
ing us to gather data about later stages of work on the
task. Table 2 shows which tasks were assigned for each
session.

3.3 Participants

Nine programmers (P1. . . P9) participated in our
study. All participants were computer science gradu-
ate students with varying amounts of previous devel-
opment experience, including experience with the Java
programming language. Participants P1, P2 and P3 had
five or more years of professional development experi-
ence. Participants P4, P5 and P6 had two or more years
of professional development experience. Participants
P7, P8 and P9 had no professional development experi-
ence, but did have one or more years of programming
experience in the context of academic research projects.

2http://argouml.tigris.org

Table 2. Session number (SN), driver, observer and assigned task for each session.

SN Driver Obs. Task SN Driver Obs. Task SN Driver Obs. Task
S1 P7 P3 484 S5 P5 P3 1622 S9 P8 P6 2718
S2 P4 P1 1622 S6 P5 P2 1021 S10 P8 P2 1622a
S3 P4 P7 1021 S7 P3 P1 1622 S11 P9 P2 1622a
S4 P6 P4 1622 S8 P7 P5 2718 S12 P9 P6 1622a

All participants had at least one year of experience us-
ing the Eclipse Java development environment; most
had two or more years. Each participant participated in
two or three sessions (Table 2). All participants in the
study were initially newcomers to the ArgoUML code
base. The participants worked on the same code base
for each session and may have gained some familiarity
with the code base over these sessions.

4 Study Results

We begin with a brief summary of the actions we
observed participants perform and the tools they used.
Following this summary we present the results of our
grounded theory analysis in the form of eight observa-
tions (Table 3). These observations are based on the
categories and dimensions we identified as being im-
portant to the situation under study. The description of
each observation includes supporting data, often in the
form of quotes from the recorded dialog.

The actions we observed may be summarized into
five categories: (1) static exploration of the source code
using a number of different tools, including viewing the
source code in the editor; (2) setting break points and
running the application in debug mode, which allows
stepping through the execution and inspecting the exe-
cution stack and object values; (3) making paper notes;
(4) making changes to the source code; (5) and reading
online API documentation. Figure 2 shows the specific
tools that were used during static exploration and de-
bugging activities. The percentages in the figure repre-
sent the proportion of logged events (ignoring selections
in the editor) over all sessions using the given tool. Var-
ious navigation actions, such as navigate to declaration,
account for an additional 11.7% of the logged events
and are not shown in the figure. This data indicates that
the programmers did make use of many of the facilities
of the development environment.

Observation 1: Goals were often decomposed into
sub-goals that could be investigated directly, but the
sub-goals were not always easy to form.

In all of the sessions, participants broke goals into
sub-goals that could be directly supported by the tools

in the development environment. P4 described this pro-
cess as“trying to take [my] questions and filter those
down to something meaningful where I could take a next
step” [S3]. As an example of this process, early in S10
the programmers determined that they needed to under-
stand where in the code call events were being parsed.
To accomplish this goal, four sub-goals were identified
whose resolution were directly supported by the devel-
opment environment.

1. “Find out where [MCallEvent] gets created”
[P8]. The action for this sub-goal was a refer-
ence search on the specified class; this query re-
turned two results which the participants inspected
in the search results view. They decided that
“[MFactoryImpl] is a good place to start”
[P8].

2. Find out where the event object creation
(MFactoryImpl) is initiated during the
parsing of text input. From the search view, the
programmers opened thecreateCallEvent
method of theMFactoryImpl class and then
searched for references to the method. They
then followed a chain of three more searches for
references directly in the search view, eventually
resulting in them opening theparseEvent
method from theParserDisplay class in the
editor.

3. Verify that the method found was in fact
where the parsing takes place:“do you think
[parseEvent] is it?” [P8]. To accomplish this
sub-goal the participants set a break point and ran
the application in debug mode. They were able to
confirm their hypothesis when the breakpoint was
hit.

4. Finally they wanted to find an appropriate point on
the execution path to begin making changes to the
code:“so we have to search backwards from here”
[P8]. They used the variables view (in Eclipse’s
debug perspective) to determine various stages in
the parsing.

Translating goals in this way was not always
straightforward. For example, the question“how does

Figure 2. A summary of tool usage over all sessions. The percentages represent the proportion
of recorded events using the given tool. Only those tools that accounted for at least 1% of the
events are shown. Navigational events accounted for an additional 11.7% of the events.

