
This paper was published in the Proceedings of the 1st International Conference on Aspect-
oriented Software Development, April 2002.

© 2002 ACM, Inc. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee."

@inproceedings{508401,
 author = {Elisa L. A. Baniassad and Gail C. Murphy and Christa Schwanninger and
 Michael Kircher},
 title= {Managing crosscutting concerns during software evolution tasks: an inquisitive
 study},
 booktitle = {Proceedings of the 1st international conference on Aspect-oriented
 software development},
 year = {2002},
 isbn = {1-58113-469-X},
 pages = {120--126},
 location = {Enschede, The Netherlands},
 doi = {http://doi.acm.org/10.1145/508386.508401},
 publisher = {ACM Press},
 }

The definitive ACM version is at: http://doi.acm.org/10.1145/508386.508401

http://doi.acm.org/10.1145/508386.508401

Managing Crosscutting Concerns During Software
Evolution Tasks: An Inquisitive Study

Elisa L.A. Baniassad and Gail C. Murphy
Department of Computer Science,

University of British Columbia, 201-2366 Main Mall
Vancouver BC Canada V6T 1Z4

{bani, murphy}@cs.ubc.ca

Christa Schwanninger and Michael Kircher
Siemens AG, ZT SE 2

Otto-Hahn Ring 6, 81739,
Munich, Germany

{christa.schwanninger, michael.kircher
@mchp.siemens.de}

ABSTRACT
Code is modularized for many reasons: to make it easier to
understand, to make it easier to change, and to make it easier to
verify. Aspect-oriented programming approaches extend the kind
of code that can be modularized. In particular, these approaches
provide support for modularizing crosscutting code. We
conducted a (mainly inquisitive) study to better understand the
kinds of crosscutting code that software developers encounter and
to better understand their current approaches to managing this
code. In this study we tracked eight participants from industry and
academia: each participant was currently evolving a non-trivial
software system. We interviewed these participants several times
about crosscutting concerns they had encountered and their
strategies for dealing with those concerns. We found that
crosscutting concerns tended to emerge as obstacles that the
developer had to consider to make the desired change. Their
choice of strategy to deal with the concern depended on the form
of the obstacle code. The results of this study provide empirical
evidence to support the problems identified by the aspect-oriented
programming community, suggest tool support that may be
needed to cope or separate crosscutting concerns in existing
systems, and provide a basis on which to further assess aspect-
oriented programming.

Keywords
Empirical study, aspect-oriented programming, software
evolution

1. INTRODUCTION
Code is modularized for many reasons: to make it easier to read,
to make it easier to change [Parnas-72], and to make it easier to
verify. Aspect-oriented programming approaches [AspJ, HyJ,
Ber-92, Kic-97, Oss-96, Tarr-99, Lop-98] extend the kind of code
that can be modularized. In particular, these approaches provide
support for modularizing crosscutting code.
These approaches were developed based on some kinds of
crosscutting code that occur, such as code associated with

distribution [Lop-97], synchronization policies [Lop-99] and
some kinds of features [Tarr-99]. To our knowledge, no
independent empirical studies have been undertaken to consider
what kinds of crosscutting concerns software developers working
on existing systems would find beneficial to modularize nor how
those software developers are currently managing those concerns.
This paper helps fill this gap: It reports on a study in which eight
software developers, each of whom was currently evolving a
(different) system, were interviewed over a period of three weeks
about their progression on a change task. Some of these
participants were from industry and some were from academia.
All were working on non-trivial changes to non-trivial systems.
Analysis of the data collected during the study indicated that each
of the developers was forced to consider at least one crosscutting
concern. These crosscutting concerns arose from obstacles, such
as memory allocation or some unidentifiable functionality,
associated with making a change. Each participant reported
finding it difficult to deal with this obstacle code. Three strategies
emerged for managing the obstacles: in some cases, the entire
concern was changed, in other cases, the developers chose to
work within the conventions of the concern, and in yet others, the
choice was to alter the change task rather than try to cope with the
obstacle. The strategy chosen depended on the form of the
obstacle code, and on the form of the interaction between the
concern code and the core code associated with the change task.
This study and its results make three contributions. First, the
results provide empirical evidence about the kinds of crosscutting
concerns impacting software developers and the strategies
developers are using to cope with these concerns in existing
systems. Second, the problems encountered in working with the
crosscutting code indicate the need for tool support to work with,
and potentially to modularize, this code in existing systems.
Moreover, the strategies employed by the developers in coping
with the code suggest the kinds of tool support needed. Third, the
results provide a basis on which to compare whether the use of
aspect-oriented approaches can enable developers to better
represent and work with crosscutting code. For example, if the use
of an aspect-oriented approach eliminated the need to alter a
change task when similar situations where encountered as those
described in this paper than that would be evidence of a benefit of
the aspect-oriented approach.
We begin in Section 2 with a description of the study format. In
Section 3, we report on the results of the study. In Section 4, we
discuss the implications of the results. In Section 5, we review
previous work related to this study. In Section 6, we summarize
and conclude.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Submitted to AOSD 2002
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2. STUDY FORMAT
Our study was mainly inquisitive [Leth-00]. Over a three-week
time period, we tracked the progress of participants on a change
task to a system that they were involved in evolving. In this
section, we describe the details of the study. We discuss the
limitations of the format in Section 4.

