
Questions Programmers Ask
During Software Evolution Tasks

Jonathan Sillito, Gail C. Murphy and Kris De Volder
Department of Computer Science

University of British Columbia
Vancouver, B.C. Canada

{sillito,murphy,kdvolder}@cs.ubc.ca

ABSTRACT
Though many tools are available to help programmers working on
change tasks, and several studies have been conducted to under-
stand how programmers comprehend systems, little is known about
the specific kinds of questions programmers ask when evolving a
code base. To fill this gap we conducted two qualitative studies
of programmers performing change tasks to medium to large sized
programs. One study involved newcomers working on assigned
change tasks to a medium-sized code base. The other study in-
volved industrial programmers working on their own change tasks
on code with which they had experience. The focus of our anal-
ysis has been on what information a programmer needs to know
about a code base while performing a change task and also on how
they go about discovering that information. Based on this analysis
we catalog and categorize 44 different kinds of questions asked by
our participants. We also describe important context for how those
questions were answered by our participants, including their use of
tools.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments; D.2.7
[Software Engineering]: Distribution, Maintenance, and Enhance-
ment

General Terms
Experimentation

Keywords
Change tasks, development tools, program comprehension, soft-
ware evolution, empirical study, grounded theory

1. INTRODUCTION
What does a programmer need to know about a code base when

performing a change task to a software system? How does a pro-
grammer go about finding that information? Many theories have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

been proposed to describe how programmers may comprehend sys-
tems (e.g., [23]) and a range of tools have been built to help pro-
grammers with change tasks, such as program databases to answer
questions about reference relationships between program elements
(e.g., [20]). However, surprisingly little is known about the specific
questions asked by programmers as they work on realistic change
tasks, and how they use tools to answer those questions.

We are aware of only a small amount of existing work that con-
siders in detail the questions that programmers ask. Erdos and
Sneed propose seven kinds of questions programmers must answer
while performing a change task based on their personal program-
ming experience [3]. Letovsky presents a taxonomy of questions
he observed programmers ask while performing change tasks [11].
Johnson and Erdem studied questions asked to experts on a news-
group [7].

To provide a more comprehensive and empirically based set of
questions that programmers ask during a change task, we under-
took two qualitative studies. In each of these studies we observed
programmers making source changes to medium (around 20,000
lines of code) to large-sized (over one million lines of code) code
bases. The first study was carried out in a laboratory setting with
programmers who were new to the code base on which they were
asked to work. Some details of this study along with some initial
observations were reported previously [15]. This earlier report does
not contain an analysis of the particular questions asked by partic-
ipants, which is a main focus of this paper. The second study was
carried out in an industrial work setting with programmers work-
ing on code with which they were already familiar. We have used a
grounded theory [5, 19] approach to analyze the results from these
studies, focusing on the questions that the participants asked as well
as their behavior around answering those questions. Our analysis
has also considered how they used programming tools in their work
on the tasks.

This paper makes two key contributions. The first is an empiri-
cally based catalog of the 44 types of questions asked by the par-
ticipants of the two studies. We have placed these questions into
four categories based on the kind of information needed to answer
a question: one category groups questions aimed at finding initial
focus points, another groups questions that build on initial points,
another groups questions that build a model of connected informa-
tion, and the final category groups questions that integrate across
models built from the previous category. To our knowledge this is
the most comprehensive such list published to date.

The second contribution stems from observations about the con-
text in which questions were asked and answered. We observed
that many of the questions asked were closely related, with some
lower-level questions being asked as part of answering higher-level
questions. We also observed that the questions a participant asked

often mapped imperfectly to questions that could be answered di-
rectly using the available tools. Participants, at times, needed to
combine result sets or other information from multiple tools to an-
swer their questions. We believe, an understanding of this process
of moving from questions to answers provides important context
for tool research and design. There is an opportunity to go beyond
designing tools to answer a particular kind of question, to design-
ing tools to support programmers more effectively throughout the
change process.

We begin with a comparison of our studies to earlier work (Sec-
tion 2). We then describe our research approach and the setup de-
tails for each study (Section 3). Next we describe the questions we
observed (Section 4) and issues around answering those questions
(Section 5). We then discuss the implications of those results (Sec-
tion 6), provide a discussion of the limitations of our studies and
provide suggestions for follow-up studies (Section 7). We end with
a summary (Section 8).

2. RELATED WORK
Various models of program comprehension have been proposed

including the top-down model [16], the bottom-up model [13] and
the integrated metamodel [22]. These models focus on describing
a programmer’s mental representation of a program and the cogni-
tive processes and information structures used to form that mental
representation. Other work has attempted to use these models or
theories to inform tool design. For example, Storey et al. develop a
hierarchy of cognitive issues to be considered during the design of
a software exploration tool [17].

Our work takes a different approach to influencing the design
of tools and we believe our results are complementary to work in
the area of program comprehension. In particular we aim to use
qualitative studies to fill in details around the specific questions
programmers ask and how they use tools to answer those questions.
We believe these details provide an important connection between
program comprehension theories and programming tool research
and design.

In this section we provide comparisons of our work with pre-
vious work considering questions asked by participants (see Sec-
tion 2.1) studies about programming tool use (see Section 2.2).

2.1 Analysis of Questions
Letovsky presents observations of programmer activities around

asking a question, conjecturing an answer and then possibly search-
ing through the code and documentation to verify the answer (i.e.,
the conjecture) [10, 11]. He reports on five kinds of conjectures:
why conjectures (questioning the role of a piece of code), how con-
jectures (about the method for accomplishing a goal), what con-
jectures (what is a variable or function), whether conjectures (con-
cerned with whether or not a routine serves a given purpose) and
discrepancy conjectures (questioning perceived discrepancies). The
data for Letovsky’s taxonomy is from a study of six programmers
working on assigned change tasks to a very small program compris-
ing approximately 250 lines of code. In contrast, we aim to develop
a more comprehensive list of questions and we aim to do this based
on much larger systems, a range of tasks and in the context of the
tools available today.

Erdos and Sneed suggest, based on their personal experience,
that seven questions need to be answered for a programmer to main-
tain a program that is only partially understood: (1) where is a par-
ticular subroutine/procedure invoked? (2) what are the arguments
and results of a given function? (3) how does control-flow reach a
particular location? (4) where is a particular variable set, used or
queried? (5) where is a particular variable declared? (6) where is

a particular data object accessed? and (7) what are the inputs and
outputs of a module? [3]. Our work aims to produce a more com-
prehensive list of questions based on empirical results from a range
of participants rather than from our personal experience. Our work
also aims to consider higher-level questions than those Erdos and
Sneed discuss.