[MAssociation] relate to [FigAssociation]?”
[S3/P4] can not be answered directly in the devel-
opment environment, but rather requires a significant
amount of exploration to identify and integrate the var-
ious relationships involved.

Observation 2: Goals were initially narrowly fo-
cused, but became more broad in scope as program-
mers struggled to understand the system sufficiently
to perform the task.

At the start of a change task, participants typically
attempted to learn as little as possible about the sys-
tem, focusing on very specific parts of the system, rather
than learning about broader issues, such as the pack-
age structure or architecture of the system. For in-
stance, the pairs in sessions involving task 1622 (S2, S4,
S5 and S7) all focused on understanding how control
reached thePropPanelCallEvent class to learn
some key behavior assumed important for the task,
rather than working to understand overall how the panel
GUI worked.

For several sessions (most notably S6, S7, S9 and
S12), the participants felt by the end of the session that
to succeed with the task they needed to consider the
system more broadly:“I would definitely need a big
picture, we are sort of in this small little bit of code
[...] we need to back up further and see what else was
out there” [S12/P9]. This comment seems to have been
caused by a realization that the solution for the task is
more complex than first suspected. As another exam-
ple, at the end of session S7, the driver felt that“focus-
ing on how to solve the task is too premature, because
we’re never going to figure it out if we are too narrow,
I think we really have to get a wider view”[P3]. The
observer agreed that a broader view was needed, but

felt that pursuing their current goals would lead them to
that broader view:“I think we just need to understand
as much as necessary, and we’re kind of circling in a
spiral, realizing that we’ve got to get a bit further out”
[P1]. The strategy suggested by P1 here is consistent
with a bottom-up approach to program comprehension
as proposed in [1, 10], and more recently as part of the
integrated meta-model [16].

Three other approaches were suggested by partici-
pants as a means of gaining a broader view: looking
at architectural documentation, exploring the package
structure, and using a“brute force” [S6/P2] approach,
which involved stepping through the running applica-
tion using the debugger, looking at much more of the
system than had been considered up to that point.

Observation 3:Programmers wrote code early in the
change process.

In half of the sessions (S1, S5, S7, S8, S10 and S12)
programmers felt that a relatively narrow and incom-
plete understanding of the relevant code was sufficient
to begin making changes to the source code. In these
sessions, programmers began writing code as soon as
they knew enough to begin. The pair in session S5 re-
ferred to their writing of code as“mucking around with
things” [P3]. In contrast, in the other six sessions, the
programmers set out to gain an understanding of all (or
most) of the relevant code before beginning to make any
changes. One programmer expressed discomfort cod-
ing too soon:“I think I have just seen too many cases
where [programmers] never come back and it is just re-
ally hard to maintain it afterwards”[S8/P7].

When coding occurred it appeared to be part of an
exploratory process that served several purposes. First,
it minimized the amount of information that participants

Table 3. Summary of key observations.

1 Goals were often decomposed into sub-goals that could be investigated directly, but the sub-goals were not
always easy to form.

2 Goals were initially narrowly focused, but became more broad in scope as programmers struggled to under-
stand the system sufficiently to perform the task.

3 Programmers wrote code early in the change process.
4 Programmers minimized the amount of code that was investigated in detail.
5 Exploration activities were of two distinct types: (1) those aimed at finding initial focus points and (2) those

aimed at building from such points.
6 Building a complete understanding of the relevant code was difficult.
7 Programmers’ false assumptions about the system were at times left unchecked and made progress on the

task difficult.
8 Revisiting entities and relationships was common, but not always straightforward.

needed to remember as many pieces of information that
were learned could be captured explicitly in the code.
Second, it served as a way to check assumptions, espe-
cially when combined with the use of Eclipse’s debug-
ger. For example, while writing code the programmers
in session S5 kept the target application running in de-
bug mode and continually switched between coding and
inspecting the system in the debugger to ensure that the
code they had written was executing when and how they
expected it would. Finally, writing code helped support
a narrow investigation of the system (Observation 2) as
only those parts of the system needed to write the code
had to be understood.

Observation 4:Programmers minimized the amount
of code that was investigated in detail.

In addition to being narrow in their investigation
of the code (Observation 2), the participants tended to
avoid looking at source code in detail. For example, in
S2 the observer said to the driver“if I were you I would
click on the interfaces, because the classes which imple-
ment it will have a lot of detail that is not so important”
[P1]. Similarly, the participants in S4 when considering
the MEvent hierarchy (Figure 3) initially ignored the
implementations of the classes and the interfaces and
simply looked at the relationships involved, beginning
with the type hierarchy.