2.1 Background of Participants
The study involved eight participants with a broad range of
backgrounds: some had years of programming experience in an
industrial setting; others were graduate students with a range of
programming experience. Four of the participants were
practicing software engineers from Siemens AG; four were
Computer Science graduate students at the University of British
Columbia.
Only two of the participants were familiar with the concept of
aspect-oriented programming prior to the study. One of these two
participants was actively applying aspect-oriented programming
ideas in the change task with which they were involved during the
study, and the other had experience working with an aspect-
oriented language. The rest of the participants had no knowledge
of aspect-oriented programming before the beginning of the
study.
To participate in the study, we required that a participant be
working on, or have recently worked on, a program change task to
a system they had not written. Each participant was working on a
separate system.
Before commencing the study, participants were asked to provide
the interviewer with a copy of the code they were working on to
serve as a reference.

2.2 General Format
We organized the study as a series of interviews: each participant
was interviewed three separate times, with each interview lasting
up to an hour. The same interviewer conducted all interviews.
General guidelines for interviews were prepared in advance.
These guidelines were meant to focus the interview, but the
specific questions that were asked depended upon the flow of
conversation. The participants were not informed of the contents
of the interview guidelines in advance. Our goal was to determine
four different pieces of information during each interview:

1. the program change task of the participant,
2. the approach of the participant to the task,
3. the approach used by the participant to determine which

pieces of code needed to change, and
4. whether the participant thought that the change was

difficult to make and if so, why it was difficult.
To help focus the discussion, participants were asked to identify
the portions of code that had, and that were, being changed. To
keep track of these locations, we annotated the interviewer’s copy
of the source files.
All the interviews were audio taped and later transcribed.

2.3 Questioning Convention
A primary purpose of the study was to determine the kinds of
crosscutting concerns that exist in codebases and that developers
have to consider. Rather than ask the participants directly about

these concerns, we asked them questions about the change task on
which they were working, and we attempted to glean concerns
from their responses.
We took this approach for three reasons. First, most of the
participants had never thought about crosscutting concerns.
When we attempted to pose questions that directly asked about
concerns, the participants were unable to understand the context
for, or the meaning of, our questions. Second, there was a danger
that the participants who did have some knowledge of this area
would jump to responding about popular crosscutting concerns
like tracing, debugging, or distribution. Such quick response
might have hidden more task-related concerns. Third, when
programmers are heavily involved in the details associated with a
task, it takes time to ease them into coarser-grained thinking about
their problem. Asking participants questions that they could
answer readily from their own experience facilitated the gathering
of data.
At the beginning of an interview, participants tended to talk about
their change task in a detailed way. For example, one participant
provided in-depth information about specific data structures used
in the application. Typically, by the end of an interview,
participants started to think and talk about their task at a more
conceptual level. This shift in the level of detail enabled
participants to consider higher-level questions, such as names that
they might use to describe the kinds of code they were examining,
or methods that they had used to find the relevant portions of
source for their task. The more conceptual level of thinking about
the task enabled the interviewer to ask participants to think,
between interviews, about the following question: If you could
have any view of the code, what view would have helped you
perform this task? This question was intended to help identify the
portions of code the participant would like to see modularized.
Since this question is abstract, the interviewer provided
suggestions for answers, such as all the code pertaining to the
database system, or all the code related to printing.