Johnson and Erdem extracted and analyzed questions posted to
Usenet newsgroups [7]. They classify these questions as goal-
oriented (requested help to achieve task-specific goals), symptom-
oriented (why something is going wrong) and system-oriented (re-
quested information for identifying system objects or functions).
By basing this work on newsgroup postings they consider ques-
tions asked to experts and they point out that “newsgroup members
may have been reluctant to ask questions that should be answerable
by examining available code and documentation” [8, page 59]. Our
goal has been to identify questions asked during such an examina-
tion.

Erdem et al. also analyzed questions from the Usenet study just
mentioned along with questions from a survey of the literature (in-
cluding the work described above) to develop a model of the ques-
tions that programmers ask [2]. In their model, a question is repre-
sented based on its topic (the referenced entity), question type (ver-
ification, identification, procedural, motivation, time or location)
and the relation type (what sort of information is being sought).
Again, our aim has been to produce a more comprehensive list of
questions, including questions at a higher-level than those captured
in this work.

Herbsleb and Kuwana report on an empirical study of questions
asked by software designers during real design meetings in three
organizations [6]. They report on the types of questions asked by
their participants as well as how frequently each of those questions
were asked. Our approach is similarly empirically based. However
we focus on questions asked while performing a change task to a
system, rather than questions asked during design meetings for a
new system.

2.2 Studies of Tool Use
Storey et al. carried out a user study focused on how program

understanding tools enhance or change the way that programmers
understand programs [18]. In their study thirty participants used
various research tools to solve program understanding tasks on a
small system. Based on these results they suggest that tools should
support multiple comprehension strategies (top-down and bottom-
up, for example) and should aim to reduce cognitive overhead dur-
ing program exploration. In contrast to our work, the Storey et al.
study does not attempt to analyze specifically what programmers
need to understand.

Three more recent studies have focused on the use of current de-
velopment environments (as do our studies). Robillard et al. char-
acterize how programmers who are successful at maintenance tasks
typically navigate a code base [14]. Deline et al. report on a forma-
tive observational study also focusing on navigation [1]. Our work
differs from these in considering more broadly the process of ask-
ing and answering questions, rather than focusing exclusively on
navigation. Ko et al. report on a study in which Java programmers
used the Eclipse development environment to work on five main-
tenance tasks on a small program [9]. Their intent was to gather
design requirements for a maintenance-oriented development envi-
ronment. Our studies differ in focusing on more realistic situations
involving larger code bases, and more involved tasks. Our analy-
sis differs in that we aim specifically to understand what questions
programmers ask and how they answer those questions.

3. STUDY METHOD
This paper reports on a first study carried out in a laboratory

setting and a second study carried out in an industrial work setting.
Both were observational studies to which we applied qualitative
analyses. The participants in the first study (N1. . . N9) we refer to
as newcomers as they were working on a code base that was new to
them. Participants in the second study (E1. . . E16) were observed
working on code with which they had experience. In both studies
the participants were told that the experiment aimed to “learn how
programmers manage change tasks.” They were not told that the
questions asked as they performed the change task would be of
particular interest. Details of each of these studies are presented in
Section 3.1 and 3.2.

To structure our data collection and the analysis of our results, we
have used a grounded theory approach which has been described as
an emergent process intended to support the production of a theory
that “fits” or “works” to explain a situation of interest [5, 19]. In
this approach, data collection, coding and analysis do not happen
strictly sequentially, but are overlapping activities. As data is re-
viewed and compared, important themes or ideas emerge (called
categories) that help contribute to an understanding of the situa-
tion. As categories emerge, further selective sampling and adaptive
coding can be performed to gather more information, often with a
focus on exploring variation within those categories. Further anal-
ysis aims to organize and understand the relationships between the
identified categories, possibly producing higher-level categories in
the process.

In our case the primary source of data was audio recordings made
during study sessions as well as field notes and some video data.
Our analysis was an iterative process of discovering questions in the
data and exploring similarities, connections and differences among
those questions. In the process we found that many of the questions
asked were roughly the same, except for minor situational differ-
ences, so we developed generic versions of the questions, which
slightly abstract from the specifics of a particular situation and code
base. In analyzing those generic questions we found that many of
the similarities and differences could be understood in terms of the
amount and type of information required to answer a given ques-
tion. This observation became the foundation for the categorization
of the questions. We describe these questions and categories in de-
tail in Section 4. This analysis process was similarly applied to
the activities we observed around answering questions. In this way
we found relationships between some of the questions, including
question and sub-question relationships. We also observed impor-
tant issues for our participants in using the available tools to answer
their questions. We describe these issues further in Section 5.

3.1 Study 1
The first study was carried out in a laboratory setting. In this

study, pairs of programmers performed change tasks on a moder-
ately sized open source system assigned by the experimenter (the
first author of this paper). We choose to study pairs of program-
mers because we believed that the discussion between the pair as
they worked on the change task would allow us to learn what infor-
mation they were looking for and why particular actions were being
taken during the task, similar to earlier efforts (e.g., [4] and [12]).

We carried out a total of twelve sessions. In each session two
participants performed an assigned task as a pair working side-by-
side at one computer, using the Eclipse Java Development Envi-
ronment1 (version 3.0.1) which is a widely used integrated devel-
opment environment. Following the terminology of Williams et al.

1http://www.eclipse.org, last verified July 2006

Table 1: Session number (SN), driver and observer for each
session of the first study.

SN Driver Obs. SN Driver Obs.

1.1 N7 N3 1.7 N3 N1
1.2 N4 N1 1.8 N7 N5
1.3 N4 N7 1.9 N8 N6
1.4 N6 N4 1.10 N8 N2
1.5 N5 N3 1.11 N9 N2
1.6 N5 N2 1.12 N9 N6

[25], we use the term “driver” for the participant assigned to control
the mouse and keyboard and “observer” for the participant working
with the driver. In most sessions, the least experienced programmer
was asked to be the driver. This choice was intended to encourage
the more experienced programmer to be explicit about their inten-
tions. The pairings are summarized in Table 1. In the course of this
study we observed different pairings working on the same change
task, as well as participants working in different pairings.

All nine participants were computer science graduate students
with varying amounts of previous development experience, includ-
ing experience with the Java programming language. Participants
N1, N2 and N3 had five or more years of professional development
experience. Participants N4, N5 and N6 had between two and five
years of professional development experience. Participants N7, N8
and N9 had no professional development experience, but did have
one or more years of programming experience in the context of
academic research projects. All participants had at least one year
of experience using Eclipse for Java development; all except N4
and N9 had two or more years. All participants in this study were
initially newcomers to the code base used.