In general, the participants appeared reluctant to look
closely at the source code for an entity—a class or
method—until after they had developed an initial un-
derstanding of the entity using tools that provided an
abstract view of it, and until the participants felt that
it was sufficiently important to their task. The partici-
pants in S3, were the most obvious exception to this rule
as they, spent a relatively large amount of time reading
source code, which appeared to be detrimental as little
progress was made on the task. The more common and

successful behavior we observed is consistent with the
observation by Robertson et al. that programmers do
not read source code line by line [8].

Also, programmers tended not to systematically ex-
plore more than about three search results. In some
cases, rather than explore a large number of results the
programmers would attempt to refine their query, al-
though producing sufficiently precise queries was often
difficult. In other cases the results were disregarded en-
tirely.

Observation 5:Exploration activities were of two dis-
tinct types: (1) those aimed at finding initial focus
points and (2) those aimed at building from such
points.

Activities that focused on identifying relevant infor-
mation can be divided into two sets: (1) those aimed at
finding initial focus points and (2) those aimed at build-
ing from such points.

As an example of an effective approach to finding
initial starting points, the programmers in sessions S5
searched for possibly relevant entities and set break
points at some of these places. The application was
then run in debug mode to see which of the identified
points were in fact along the relevant control path. This
approach gave the pair immediate feedback on their hy-
potheses, and confidence in what they had found. In
session S9 the programmers began looking for such a
point in the code by performing text searches based on
an error message.

Given a relevant point (or points) to focus on, pro-
grammers often changed their approach and began
building from that point, using several different means:
references searches (“let’s see if [targetChanged]
gets called” [S6/P5]), opening the entity in the type
hierarchy (“what does [NavPerspective] inherit
from?” [S1/P3]), stepping through the method in the

MChangeEvent

MSignalEvent

MCallEvent

MTimeEvent

MEvent

MExpression

MTimeExpression

MFactoryImpl

MFactory

MSignalImpl

MSignal

MOperationImpl

MOperation

AbstractUmlModelFactory

CoreFactory

DataTypesFactory

StateMachinesFactory

CommonBehaviorFactory

UmlFactoryMChangeEventImpl

MCallEventImpl

MEventImpl

MSignalEventImpl

MTimeEventImpl
MBooleanExpression

Figure 3. The model classes and interfaces (shown in italics) relevant to tasks 1622 and 1622a
along with the factories for creating those elements.

debugger, and reading the source code. Similarly, Ko et
al. report that once relevant code had been identified,
programmers explored the code’s dependencies [6].

Several times, programmers had difficulty identify-
ing the information that they needed to perform the task.
Sometimes the information could not be found because
the tools were not helpful; other times the program-
mers did not make effective use of the tools. Tools were
not helpful with data-flow issues and where the control-
flow was obscured by the use of Java reflection;“what
was throwing me off was how much reflection was being
used [...] the hardest part about reflection is that it just
breaks the tools”[S7/P3]. All of the participants that
worked on task 1622 struggled with this issue.

Session S3 is an example where less effective use of
tools hampered the process of identifying relevant enti-
ties. As mentioned above (Observation 4), the program-
mers in this session spent a significant amount of time
reading source code in the editor and used Eclipse’s
other tools (searching and the debug perspective, for
example) less often. They were also unsure of how
the various searches worked and preferred to perform
text searches and read the code. The programmers in
this session never got to the point of having confidently
identified initial focus points on which to build.

Observation 6: Building a complete understanding
of the relevant code was difficult.

As entities and relationships were identified as rele-
vant to the task and more information was discovered
about those entities, an integrated model of how those
entities fit together needed to be developed;“I am kind

of curious how [theCoreFactory] class integrates
with this whole hierarchy”[S2/P1]. In some cases the
tools provided by the development environment acted as
an external representation of the information to be inte-
grated [20]. When the information was not or could not
be externalized in this way, integration was often unsuc-
cessful even when all (or most) of the relevant pieces of
information had been correctly identified.

For both task 1622 and task 1622a understanding
events and how they are created in ArgoUML was
crucial. The key classes and interfaces involved are
shown in Figure 3, though not all of the relationships
are shown. Participants generally quickly identified the
MEvent interface as important and opened it in the type
hierarchy which externalized the information shown in
the upper left corner of the diagram. The rest of the
information necessary to understand ArgoUML events
was identified but not externalized as a whole and none
of the participants completely understood all of it.