2.4 Method of Qualitative Analysis
To analyze the data, we examined the transcripts of the interview
sessions and the annotated source code.
Our examination involved three passes of the transcripts. First, we
perused the transcribed interviews to try to understand the range
of responses we received. Second, we categorized the responses
of the participants in terms of how they described the change they
were attacking, and what they encountered while working on the
change. Finally, we examined the responses for commonalties.
We also examined the portions of annotated source code, looking
at the form of the statements highlighted. We attempted to spot
commonalities in terms of syntax, semantics, or function. The
interviewer also examined the code bases of the participants to try
to determine whether the changes being made could be
characterized as belonging to a particular concern.

3. QUALITATIVE ANALYSIS
Participants commonly described their change task from two
perspectives: a structural perspective, and an emergent obstacle-
based perspective. Almost every participant at some point in an
interview used the phrase: “Everything was going fine until …”.
We describe each of these two perspectives and then describe the
results of an analysis on the change and obstacle code.

3.1 Straightforward Structural Perspective
Each participant began by providing detailed descriptions of the
problem domain of the application and of the change. They
described the field in which they were working, how their
application fit into that field, and how their change fit into the
application.
Participants’ initial descriptions of the change task were in terms
of easily identifiable structure in the code. Specifically, most
participants described the changes in terms of a particular data
structure or a particular module in the code, such as “I was
changing the components of a data structure”, or “I was changing
the methods related to the user interface”.
Describing the change in this way was straightforward. The fact
that it was easy to describe the change from this perspective was
not due to a good modularization of the code; often the code was
spread across the code base. Rather, programmers found it easy
to identify the code because they could understand the code’s
purpose and its context within the structure of the application.
They could point out portions of the code that corresponded to
their change.
A participant described crosscutting code as the target of the
change in only one case. This participant was currently working
in the area of aspect-oriented programming.

3.2 Non-straightforward Obstacle Perspective
After participants had generally described their change task, and
after they had pointed out the locations in the code that had to
change, we asked them to consider if these were the only portions
of code that had to change to complete the task. Invariably, they
said “no”. It was at this point that the participants revealed a set
of obstacles that they had encountered while making the change.
Figure 1 provides an abstract representation of the experiences of
the participants. As long as the change was within a structural
context, the participants could understand and conceptualize the
change. The white vertical rectangles in Figure 1 represent the

core change code that was associated with structure. However, as
the change was being made, the programmers tended to encounter
obstacles (shown in black). These obstacles comprised portions
of code that were relevant to the task but that also affected an
underlying concern; this code was at the intersection of the core
change and the broader concern. For example, one participant
wanted to change the way in which a user interface was
distributed in a distributed system. This change involved
modifying and testing the user interface sections, and it also
involved testing to ensure that the distribution itself had not
broken down. Another participant was adding a feature to the
system; this participant had to ensure that the change was
consistent with other similar changes, and that it did not damage
existing functionality. To make the change, the participant had to
overcome the obstacle(s) and to try to understand the entire
underlying concern (shown in light grey in Figure 1) that led to
the presence of that portion of code. Since that underlying
concern was neither well modularized nor well documented, it
was difficult to conceptualize and to reason about.

Table 1: Participants’ task descriptions
Participant

Straightforward
Structural view

Non-
straightforward
Obstacle View

Strategy

1 Moving particular
computation to an
aspect-like module.

Synchronization
Performance

Within

2 Tailoring a matching
algorithm for a
specific purpose

Memory Allocation Change

3 Changing matrix
calculation

Memory Allocation Around

4 Changing table
representation

Computation
assumptions built
into data
structures.
Undecipherable
obstacle portions

Around

5 Changing
packaging of user
interface
mechanism

Distribution
Tracing

Within

6 Changing the
mathematical model
applied

Security issues
Communication
protocols
Hardware platform
dependencies.

Within

7 Changing printing
look and feel

User Interface
consistency
Resource speed

Change

8 Adding cancellation
notification to an
existing system

Multithreading
Behavioural
consistency

Within

The participants used three strategies to cope with the obstacles:
1. Change: Alter the concern code to enable the change task.