In each session, the programming pair was given forty-five min-
utes to work on a change task. The tasks assigned to participants
were all enhancements or bug fixes to the ArgoUML2 code base
(versions 0.9, 0.13 and 0.16). ArgoUML is an open source UML
modeling tool implemented in Java. It comprises roughly 60KLOC.
The tasks were complex, completed tasks chosen from ArgoUML’s
issue-tracking system (issues 484, 1021, 1622 and 2718). We did
not expect that the participants would be able to complete the tasks
in the time allotted, but we believed that they would be able to
make significant progress. Participants were asked to accomplish
as much as possible on the assigned task, but not to be concerned
if they could not complete the task. Participants were stopped after
the forty-five minutes elapsed regardless of how much progress had
been made. No effort was made to quantify how much of the task
had been completed. In four of the sessions (sessions 1.4, 1.7, 1.11
and 1.12) participants were asked to work on the same task that
they had worked on in a previous session, allowing us to gather
data about later stages of work on the task.

During each session an audio recording was made of discussion
between the pair of participants, a video of the screen was captured,
and a log was made automatically of the events in Eclipse related
to navigation and selection. At the end of the session the experi-
menter, who was present during each session, briefly interviewed
the participants about their experience. The interviews were infor-
mal and focused on the challenges faced by the pair, their strategy,
how they felt about their progress and what they would expect to do
if they were continuing with the task. An audio recording of each
interview was made.

2http://argouml.tigris.org, last verified July 2006

Table 2: Session number (SN), participant(s) (Part.) and the
primary programming languages and tools for each session of
the second study.

SN Part. Primary languages/tools

2.1 E1 C++, TCL/Emacs, DDD, Virtual desktops
2.2 E2 C++, TCL/Emacs (split window)
2.3 E3 C#, XSLT/Visual Studio, BizTalk Orchestra-

tion
2.4 E4 C#/Visual Studio, BizTalk Orchestration
2.5 E5 C#, ASP/Visual Studio
2.6 E6,E7 C#, ASP/Visual Studio, NetMeeting
2.7 E8 Java/Netbeans
2.8 E9 SQL, MDX/Enterprise Manager, Query Ana-

lyzer, etc
2.9 E10 C++, Batch/Notepad, Visual Studio
2.10 E11 C/Proprietary loading and debugging tools

(embedded)
2.11 E12 C, C++/Visual Studio (two instances)
2.12 E13 HTML/UltraEdit, Proprietary Document

Manager
2.13 E14 C/Emacs (split window)
2.14 E15 XML, Java/VIM (two instances)
2.15 E16 C/VI (two instances), GDB

3.2 Study 2
We carried out a second study with 16 programmers in an in-

dustrial setting. In this study we studied individual programmers
working alone (rather than in pairs) because that was their normal
work situation. The one exception was participants E6 and E7 who
were accustomed to working together and who participated in the
same session, as they normally would work. Each of these sessions
(numbered 2.1 to 2.15) is summarized in Table 2. A brief descrip-
tion of each of these tools is provided in the appendix.

Participants were observed as they worked on a change task to
a software system for which they had responsibility. The systems
were implemented in a range of languages and during the sessions
the participants used the tools they would normally use. For exam-
ple participant E1 worked on a C++ and TCL code base using tools
such as Emacs and DDD, while E3 worked on a C# and XSLT code
base using Visual Studio.

We asked each participant to select the task on which they worked
to ensure that the tasks were realistic and because we were in-
terested in observing programmers working on a range of change
tasks. The participants were asked, in advance of each session, to
select a task that would be “involved, not a simple local fix”. Be-
yond that no guidance was given. In each session the participant
was asked to describe their task selection and then to spend about
thirty minutes working on that task. They were asked to think-
aloud while working on the task [21]. After thirty minutes the
experimenter (same as for the first study) interviewed the partici-
pant about the session. The interviews were informal and focused
on the challenges faced and their use of tools. An audio recording
was made and field notes were taken during each session, including
during the interview portions of the sessions.

4. RESULTS
Our analysis has focused on the questions our participants asked

about the source code on which we observed them working. We
report on 44 kinds of questions we observed our participants ask-
ing. These questions are generalized versions of the specific ques-

tions asked by our participants. For example, N4 asked the question
“How does [MAssociation] relate to [FigAssociation]?” which is
reported below as How are these types or objects related? (see
question 22). As participants were not always explicit about their
questions, in some cases we inferred an implicit question based on
their actions and comments.

We organize the discussion of these questions around four cate-
gories: questions about finding initial focus points, questions about
building on such points, questions aimed at understanding a sub-
graph, and questions over multiple subgraphs. Considering a code
base as a graph of entities (methods and fields, for example) and
relationships between those (references and calls, for example), to
answer any given question requires considering some subgraph of
the system. The properties of that subgraph are the basis for our cat-
egorization as illustrated in Figure 1. Questions in the first category
are about discovering an initial entity in the graph. Questions in the
second category are about a given entity and other entities directly
related to it. Questions in the third category are about understand-
ing a number of entities and relationships together. Questions in
the final category are over such connected groups; how they relate
to each other or to the rest of the system, for example.

Although other categorizations of the questions are possible, we
have selected this categorization for three reasons. First, the cate-
gories show the types and scope of information needed to answer
the given questions. Second, they capture some intuitive sense of
the various levels of questions asked. Finally, the categories make
clear various kinds of relationships between questions, as well as
certain challenges in answering questions as described in Section 5.

The order in which we present the categories is not representative
of how the questions were necessarily asked. In fact we observed
that participants often jumped around between various activities or
explorations, at times leaving questions only partially answered,
sometimes forgetting what they had learned (“Did we look at MAs-
sociation? What was that?” (N4)), sometimes abandoning an ex-
ploration path and beginning again (“I guess we’re on the wrong
track there. Where is the earliest place we know that we can set a
break point?” (N2)) and sometimes returning to previous questions
(“I am still kind of curious. . . ” (N1)).

4.1 Finding Initial Focus Points
One category of questions asked by our participants, the new-

comers from the first study in particular, focused on finding initial
points in the code that were relevant to the task. The participants
in the first study naturally began a session knowing little or nothing
about the code and often they were interested in finding any “start-
ing point” (N9). Such questions were asked at the beginning of
sessions, but also as participants began to explore a new part of the
system or generally needed a new starting point. These are perhaps
similar to what Wilde and Casey call “places to start looking” [24].

These questions were at times about finding methods or types
that correspond to domain concepts: “I want to try and find the
extends relationship [i.e., a concept from the domain of UML edi-
tors]” (N5). Similarly there were questions about finding code cor-
responding to UI elements or the text in an error message: “What
object refers to this actual [UI text]?” (N7). The following is a
summary of the types of questions asked in this category. Each
question is followed by a list of the sessions in which we observed
it being asked.