To help build an integrated understanding, some par-
ticipants drew structural diagrams on paper, presumably
to take pressure off of their working memory. To ex-
plain why he was writing notes P1 said“I know I am
going to get lost”[S2]. During the interview after the
session on his use of paper and pen, a participant said:
“I was starting to forget who was calling what, espe-
cially because there is only one search panel at a time
that I can see”[S4/P6]. Even when paper was used, in-
tegration remained a difficult and important challenge.

Observation 7: Programmers’ false assumptions
about the system were at times left unchecked and

made progress on the task difficult.
An issue that impeded progress in several sessions

(particularly S9, S11 and S12) was that of assumptions
that were incorrect but never properly checked. These
assumptions were only sometimes articulated explic-
itly. In session S9 the root cause of a false assump-
tion appeared to be the misinterpretation of the condi-
tion (!notContained.isEmpty()) under which a
particular exception was thrown;“the hash table being
empty is the problem, right?”[P8]. This false assump-
tion lead to other false assumptions and significant con-
fusion. The programmers never identified and corrected
their root error.

A common assumption was that the existing code in
the system was correct. This fueled a desire to reuse
system knowledge as observed by Flor et al. [3]. An ex-
ample of this was observed while programmers worked
on task 1622 and 1622a during which programmers at-
tempted to use the partial implementation of call events
as a guide for implementing other kinds of events. Al-
though this approach was partially successful, the as-
sumption that the existing code was correct was false
and caused some problems. The code may have been
incorrect because the ArgoUML code base is still in ac-
tive development.

Observation 8:Revisiting entities and relationships
was common, but not always straightforward.

Much of the exploration we observed can be viewed
as re-exploration. In fact 57% of observed visits to
source code entities were revisits and, perhaps unsur-
prisingly, this proportion of revisits increased over time.
In some cases this appeared to be because the discov-
ered information had been forgotten, and in other cases
because an earlier exploration had been stopped short or
had been unsuccessful. This revisiting or re-exploration
was sometimes intentional and other times not, and was
sometimes noticed and sometimes not;“we were re-
tracing steps we had done before and [weren’t] aware
of it” [S2/P1]; “when we say let’s look at that later, I
think what that usually means is that if we come across
this again using a different route, if there is an inter-
section somewhere, then we’re going to look at this”
[S3/P4].

A number of different tools were used both for dis-
covering new information and (later) for navigating
back to that information. In session S5, for example,
the programmers used Eclipse’s inline type hierarchy
both to find out about a type hierarchy and then to nav-
igate between the members of that hierarchy. Similarly
the search features of Eclipse were used to initially find
a piece of information and then later to navigate back to
it.

The activity of navigating was sometimes simple and

direct; other times it was not. In a few rare cases, navi-
gation was really difficult because the programmers had
only a vague handle on the entity they wanted. In these
cases, a certain amount of re-exploration was needed to
complete the navigation. During session S6, the pro-
grammers wanted to navigate back to an entity they had
visited one minute prior, but had difficulty doing so;
“the class disappeared”[P5]. Eventually using the ed-
itor tab list, after about thirty seconds of effort, they re-
found the entity of interest. At one point during session
S11 the participants completely abandoned the effort to
navigate back to a previously visited entity;“do you re-
member in that stack trace of the exception where the
method was that was sort of doing that save?”[P2].

5 Study Implications

The participants in our study found the assigned
tasks challenging. Many participants expressed a feel-
ing of having made little progress during a session or
specific parts of a session;“waffled around” [S2/P1];
“we ended up going in circles for a long time”[S6/P2];
“we seemed to be spinning our wheels a bit”[S11/P2];
“I am not sure what we did in terms of progress”
[S12/P6]. In Section 5.1, based on our observations
from the previous section, we highlight what we be-
lieve to be five important challenges the programmers
faced in performing these tasks. In Section 5.2, build-
ing on our observations and the challenges identified,
we present four suggestions for development tools that
we believe may help programmers performing change
tasks as newcomers.

5.1 Challenges

Gaining a sufficiently broad understanding.The par-
ticipants struggled with gaining a sufficiently broad un-
derstanding of the relevant entities and relationships in
the code base to correctly complete the task (see Obser-
vations 2, 5 and 6).

Cognitive overload.At times the amount of informa-
tion that needed to be understood exceeded the amount
that the programmers could manage mentally, causing
cognitive overload [5]. To compensate, the program-
mers avoided looking at more detail than necessary and
tried to minimize the amount of information that they
attempted to understand (see Observations 2 and 4). Be-
haviors such as drawing diagrams and taking notes can
be seen as an attempt to bridge local views to generate a
more global understanding (see Observation 6) without
relying on memory.