Figure 1. Obstacles reveal concerns

Code surrounding
core change Core of change

Broader concern
Synchronization?
Memory allocation?
Unknown?

Obstacle to
change leads to
reasoning about
the broader
concern

Figure 2. Obstacle types: Core-Concern Intersections

“Change” “Within” “Around”
A B C

Implied Obstacle Explicit Obstacle Encoded Obstacle

Point of Change Concern Reasoning

2. Within: Understand, but do not change, the underlying
concern associated with the obstacle sufficiently to make the
change work within the concern.

3. Around: Completely alter the change task to account for the
concern without understanding the concern.

Table 1 summarizes the program change tasks for each
participant, the obstacles each encountered and the strategy each
employed.
Change Strategy. Participants two and seven used the first
strategy: They changed the relevant portions of the crosscutting
concern to suit the change. For participant seven, this approach
was facilitated by the fact that the changes were at the user-
interface level, and thus were more visible during testing.
Participant two’s changes are discussed in more detail in Section
3.3.
Within Strategy. Participants one, five, six and eight used the
second strategy. They worked hard to understand the effect of
their code on the crosscutting concern that presented an obstacle
to their change, and they worked within the conventions of the
concern. Participant eight had to perform considerable testing to
ensure the obstacle had been dealt with appropriately.
Around Strategy. Participants three and four used the third
strategy: They each worked around the obstacle. They
significantly rethought their original approach to their change task
because they could neither adequately understand the obstacles,
nor address the concern. Participant four, for example, ran into
memory allocation problems after making what should have been
a simple change to a table representation. After failed attempts to
understand how the change affected the memory allocation for the
application, a work-around was devised to trick the memory
allocation portions of the source into thinking that the change had
not been made.

3.3 Code Perspective
By examining the code associated with the changes and with the
participants comments, we learned more about how participants
addressed the obstacles they faced. Our examination focused on
the obstacle points, or the locations at which the original change
task intersected the crosscutting concern. We discovered that
there were certain patterns of interaction between the concern and
the change code and we determined that there was a
correspondence between the patterns and the strategy the
participant chose to address the obstacle.
Change Strategy. Code associated with participants who chose the
first strategy, the change strategy, had a structural intersection
point. Participants could identify, from the code related to the
change, certain structurestypes, objects, and computations
directly related to those structuresas obstacles to their change
task. Figure 2-A depicts this situation. These obstacle points
provided enough information about the broader concern to lead
the participant along the outward reasoning arrow, to the points of
change, located in the broader concern. This situation was
particularly true for participant two. For this participant, the
obstacle points, or points of intersection were easily identifiable
by the type of the data structure affected. Participant two was
able to extrapolate that all functionality of a certain kind
involving a particular type would have to be altered. It was then
straightforward, though tedious, to make the changes.

Within Strategy. Code associated with participants who chose the
second strategy, the within strategy, followed a behavioural
pattern. Participant eight worked within computational
conventions, and participant one had to work within a particular
synchronization policy. The intersection of the change code and
the behavioural concern code could not be as easily assessed as
for the structural case above. As is shown in Figure 2-B, the
obstacle points were implied. Comments alerted both the
participants to the presence of the obstacle, and gave them clues
as to the existence and nature of the broader concern. Based on
the comments, these participants had to examine the broader
concern to understand the conventions of the concern. The
participants then had to reason inward about how to change the
core code to work within the broader concern. Their analysis
techniques were ad hoc, and it was difficult for them to describe
their approach. Essentially, they reported that they had to gain a
general understanding of the entire code base in order to work
within the obstacles. Once they gained this understanding, they
were able to identify portions of code that would allow them to
reason inward about their specific change task.
Figure 3 shows the inward reasoning, and resultant code, used by
participant one. This participant’s task was to separate operating
systems pre-fetching code into a separated aspect-like module
[Coa-01]. Boxes A1 and B1 refer to code identified as belonging
to the broader synchronization concern. As was true of both
participants’ code, there were no clear intersection points in the
core code with the obstacle code. Hence, no obstacle points are
visible in Figure 3. Based on previous knowledge, and on
comments not shown in the figure, participant one reasoned about
the concern code in boxes A1 and B1 in addition to reasoning
about the rest of the synchronization conventions for the system.
From the broader concern code, participant one reasoned inward
about the pre-fetching code that formed the core of the change
task. To work within the synchronization conventions, participant
one had to add, as part of the change, portions of code related to
the synchronization concern. This code is shown in boxes A2 and
B2; strictly speaking, this code was not directly related to the core
of the change. The inclusion of this code ensured that the locking
invariants encoded in the synchronization concern were
maintained. The reasoning from boxes A1 and B1 inward to the
core change thus resulted in the addition of code to the re-
modularized core.