1. Which type represents this domain concept or this UI ele-
ment or action? (1.1 1.2 1.3 1.5 1.6 1.7 1.8)

2. Where in the code is the text in this error message or UI
element? (1.5 1.9)

Finding initial focus
points

Building on those
points

Understanding a
subgraph

Questions over groups
of subgraphs

5 kinds of questions.

For example: Which type
represents this domain
concept?

15 kinds of questions.

For example: Which types is
this type a part of?

13 kinds of questions.

For example: What is the
behavior these types provide
together?

11 kinds of questions.

For example: What is the
mapping between these UI
types and these model
types?

Figure 1: An overview of the four categories of questions asked by our participants. Each is illustrated by a diagram depicting source
code entities along with connections between those entities.

3. Where is there any code involved in the implementation of
this behavior? (1.1 1.2 1.3 1.5 1.6 1.10 1.11 2.11)

4. Is there a precedent or exemplar for this? (1.1 1.10 1.12 2.6
2.14 2.15)

5. Is there an entity named something like this in that unit (for
example in a project, package or class)? (1.1 1.2 1.4 1.5 1.6
1.10)

To answer these questions our participants often used text-based
searches or Eclipse’s Open Type Tool, which allows programmers
to find types (classes or interfaces) by specifying a name or part of
a name. For example, E16 used grep from the command line to find
an exemplar for what she needed to do. On the other hand, ques-
tions like question 5 were less amenable to text-based searches,
because the participants often had only a general idea of the sort
of name for which they were looking. Instead scrolling/scanning
through code or overviews (for example, Eclipse’s Package Ex-
plorer, which provides a tree view of the packages and classes in a
system) was used. At times the number of search results or candi-
dates otherwise identified was quite large and a fundamental ques-
tion that needed to be answered was what is relevant?

In several sessions, the debugger was used to help answer ques-
tions of relevancy. Participants set break points in candidate loca-
tions (without necessarily first looking closely at the code) and run-
ning the application in debug mode to see which, if any, of those
break points were encountered during the execution of a given fea-
ture. If none were encountered, this process was repeated with new
candidate points. N6 explained his use of the debugger: “I thought
maybe these classes are not even relevant, even though they look
like they should be. So I get confidence in my hypothesis, just that I
am on the right track” (N6).

4.2 Building on Those Points
A second category of questions were about building from a given

entity believed to be related to the task, often by exploring re-
lationships. For example after finding a method relevant to the
task, N3 asked the following sequence of questions: “What class
is this [in]?”; “What does it inherit from?”; “Now where are these
NavPerspective’s [i.e., a type] used?”; and then “What [container]
are they put into?”. With these kinds of questions the participants
aimed to learn more about a given entity and to find more informa-
tion relevant to the task.

A B

Figure 2: A depiction of two observed patterns of questions:
(A) multiple questions about the same entity, and (B) a series
of questions where each subsequent question is about a newly
discovered entity.

Sometimes we observed a series of questions about the same en-
tity, forming a star pattern as depicted in part A of Figure 2 (show-
ing source code entities and connections between entities). At other
times we observed a series of questions where each subsequent
question started from an entity discovered as an answer to a pre-
vious question, forming a linear pattern as depicted in part B of
Figure 2.

Some questions in this category were questions about types, in-
cluding questions about the static structure of types: “Are there
any sibling classes?” (N3); or “What is the type of this object?”
(E16). The following summarizes these kinds of questions along
with a list of the sessions during which each question was asked.

6. What are the parts of this type? (1.2 1.5 1.6 1.7 1.8 1.10 1.11
2.15)

7. Which types is this type a part of? (1.2 1.5)

8. Where does this type fit in the type hierarchy? (1.1 1.2 1.3
1.5 1.6 1.12)

9. Does this type have any siblings in the type hierarchy? (1.5
1.11)

10. Where is this field declared in the type hierarchy? (1.5 1.7)

11. Who implements this interface or these abstract methods?
(1.5 1.6 1.7 1.10)

Other questions in this category focused on discovering entities
and relationships that capture incoming connections to a given en-
tity, such as “Let’s see who sends this” (N1); “So where does that
method get called, can you look for references?” (N2); and “Who
is using the factory?” (N4).

12. Where is this method called or type referenced? (1.1 1.2 1.3
1.4 1.5 1.6 1.7 1.8 1.10 1.11 1.12 2.1)

13. When during the execution is this method called? (1.2 1.4
1.5 2.15)

14. Where are instances of this class created? (1.2 1.5 1.7 1.8
1.10)

15. Where is this variable or data structure being accessed? (1.4
1.5 1.6 1.7 1.12 2.1 2.8 2.14)

16. What data can we access from this object? (1.8 2.15)

Questions 12 and 13 are similar in that both may be about a call
to a particular method. The distinction is that with 12 the partici-
pant is asking for all callers, while with 13 the participant is asking
about a particular caller, such as might be discovered by looking at
the call stack in a debugger.

Finally, there were also questions around outgoing connections
from a given entity, many of which were aimed at learning about
the behavior of that entity, including questions about callees and
arguments (“I wonder what [this argument] is?” (N1)).

17. What does the declaration or definition of this look like? (1.2
1.5 1.8 1.10 1.11 2.1 2.11 2.13 2.15)

18. What are the arguments to this function? (1.2 1.3 1.4 1.5 1.7
1.8 1.10 1.11 1.12)

19. What are the values of these arguments at runtime? (1.4 1.9
1.12 2.15)

20. What data is being modified in this code? (1.6 1.11)

Many questions in this category could be answered directly with
the tools available. For example the question “how it is that I reach
it” (N6) (see question 13) was answered using the call stack viewer
in the debugger. Others could be approximated with the available
tools. For example the question “What classes have MEvents as
fields?” (N3) (see question 7) could be approximated by a refer-
ences search. In cases like these, and also for questions about con-
nections involving polymorphism, inheritance events and reflection
(“They are making it so convoluted, with all the reflection” (N6)),
the results were more noisy and more difficult to interpret. In some
cases participants were able to switch tools or otherwise refine their
use of tools to get a more precise answer. For example, “maybe I
can filter this a bit more, so we get less records” (E9).

4.3 Understanding a Subgraph
A third category of questions were about building an understand-

ing of concepts in the code that involved multiple relationships and
entities. Answering these questions required the right details as
well as an understanding of the overall structure of the relevant sub-
graph: “We really have to get a good understanding of the whole”
(N3). This need is expressed in a comment by participant N6 that
exposes a desire to understand the results of several searches to-
gether: “I was starting to forget who was calling what, especially
because there is only one search panel at a time that I can see”
(N6).