Navigation. Participants frequently navigated be-
tween entities that they had already visited (see Ob-

servation 8). Deline et al. believe that issues related
to navigation and re-finding detract from programmers
quickly accomplishing their tasks [2]. We hypothesize
that when navigation is not direct additional cognitive
effort is required of programmers, more pressure is put
on working memory and developing a complete under-
standing is made more difficult.

Making and relying on false assumptions.Diffi-
culties around unchecked false assumptions were pre-
sented in Observation 7. We believe participants made
and failed to check false assumptions for at least three
different reasons: (1) they misunderstood information
they observed, (2) checking the information was diffi-
cult due to tool usage issues (see Observations 1 and
5) and (3) assumptions were not explicitly formulated
as hypotheses that needed to be checked. Similar to
Robillard et al., we found that relevant information is
typically discovered only when deliberately searched
for, which we believe allows false assumptions to con-
tinue [9].

Ineffective use of tools.Programmers varied in their
use of tools. For example, some programmers made ef-
fective use of the debugger (see Observation 5) while
others did not and as a consequence missed opportuni-
ties to directly discover information that they were try-
ing to find. We also observed participants who did not
understand the tools provided, such as being unsure of
how to interpret search results (Observation 5), and who
made less effective use of a particular tool, such as ses-
sion S2 in which the participants could have used the
type hierarchy viewer to externalize more relevant in-
formation.

5.2 Tool Implications

The goals of the participants and the success that
they had in achieving those goals were heavily influ-
enced by their use of available tools. Some of the is-
sues about inadequate or inappropriate tool usage could
possibly be remedied by training or by making the ex-
isting tools easier to learn and understand. We believe
others can only be addressed by tools that more effec-
tively support the activities we observed in our study.
We present four suggestions of tools to help support
some of these activities.

Using history. Tools that support a programmer in
working with the history of their actions—for exam-
ple, a notion of a visited entity or relationship—could
be beneficial. This support could be an awareness of
what has been visited, perhaps including some analy-
sis to judge which entities and relationships are relevant
and irrelevant. Support to easily navigate to entities pre-
viously visited might also be helpful.

Higher-level queries. Query tools that match the
questions underlying a programmer’s goals may help
significantly. Several questions we observed program-
mers asking could not be easily answered with the tools
they were using: how are two types related, how are
two different object types handled differently by a set of
methods, where a given object is accessed and how cer-
tain view elements map to model elements in a model-
view framework.

Differentiating results. When a query returned a
large number of results, such as a type hierarchy show-
ing a large number of classes, the programmers were
reluctant to investigate them and it was not always clear
how to appropriately refine the query (see Observation
5). Some means of differentiating results, possibly by
categorizing them, ordering (or emphasizing) them by
relevance, or making the result view history aware, may
help a programmer address this problem.

Synthesized views.Our results suggest that a view
that shows more information simultaneously includ-
ing multiple relationship types may help programmers
build a more accurate and comprehensive mental model.
Such a view may also help correct false assumptions.

6 Study Limitations

The use of pairs in our study likely impacted the
change process we observed. We chose this approach
to encourage a verbalization of thought processes and
to gain insight into the intent of actions performed. An
alternative approach to getting similar kinds of informa-
tion is to have single participants think-aloud [15]. Of
these two approaches, we believe, having participants
work in pairs is more natural. Comparing the behav-
ior we observed in our study with our own experience
changing software systems and with the results of previ-
ous single programmer research studies (e.g., [6]) gives
us a level of confidence that we have not greatly altered
the process.

Our results are also impacted by the decision to
choose change tasks that could not be completed within
the allotted time, and tasks that involved modifications
across multiple parts of the system. We chose com-
plex tasks to stress realism and to stress the investiga-
tion of non-local unfamiliar code, a common task faced
by newcomers to a system, and experienced by pro-
grammers working on changes that escape the immedi-
ate area of the code for which they have responsibility.
We believe this trade-off was reasonable given the ex-
ploratory nature of our investigations. However, the im-
plications we discuss must be interpreted in the context
in which they were observed, and may not generalize to
dissimilar situations.

7 Summary

In our observational study of how programmers
manage change tasks we found that they were heavily
influenced by the tools provided by the development en-
vironment. As programmers explored the source code
looking for relevant source code entities and relation-
ships they needed to take their goals and decompose
them into sub-goals that could be directly supported
by the available tools. This translation was not always
straightforward and many goals required a significant
amount of exploration using a range of tools. We also
observed other challenges with identifying and under-
standing code relevant to the task.