In both cases, participants were unable to cleanly determine when
they had covered all of the code related to their change. Our
examination of their code yielded limited similarities about the
nature of the external concern code. For participant eight, the
concern conventions could be gleaned by scanning for instances
of a particular sequence of calls. When asked, participant one
reported that this “sequence of calls” analysis might have been
helpful. Participant one might also have been helped by
information about a pattern of access to particular data structures.
Around Strategy. Obstacle code associated with participants who
chose the third strategy, the around strategy, was dense. The code
made ambiguous use of assumptions from around the code base
and was thus subtle and difficult to reason about. Originally,
these participants had wanted to change the relevant portions,

rather than to avoid the code. However, when the change
approach became too onerous, the participants were forced to
work around the obstacle code and the concern it pointed to. In
this code, it is unclear why particular data structures are altered in
particular ways, and it is unclear why the ordering of certain
computations is important. For instance, the obstacle code
encountered by participant four assumed that a data structure of a
certain number of bytes would be used. This number was hard-
coded as an assumed constant throughout this piece and other
pieces of code, but it was not structurally explicit in this piece of
code where the number was being assumed. For instance, parts of
the algorithmic code assumed this constant but did not refer to it.
This situation is depicted in Figure 2-C, which shows obstacles
associated with this strategy are encoded, meaning that they are

B2 B1

A1

Figure 3: Code alterations show inward reasoning

 fs.map = map;

 /*
 * Find the backing store object and offset into it to begin the
 * search.
 */

 if ((result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, &fs.first_object,
 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
 if ((result != KERN_PROTECTION_FAILURE) ||
 ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
 return result;
 }
 /*
 * If we are user-wiring a r/w segment, and it is COW, then
 * we need to do the COW operation. Note that we don't COW
 * currently RO sections now, because it is NOT desirable
 * to COW .text. We simply keep .text from ever being COW'ed
 * and take the heat that one cannot debug wired .text sections.
 */
 result = vm_map_lookup(&fs.map, vaddr,
 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
 if (result != KERN_SUCCESS) {
 return result;
 }

 /*
 * If we don't COW now, on a user wire, the user will never
 * be able to write to the mapping. If we don't make this
 * restriction, the bookkeeping would be nearly impossible.
 */
 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
 fs.entry->max_protection &= ~VM_PROT_WRITE;
 }

 map_generation = fs.map->timestamp;

 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
 panic("vm_fault: fault on nofault entry, addr: %lx",
 (u_long)vaddr);
 }

 /*
 * Make a reference to this object to prevent its disposal while we
 * are messing with it. Once we have the reference, the map is free
 * to be diddled. Since objects reference their shadows (and copies),
 * they will stay around as well.
 */
 vm_object_reference(fs.first_object);
 vm_object_pip_add(fs.first_object, 1);

 fs.vp = vnode_pager_lock(fs.first_object);
 if ((fault_type & VM_PROT_WRITE) &&
 (fs.first_object->type == OBJT_VNODE)) {
 vm_freeze_copyopts(fs.first_object,
 fs.first_pindex, fs.first_pindex + 1);
 }

 fs.lookup_still_valid = TRUE;

 if (wired)
 fault_type = prot;

 fs.first_m = NULL;

 /*
 * Search for the page at object/offset.
 */

 fs.object = fs.first_object;
 fs.pindex = fs.first_pindex;

 /*
 * See whether this page is resident
 */
 while (TRUE) {
 /*
 * If the object is dead, we stop here
 */

 if (fs.object->flags & OBJ_DEAD) {
 unlock_and_deallocate(&fs);
 return (KERN_PROTECTION_FAILURE);
 }