To see the distinction between this category and the one just de-
scribed, consider questions 6 (What are the parts of this type?)
and 7 (Which types is this type a part of?) from the previous cat-
egory and question 22 (How are these types or objects related?)
included as part of the category described in this section. Ques-
tions 6 and 7 are about direct relationships to a particular source
code entity, while question 22 is similar but requires considering a
subgraph of the system together.

Some questions in this category were aimed at understanding
certain behavior (“We could trace through how it does it’s work”
(N1)) and the structure of specific parts of the code base (“I thought
it would tell me something about the structure of the model” (N6)).
Some of the questions around these issues aimed at understanding
“why” things were the way they were and what the logic was be-
hind a given decomposition (“why they’re doing that” (E14)).

21. How are instances of these types created and assembled? (1.1
1.2 1.4 1.7 1.9 1.10 1.11 1.12)

22. How are these types or objects related? (whole-part) (1.2
1.10)

23. How is this feature or concern (object ownership, UI control,
etc) implemented? (1.1 1.2 1.4 1.7 1.11 1.12 2.1)

24. What in this structure distinguishes these cases? (1.2 1.12
2.8)

25. What is the behavior these types provide together and how is
it distributed over the types? (1.1 1.2 1.3 1.4 1.6 1.11 1.12
2.11)

26. What is the “correct” way to use or access this data structure?
(1.8 2.15)

27. How does this data structure look at runtime? (1.10 2.15)

Other questions in this category were about data and control-
flow. Note that these are not questions such as what calls this
method?, but instead were about the flow of control or data involv-
ing multiple calls and entities. For example: “How do I get this
value to here?” (E15).

28. How can data be passed to (or accessed at) this point in the
code? (1.5 1.6 1.8 1.12 2.14)

29. How is control getting (from here to) here? (1.3 1.4)

30. Why isn’t control reaching this point in the code? (1.4 1.9
1.12 2.1 2.10)

31. Which execution path is being taken in this case? (1.2 1.3
1.7 1.9 1.12)

32. Under what circumstances is this method called or exception
thrown? (1.3 1.4 1.5 1.9)

33. What parts of this data structure are accessed in this code?
(1.6 1.8 1.12)

We observed that to answer these questions, participants often re-
visited entities, repeating questions such as those described in Sec-
tions 4.1 and 4.2; “I forgot what we figured out from that” (N3); “I
want to have another look at this guy” (N8). Part of the issue is that
for a participant to see or discover relevant entities and relationships
individually was not always sufficient to mentally build an answer
to the questions in this category; “it gets very hard to think in your
head how that works” (E14). For example losing track of the tem-
poral ordering of method calls and of structural relationships that

they had already investigated was a source of confusion for the par-
ticipants in session 1.10; “Why is the name already set? Why is the
namespace null? We added that” (N2).

4.4 Questions Over Groups of Subgraphs
The fourth category of questions we observed in our studies in-

cludes questions over related groups of subgraphs. The questions
already described in Section 4.3 involved understanding a subgraph,
while the questions in this category involve understanding the rela-
tionships between multiple subgraphs, or understanding the inter-
action between a subgraph and the rest of the system. For example,
question 29 (How is control getting (from here to) here?) presented
above is about understanding a particular flow through a number of
methods, while question 34 presented in this section is about how
two related control-flows vary.

Questions around comparing or contrasting groups of subgraphs
included questions such as: “What do these things have that are
different than each other?” (N1); and “I am jumping between the
source and the header trying to compare what was moved out”
(E2). Several participants in the second study used split Emacs
windows (E2 and E14), multiple monitors (E12) or multiple win-
dows (E16), which seemed to help with answering these questions
around making comparisons: “So I can look at both files, edit both
of them without having to click from window to window” (E14);
“Using two monitors I can look at this source code as well as the
engine code itself without having to swap windows” (E12). With
these arrangements more (though not all) of the information that
they were comparing could be seen side by side. We also observed
questions about how two subgraphs were connected; such as ques-
tion 37, which was asked after participants had discovered various
user interface types and various model types and needed to under-
stand the connection between these two groups.

34. How does the system behavior vary over these types or cases?
(1.2 1.3 1.4)

35. What are the differences between these files or types? (1.2
2.1 2.2 2.13 2.15)

36. What is the difference between these similar parts of the code
(e.g., between sets of methods)? (1.7 1.8 1.10 1.11 2.6 2.11
2.14 2.15)

37. What is the mapping between these UI types and these model
types? (1.1 1.2 1.5)

Given an understanding of a number of structures, our partici-
pants asked questions around how to change those structures (see
questions 38 and 39, below). Specific examples include “As long as
we can figure out how to fit into the existing frame work, we should
be OK” (N3) and “How to sort of decouple it and add sort of an-
other layer of choice?” (N6). They also asked questions around de-
termining the impact of their (proposed) changes, including asking
questions around understanding how the structures of interest were
connected with the rest of the system; for example: “There’s a lot
of the interactions between the different modules that aren’t exactly
understood” (E10). One participant was guided in making changes
by the question “What’s the minimal impact to the source code I
[can] have?” (E12). Question 41 below was asked by participants
trying to determine whether or not their changes were correct.

38. Where should this branch be inserted or how should this case
be handled? (1.4 1.5 1.6 1.8 1.9 2.11 2.15)

39. Where in the UI should this functionality be added? (1.1 1.5
1.7 2.1)

40. To move this feature into this code what else needs to be
moved? (2.7 2.13)

41. How can we know this object has been created and initialized
correctly? (1.10 1.12)

42. What will be (or has been) the direct impact of this change?
(1.5 1.8 1.10 1.11 1.12 2.1 2.7 2.12 2.15)

43. What will be the total impact of this change? (1.7 2.1 2.3 2.4
2.5 2.9 2.11)

44. Will this completely solve the problem or provide the en-
hancement? (1.1 1.9 1.11 2.2 2.14)

5. QUESTIONS IN CONTEXT
To this point we have described specific kinds of questions asked

by our participants organized around the four categories summa-
rized in Figure 1. We have also described some behavior around
answering specific questions. This section aims to put these ques-
tions and activities into context by describing aspects of the ob-
served process of asking and answering questions. This process
is summarized in Figure 3. Specifically, we found three important
considerations. First, the interaction between a participant’s ques-
tions, with some questions being asked as part of answering other
questions (see Section 5.1). Second, the interaction between the
questions our participants asked and those that the available tools
could answer (see Section 5.2). Finally, taking the results produced
by the tools and using those to answer a participant’s intended ques-
tion (see Section 5.3). We end this discussion with a more detailed
anecdote from the second study that provides an overview of this
process and many of the issues raised (see Section 5.4).