Our findings suggest several potential research direc-
tions for development tools to better support the pro-
cess of making changes to source code. Possible di-
rections include: tools that leverage the history of the
programmer’s actions, tools that more closely match the
questions a programmer needs to answer, different tech-
niques for differentiating information such as search re-
sults, and views that synthesize more information for
programmers.

8 Acknowledgements

The authors are grateful to Mik Kersten and Brian
de Alwis for their valuable comments. This research
was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

[1] R. E. Brooks. Towards a theory of the comprehension
of computer programs.International Journal of Man-
Machine Studies, 18(6):543–554, 1983.

[2] R. DeLine, A. Khella, M. Czerwinski, and G. Robert-
son. Towards understanding programs through wear-
based filtering. InProceedings of ACM 2005 Sympo-
sium on Software Visualization, pages 183–192. ACM,
2005.

[3] N. V. Flor and E. L. Hutchins. Analyzing distributed
cognition in software teams: A case study of team pro-
gramming during perfective software maintenance. In
Proceedings of the Empirical Studies of Programmers:
Fourth Workshop, pages 36–64. Ablex Publishing Cor-
poration, 1991.

[4] B. G. Glaser and A. L. Strauss.The Discovery of
Grounded Theory: Strategies for Qualitative Research.
Aldine Publishing, 1967.

[5] G. S. Halford, R. Baker, J. E. McCredden, and J. D.
Bain. How many variables can humans process?Psy-
chological Science, 16(1):70–76, January 2005.

[6] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting de-
sign requirements for maintenance-oriented IDEs: A

detailed study of corrective and perfective maintenance
tasks. InProceedings of the International Conference
on Software Engineering (ICSE), pages 126–135. ACM
Press, 2005.

[7] N. Miyake. Constructive interaction and the iterative
process of understanding.Cognitive Science, 10:151–
177, 1986.

[8] S. P. Robertson, E. F. Davis, K. Okabe, and D. Fitz-
Randolf. Program comprehension beyond the line. In
Proceedings of the IFIP TC13 third international con-
ference on human-computer interaction, pages 959–
963. ACM, 1990.

[9] M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: An ex-
ploratory study.IEEE Transactions on Software Engi-
neering, 30(12):889–903, 2004.

[10] B. Shneiderman.Software Psychology: Human Factors
in Computer and Information Systems. Winthrop Pub-
lishers Inc., 1980.

[11] S. E. Sim and R. C. Holt. The ramp-up problem in
software projects: a case study of how software im-
migrants naturalize. InProceedings of the 20th Inter-
national Conference on Software Engineering (ICSE),
pages 361–370. IEEE Computer Society, 1998.

[12] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An
examination of software engineering work practices. In
Proceedings of CASCON’97, pages 209–223, 1997.

[13] M.-A. Storey, F. Fracchia, and H. Muller. Cognitive
design elements to support the construction of a men-
tal model during software exploration.Journal of Soft-
ware Systems, special issue on Program Comprehen-
sion, 44(3):171–185, 1999.

[14] A. L. Strauss and J. Corbin.Basics of Qualitative
Research: Techniques and Procedures for developing
Grounded Theory. Sage Publications, 1998.

[15] M. W. van Someren, Y. F. Barnard, and J. A. Sandberg.
The Think Aloud Method; A Practical Guide to Mod-
elling Cognitive Processes. Academic Press, 1994.

[16] A. von Mayrhauser and A. M. Vans. Comprehension
processes during large scale maintenance. InProceed-
ings of the International Conference on Software Engi-
neering (ICSE), pages 39–48. IEEE Computer Society,
1994.

[17] A. von Mayrhauser and A. M. Vans. Program com-
prehension during software maintenance and evolution.
IEEE Computer, 28(8):44–55, 1995.

[18] A. Walenstein. Theory-based cognitive support anal-
ysis of software comprehension tools. InProceedings
of the International Workshop on Program Comprehen-
sion, pages 75–84. IEEE Computer Society, 2002.

[19] L. Williams, R. R. Kessler, W. Cunningham, and R. Jef-
fries. Strengthening the case for pair-programming.
IEEE Software, 17(4):19–25, 2000.

[20] J. Zhang. The nature of external representations in prob-
lem solving.Cognitive Science, 21(2):179–217, 1997.