 /*
 * See if page is resident
 */

 fs.m = vm_page_lookup(fs.object, fs.pindex);
 if (fs.m != NULL) {
 int queue, s;
 /*
 * Wait/Retry if the page is busy. We have to do this
 * if the page is busy via either PG_BUSY or
 * vm_page_t->busy because the vm_pager may be using
 * vm_page_t->busy for pageouts (and even pageins if
 * it is the vnode pager), and we could end up trying
 * to pagein and pageout the same page simultaniously.
 *
 * We can theoretically allow the busy case on a read
 * fault if the page is marked valid, but since such
 * pages are typically already pmap'd, putting that
 * special case in might be more effort then it is
 * worth. We cannot under any circumstances mess
 * around with a vm_page_t->busy page except, perhaps,
 * to pmap it.
 */
 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
 unlock_things(&fs);
 s = splvm();
 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
 vm_page_flag_set(fs.m, PG_WANTED | PG_REFERENCED);
 cnt.v_intrans++;
 tsleep(fs.m, PSWP, "vmpfw", 0);
 }
 splx(s);
 vm_object_deallocate(fs.first_object);
 goto RetryFault;
 }

 queue = fs.m->queue;
 s = splvm();
 vm_page_unqueue_nowakeup(fs.m);
 splx(s);

 /*
 * Mark page busy for other processes, and the pagedaemon.
 */
 if (((queue - fs.m->pc) == PQ_CACHE) &&
 (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
 vm_page_activate(fs.m);
 unlock_and_deallocate(&fs);
 VM_WAIT;
 goto RetryFault;
 }

 vm_page_busy(fs.m);
 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
 fs.m->object != kernel_object && fs.m->object != kmem_object) {
 goto readrest;
 }

 break;
 }
 if (((fs.object->type != OBJT_DEFAULT) &&
 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
 || (fs.object == fs.first_object)) {

 if (fs.pindex >= fs.object->size) {
 unlock_and_deallocate(&fs);
 return (KERN_PROTECTION_FAILURE);
 }

 /*
 * Allocate a new page for this object/offset pair.
 */

 fs.m
vm_page_alloc(fs.object, fs.pindex,

 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);

 if (fs.m == NULL) {
 unlock_and_deallocate(&fs);
 VM_WAIT;
 goto RetryFault;
 }
 if (fs.object->type != OBJT_DEFAULT &&
 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) {
 int rv;
 int reqpage;
 int ahead, behind;

 if (fs.first_object->behavior == OBJ_RANDOM) {
 ahead = 0;
 behind = 0;
 } else {
 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
 if (behind > VM_FAULT_READ_BEHIND)
 behind = VM_FAULT_READ_BEHIND;

 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
 if (ahead > VM_FAULT_READ_AHEAD)
 ahead = VM_FAULT_READ_AHEAD;
 }

 if ((fs.first_object->type != OBJT_DEVICE) &&
 (fs.first_object->behavior == OBJ_SEQUENTIAL)) {
 vm_pindex_t firstpindex, tmppindex;
 if (fs.first_pindex <
 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1))
 firstpindex = 0;
 else
 firstpindex = fs.first_pindex -
 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD +
1);

 for(tmppindex = fs.first_pindex - 1;
 tmppindex >= firstpindex;
 --tmppindex) {
 vm_page_t mt;
 mt = vm_page_lookup(fs.first_object, tmppindex);
 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
 break;
 if (mt->busy ||
 mt->hold_count ||
 mt->wire_count)
 continue;
 if (mt->dirty == 0)
 vm_page_test_dirty(mt);
 if (mt->dirty) {
 vm_page_protect(mt, VM_PROT_NONE);
 vm_page_deactivate(mt);
 } else {
 vm_page_cache(mt);
 }
 }

 ahead += behind;
 behind = 0;
 }

 /*
 * now we find out if any other pages should be paged
 * in at this time this routine checks to see if the
 * pages surrounding this fault reside in the same
 * object as the page for this fault. If they do,
 * then they are faulted in also into the object. The
 * array "marray" returned contains an array of
 * vm_page_t structs where one of them is the
 * vm_page_t passed to the routine. The reqpage
 * return value is the index into the marray for the
 * vm_page_t passed to the routine.
 */

 faultcount = vm_fault_additional_pages(
 fs.m, behind, ahead, marray, &reqpage);