5.1 Questions and Supporting Questions
We observed that many of the questions asked in our studies were

closely related. At times an answer to a higher-level question was
pursued by asking a number of other, lower-level questions. In fact
many of the lower-level questions (especially those from the sec-
ond category) were clearly in support of higher-level questions. For
example in session 1.4, the participants asked the question “What
classes are relevant?” (N6). This question was not directly sup-
ported by any of the tools available; instead the participants asked
several other questions around finding candidate classes and build-
ing on those results. As candidate classes were found, the partici-
pants set break points and ran the application to answer the question
“is this the thing” (N6). This process was repeated until several rel-
evant entities had been discovered. During the interview following
session 1.4 participant N6 described the process as exploration to
come up with a hypothesis (i.e., a candidate class) and then check-
ing that hypothesis.

On the other hand, the process we observed was not always ob-
viously driven by a higher-level question. At times the lower-level
questions were asked first. For example in session 1.2 the par-
ticipants began by asking various questions such as “Do you see
something that seems like a ‘name’?” (N1) and “Does [this type]
have a guard?” (N1). Answering these questions gave them var-
ious pieces of information about several relevant types and rela-
tionships. Only later did they ask questions such as “I am kind
of curious how this class integrates with this whole hierarchy”
(N1). While attempting to answer this question, one participant
expressed “I am getting lost in the details” (N1), where the de-
tails were lower-level questions and the answers to those. Though
in such cases the lower-level questions came first, they can still be

Supporting
questionSupporting

questionSupporting
question

Result set
Result set

Result set

Question Tool question
Tool question

Tool question

Tool supported questions
To answer their questions
participants select from a range
of available tools.

Results returned by tools
Result sets (often large and
containing false positives or
negatives) are used as part of
answering the original question.

Questions and supporting questions
Participants asked questions at a range of levels. Some lower-level
questions contributed to answering higher-level questions. At times
the higher-level question was articulated before the lower level
question, at other times it was the other way around.

Figure 3: An illustration of the process of using the tools available to answer questions about a software system. This figure depicts
the relationships between questions, supporting questions, tool questions and results from tools.

regarded as being in support of the higher-level questions. Answer-
ing these first questions produces information that both motivates
and helps answer the later questions.

5.2 Questions and Tools
In various ways participants used the tools available to them to

answer their questions. This mapping between questions and tools
was more successful in some situations than others. At times the
tools used answered a question somewhat different than the one
our participants were trying to answer. Wanting to know “Which
classes have MEvents as fields?” (N3), or as the other partici-
pant expressed it “So we want to see what kinds of things have
MEvents?” (N5), the participants in session 1.5 performed a refer-
ences search in Eclipse. The search returned 102 results (obviously
including more kinds of references than they had in mind), of which
they looked at only a few, before abandoning that line of inquiry.

Due to a mismatch between the participant’s intentions and the
questions supported by tools, the same approach could prove more
or less effective in various situations. For example, in session 1.2
the participants wanted to find a “representation of this transition
class” (N1). Using the Open Type tool in Eclipse they asked the
question which types have ‘transition’ in the name?, which worked
well. However, a similar approach failed for the participants in
session 1.3 who looked for types with ‘association’ in the name,
because the list was large and provided no way for the participants
to differentiate the results (i.e., no information in the result list in-
dicated what was relevant).

At other times the participants appeared to choose a tool or an
approach that was not optimal. For example, in session 1.12 the
participants spent several minutes reading code trying to figure out
the flow of data in a pair of methods and in particular the value of
one of the variables (“So [variable 1] is [variable 2] once you’ve
parsed out the guard and the actions?” (N6)). This was time con-
suming and by the end of their exploration they were left with in-
correct information. If they had used Eclipse’s debugger (which
was available to them) they could have very quickly and accurately
answered the question.

There were also times when there seemed to be no tool that could
provide much direct assistance. For example E2’s task was to do
a merge between two versions of a pair of files (a C++ source file
and header file). “The changes were overlapped enough that diff
is completely confused as to what parts should merge [. . .] It is
showing all these differences that are just in the wrong parts of the
code” (E2). The result was that he used a very manual approach
(using a split Emacs window) to answer his questions about what

areas to merge. This involved “jumping between the source and
the header trying to compare what was moved out and hoping that
the compiler will catch the syntax errors because of code that was
inserted improperly” (E2).

5.3 From Results to Answers
The lack of a direct mapping between the questions our partici-

pants pursued and the questions supported by tools (the tool ques-
tions might be “too general” (N7), for example) had a number of
consequences. One was that the results produced by tools were
often noisy when considered in the context of the questions being
asked by the participant. This is true even for tools that provide
no false positives relative to the questions that they are designed to
answer.

We observed that, at times, getting accurate answers to a num-
ber of questions that could be posed to the tools did not necessarily
lead to an accurate answer to the question the participant had in
mind. For example, early in the session 1.4 one of the participants
expressed a desire to “figure out why one works and one doesn’t”
(N4), or in other words to compare how the system’s handling of
one type compared with its handling of a second type. The partic-
ipants’ approach was to do two series of references searches, one
starting from each of the types under investigation (“Now who calls
this method?” (N6)). Results were compared by toggling between
search result sets at each step until they first diverged (“This one
only has those two” (N6)). This point of divergence was taken as
an answer to their higher-level question, but in fact it was only a
partial answer and missed the most important difference.

In some situations piecing together the results from a number of
queries was problematic: “I can’t keep track of all of these similar
named things” (N2); “we were retracing steps we had done before
and [weren’t] aware of it” (N1). And naturally there where times
when the participants wanted some kind of overview, rather than
narrow sets of search results: “I think I would need some kind of
overview document that says. . . this is the architecture of how the
thing works and the main classes involved” (N9); “I think we really
have to get a wider view” (N3).

5.4 A More Involved Anecdote
We end this section with one more anecdote from the second

study. It provides an overview of the process participant E16 car-
ried out to answer her questions, and demonstrates that at times
multiple supporting questions must be pursued and that multiple
tools are used to answer those questions. It also demonstrates that
working in this way, while producing a significant volume of re-

grep & VI

GDB

diff & VI

Questions such as:
What has changed? What does
the source for this look like?

Questions such as:
Where is this data
structure defined?
What else accesses
this structure?

Questions such as:
What is the value at runtime?
Where is this being called
from?

Figure 4: Participant E16’s arrangement of windows and as-
sociated tools, along with the types of questions asked in each
window.

sults, does not necessarily result in an answer to the original ques-
tion posed. In these cases, the participant must often begin the pro-
cess again, making different choices about what lower-level ques-
tions to ask and how to use the available tools to answer those ques-
tions.

Central to the task E16 worked on was a connected group of
complicated data structures (“kinda complicated, there are a lot of
enums and variants, if it is that variant then these fields apply and
if it is that variant than those fields apply”). She spent a significant
portion of the session trying to determine how to get a certain value
from an instance passed to a particular routine (see questions 26
and 27 described in Section 4.3). To determine this she asked many
lower-level questions around callers and especially the parts of data
structures. Activities around asking and answering these questions
were interleaved, with the goal of building an answer to the higher-
level question. She used several different tools (GDB, diff, grep
and VI). Each of these tools were in separate windows, arranged as
in Figure 4. She explained her arrangement in this way: “I got one
where I am running the program, one where I am actually looking
at the code, and one where I am just searching for other things. I
try to always arrange them in the same way so that I can remember
where I am at as I windows switch.”

She described her process as a path: “You go down a path to try
to find out some information and it leads to a dead end and you
got to start all over again.” She had mapped her question down in
a certain way, pursued a number of lower-level questions, but by
the end of the session she had failed to answer her question: “So
now I have to think, what is another way I can figure out what the
variable is from the field”.

6. IMPLICATIONS OF OUR RESULTS
While further research is needed to work through the full im-

plications of these results, in this section we cover a few initial
observations connecting our results to tool design. We observed
participants struggle to refine their questions and to then map those
questions to tools. One reason for this is that most tools support
only relatively low-level questions. For example, tools generally
only support questions about one entity and type of connection;
while some of the questions articulated by our participants were at
the level of groups of entities and connections of different types.
Also, generally tools are designed to answer a particular kind of
questions and so multiple tools were often used to answer a partic-
ipant’s higher-level question. None of the tools used by our partici-
pants helped with this refinement or helped maintain the context of
the higher-level question being asked.

At times, the mapping between a participant’s questions and the
questions supported by the selected tool were imperfect. This often
caused the result sets from tools to include many items irrelevant to
the original questions (e.g., false positives relative to the informa-
tion the participant was seeking). Determining relevance required
additional exploration on the part of the participant. This imperfect
mapping between questions and tools together with the use of mul-
tiple tools required participants to mentally piece together pieces
of information from multiple (often noisy) result sets. Results were
presented by tools in isolation as largely undifferentiated and un-
connected lists with no support for building towards an answer to a
participant’s question.

These results provide important context for tool research and
development. We believe that tool design has often targeted the
questions and activities of programmers too narrowly, which has
resulted in tools that answer very narrow questions. Further, there
is a difference between an environment providing multiple tools
that answer a range of questions and actually supporting a pro-
grammer in the process of understanding what they need to know
about a software system. Our results point to the need to move
tools closer to programmers’ questions and the process of answer-
ing those questions.

7. DISCUSSION
The studies that we have performed have allowed us to observe

programmers in situations that vary along several dimensions in-
cluding the programming tools used, the type of change task, and
the level of prior knowledge of the code base. This research ap-
proach has allowed us to explore and report on a broad sample of
the questions programmers ask along with behaviors around an-
swering those questions. This focus on breadth also has several
limitations which we discuss in Section 7.1.

In presenting our results we have provided some limited fre-
quency data describing the frequency of question types across ses-
sions. This data is summarized in Figure 5 which shows the distri-
bution of observed question occurrences across the two studies by
category. An occurrence consists of one or more questions from a
category being asked in a session. This data illustrates that ques-
tions in the first three categories occurred more frequently during
the first study than the second, while for the fourth category the
breakdown between studies was more even. One possible reason
for the differences is that participants in the fist study were new-
comers to the code they were working on while participants in the
second study were working with code they had experience with,
though other factors may have also contributed. In Section 7.2 we
discuss ways to build on our work by addressing open research
questions such as what factors precisely contribute to these differ-
ences in question frequency.

7.1 Limitations of Studies
The use of pairs in our first study likely impacted the change

process we observed. We chose this approach to encourage a ver-
balization of thought processes and to gain insight into the intent
of actions performed. An alternative approach to getting similar
kinds of information is to have single participants think-aloud [21],
which was the approach taken in our second study. Although the
questions asked in the context of a pair working together may well
be different than in the context of an individual working alone, both
represent realistic programming situations.

Our results need to be interpreted relative to the types of tasks
used. In the first study we choose change tasks that could not be
completed within the allotted time. We chose complex tasks to
stress realism and to stress the investigation of non-local unfamil-

Finding initial focus points
Study 1 (75%) Study 2 (25%)

Building on those points
Study 1 (67%) Study 2 (33%)

Questions over groups of subgraphs
Study 1 (48%) Study 2 (52%)

Understanding a subgraph
Study 1 (67%) Study 2 (33%)

Figure 5: The distribution of observed question occurrences
across the two studies by category. An occurrence consists of
one or more questions from a category being asked in a session.
For example, 25% of the sessions that featured a question from
the first category were from study two.

iar code, a common task faced by newcomers to a system, and by
programmers working on changes that escape the immediate area
of the code for which they have responsibility. In the second study
tasks were selected by participants and so varied significantly. This
approach has allowed us to explore a range of realistic tasks. How-
ever, not all questions apply to all tasks or to all stages of working
on a task, and clearly our studies do not cover all types of tasks.

In addition to being influenced by the task at hand, the ques-
tions asked and the process of answering those are influenced by
the tools available and by individual differences among the partici-
pants themselves. Given a completely different set of tools or par-
ticipants our data could be quite different. This needs to be consid-
ered when interpreting our results or when generalizing them. This
is mitigated by the fact that our studies cover a range of tools in use
today as well as a range of programmers with different backgrounds
and levels of experience. Also, many of the questions we observed
programmers asking were independent of the questions that could
be answered directly using the tools provided by the environment.
This suggests that some of our results will likely generalize to other
tool sets.

7.2 Future Studies
The two studies we have performed and analyzed have provided

a wealth of information around programmers asking and answering
questions. At the same time it has left several related and important
research questions unanswered. Here we discuss several of these
open questions and suggest how future studies could build on our
work.

As mentioned above, the sessions in our two studies varied along
several dimensions and we have not analyzed how the questions
asked and the answering behavior varied along those dimensions.
For example we have not carefully compared newcomers to a code
base with programmers working with code with which they have
prior experience. Similarly we have not looked for a correlation
between the questions asked and the type of tools used. Various
follow-up studies to support these comparisons are possible. Stud-
ies which vary one of the possible factors (the task, the tool set or
the experience level of the participants, for example) and fixed the
others could support such comparisons.

We have made no effort to rank the questions we observed being
asked by some measure of importance. Such a ranking would be
valuable for prioritizing future research as well as efforts around
building tools to support answering particular questions. Although
the occurrence data that we have provided could provide a basis for
such a ranking, we believe that this would be insufficient. Instead, a
study that collected and analyzed data around how much time was
spent on particular questions as well as how successful program-
mers were at answering their various questions should provide a
more effective ranking of questions.

In both of the studies that we have performed, we observed par-
ticipants working for only a relatively short period of time (forty-
five minutes for study one and thirty minutes for study two), on
tasks that required much more time typically to complete. A follow-
up study in which participants were asked to work on a change task
to completion would be helpful in at least two ways. First, it would
support an analysis of the questions asked at different stages of
working on a task. Second, differences in the questions asked and
the behavior around answering those questions could be analyzed
to determine which approaches tended to be more successful over
the course of a task.

8. SUMMARY
From our observational studies of the information programmers

need to understand during a change task, we have identified 44 dif-
ferent kinds of questions being asked. We found that these ques-
tions could be categorized into four categories based on the charac-
teristics of the source code graph capturing the information needed
for answering a given question: those aimed at finding initial fo-
cus points, those aimed at building on such points, those aimed
at understanding a subgraph, and those over such subgraphs. To
our knowledge this is the most comprehensive catalog of questions
published to date.

In addition to describing specific questions asked by our partic-
ipants, we have also described some of the behavior we observed
around answering those questions, including their use of tools. Our
analysis exposed several important contextual issues around the re-
lationships between questions, mapping questions onto program-
ming tools, and using the results from those tools to answer the
intended question or questions. We believe that these results pro-
vide important insights into the difference between providing a tool
to answer a particular question and truly providing the support that
programmers need to complete a task.

Acknowledgments
The authors are grateful to the participants from our two studies,
to Eleanor Wynn for her valuable help with the second study, and
to Brian de Alwis for his comments on an early draft of the paper.
This research was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC), IBM and Intel.

9. REFERENCES
[1] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson.

Towards understanding programs through wear-based
filtering. In Proceedings of ACM 2005 Symposium on
Software Visualization, pages 183–192, 2005.

[2] A. Erdem, W. L. Johnson, and S. Marsella. Task oriented
software understanding. In Proceedings of Automated
Software Engineering, pages 230–239, 1998.

[3] K. Erdos and H. M. Sneed. Partial comprehension of
complex programs (enough to perform maintenance). In
Proceedings of 6th International Workshop on Program
Comprehension, pages 98–105, 1998.

[4] N. V. Flor and E. L. Hutchins. Analyzing distributed
cognition in software teams: A case study of team
programming during perfective software maintenance. In
Proceedings of the Empirical Studies of Programmers:
Fourth Workshop, pages 36–64, 1991.

[5] B. G. Glaser and A. L. Strauss. The Discovery of Grounded
Theory: Strategies for Qualitative Research. Aldine
Publishing, 1967.

[6] J. Herbsleb and E. Kuwana. Preserving knowledge in design
projects: What designers need to know. In Proceedings of
Human Factors in Computing Systems (CHI), pages 7–14,
1993.

[7] W. L. Johnson and A. Erdem. Interactive explanation of
software systems. In Proceedings of Knowledge-Based
Software Engineering (KBSE), pages 155–164, 1995.

[8] W. L. Johnson and A. Erdem. Interactive explanation of
software systems. Proceedings of Automated Software
Engineering, 4(1):53–75, 1997.

[9] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented IDEs: A detailed
study of corrective and perfective maintenance tasks. In
Proceedings of the International Conference on Software
Engineering (ICSE), pages 126–135, 2005.

[10] S. Letovsky. Cognitive processes in program comprehension.
In Proceedings of Conference on Empirical Studies of
Programmers, pages 80–98, 1986.

[11] S. Letovsky. Cognitive processes in program comprehension.
The Journal of Systems and Software, 7(4):325–339, 1987.

[12] N. Miyake. Constructive interaction and the iterative process
of understanding. Cognitive Science, 10:151–177, 1986.

[13] N. Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, 19:295–341, 1987.

[14] M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: An exploratory
study. IEEE Transactions on Software Engineering,
30(12):889–903, 2004.

[15] J. Sillito, K. D. Volder, B. Fisher, and G. C. Murphy.
Managing software change tasks: An exploratory study. In
Proceedings of the International Symposium on Empirical
Software Engineering, 2005.

[16] E. Soloway and K. Ehrlich. Empirical studies of
programming knowledge. IEEE Transactions on Software
Engineering, SE10(5):595–609, 1984.

[17] M.-A. Storey, F. Fracchia, and H. A. Muller. Cognitive
design elements to support the construction of a mental
model during software exploration. Journal of Software
Systems, special issue on Program Comprehension,
44(3):171–185, 1999.

[18] M.-A. Storey, K. Wong, and H. A. Muller. How do program
understanding tools affect how programmers understand
programs? Science of Computer Programming,
36(2–3):183–207, 2000.

[19] A. L. Strauss and J. Corbin. Basics of Qualitative Research:
Techniques and Procedures for developing Grounded
Theory. Sage Publications, 1998.

[20] W. Teitelman and L. Masinter. The interlisp programming
environment. IEEE Computer, 14:25–34, 1981.

[21] M. W. van Someren, Y. F. Barnard, and J. A. Sandberg. The
Think Aloud Method; A Practical Guide to Modelling
Cognitive Processes. Academic Press, 1994.

[22] A. von Mayrhauser and A. M. Vans. From code
understanding needs to reverse engineering tool capabilities.
In Proceedings of CASE’93, pages 230–239, 1993.

[23] A. von Mayrhauser and A. M. Vans. Program comprehension
during software maintenance and evolution. IEEE Computer,
28(8):44–55, 1995.

[24] N. Wilde and C. Casey. Early field experience with the
software reconnaissance technique for program
comprehension. In Proceedings of WCRE, pages 270–276,
1996.

[25] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries.
Strengthening the case for pair-programming. IEEE
Software, 17(4):19–25, 2000.

APPENDIX
Tool Descriptions
We have observed programmers using a wide range of program-
ming tools. For reference, we briefly describe these tools.

• Eclipse Java Development Environment: Integrated Java de-
velopment environment.

• Visual Studio: Integrated development environment with sup-
port for a range of programming languages including C/C++,
C#, and J#.

• Netbeans: Integrated Java development environment provid-
ing basic static analysis and debugging support.

• GNU Project Debugger (GDB): A command-line debugger
for languages such as C and C++.

• Data Display Debugger (DDD): A graphical user interface for
command-line debuggers (such as GDB).

• NetMeeting: A multipoint video conferencing application.
Supports sharing desktops.

• Virtual Desktops: Software allowing users to organize appli-
cation windows into multiple contexts.

• BizTalk Orchestration: Visual programming tool for describ-
ing business processes.

• Enterprise Manager: Administrative tool for Microsoft SQL
Server.

• Query Analyzer: Tool for authoring and analyzing queries to
execute against Microsoft SQL Server.

• Emacs, VI, VIM and UltraEdit: Basic source code editors.