 /*
 * Call the pager to retrieve the data, if any, after
 * releasing the lock on the map.
 */
 unlock_map(&fs);
 rv = faultcount ?
 vm_pager_get_pages(fs.object, marray, faultcount,
 reqpage) : VM_PAGER_FAIL;

if (object->behavior !=
OBJ_RANDOM) {

allocate_prefetch_pages(
marray, faultcount, reqpage
);

 }

VM_fault routine

Pre-fetching Module

(core of change)

 vm_map_unlock(map);

A2 vm_map_lock(map);
equivalent

equivalent

neither structurally explicit, nor are they implied by comments or
conventions. As a result, the participant was unable to use either
of the inward or outward reasoning strategies employed by other
participants. In the end, the participant simply worked around
this difficult code.

3.4 Summary of Results
For all participants, overcoming an obstacle involved significant
effort to understand the relevant portions of the crosscutting
concern associated with the obstacle. When asked, the
participants described that even if they had been given a view of
the crosscutting concern, it would likely still have required
significant reasoning on their part to decipher the effect of their
actions on the concern code. Determining the interface between
the broader concern code, and the code related to the change was
considered a non-trivial task., especially by the participants who
met with implied obstacles and who applied the within strategy.
Consistently, participants wanted an answer to the question: If I
change this location in the code, how will that crosscutting
concern be affected?

4. DISCUSSION
We claim that our paper provides contributions in three areas:
empirical evidence of crosscutting concerns and the strategies
used in coping with such concerns, directions for tool support to
help manage crosscutting concerns in existing systems, and input
to future assessment of aspect-oriented programming. In this
section, we discuss our contributions in each of these areas.

4.1 Study Validity
Our study considered eight separate change tasks. Each task was
being performed on a unique system. The systems were
implemented in range of programming languages: three systems
were implemented in C [Ker-88], three in C++ [Str-91], and two
in Java [Gos-96],. The participants performing the changes were
not novice developers: four of the participants were practicing
software developers in industry. The questions asked of
participants focused on the changes being performed rather than
on the crosscutting concerns encountered. Despite the differences
in tasks and systems, similarities emerged in the form of the
crosscutting code involved, and in the strategies used by the
participants to cope with the crosscutting concerns. The presence
of these similarities in the context of the differences between
participants, systems, and tasks increases our confidence that the
results are indicative of real software developments and that the
results may generalize.
Two limitations of our study are the small number of systems and
tasks considered, and the short amount of time that we tracked the
progress of the developers. A longitudinal study of more systems
that, in particular, subjects the strategies we discovered to further
scrutiny is likely warranted.

4.2 Tool Support for Obstacles
Based on our analyses, the tool support that would likely have
been useful to our participants to cope with emerging obstacles
varies with the three categories of approaches they employed.
Those participants who worked with obstacles in a change
strategy may have been able to effectively deal with the concerns
if they could have identified and reasoned about the concern code
as a block. Tools for finding latent aspects, such as the
AspectBrowser [Gris-01], AMT [Hann-01], and FEAT [Mrob-01]

may be sufficient for these obstacles since there were lexical and
structural clues in the source to identify the obstacle code.
The participants who worked with obstacle code in a within
strategy may have benefited from tools that provide views on
parts of crosscutting concerns, and from tools that provide more
extensive analysis of the source than is found in the existing set of
aspect finding tools. For instance, participant one did not need to
understand the entire synchronization scheme for the system. This
participant needed a view on the relevant parts of the
synchronization scheme pertaining to the code being changed. A
means of determining the pertinent parts of the code through
searches on patterns of operations and then being able to view
those results in the context of the change code may have been
helpful.
The participants who used the around strategy may have benefited
from measures that could have told them the situation was largely
hopeless before they had invested a significant amount of time.
Such measures would need to bring out the subtlety of the code:
simple metrics based only on structural coupling would not likely
suffice.

4.3 Assessing Aspect-oriented Programming
The results of our study provide a basis for helping to assess
aspect-oriented programming. Specifically, we would assume that
if crosscutting concerns were modularized, and perhaps separated,
that programmers should not have to choose the around strategy
to cope with obstacles encountered when making a change. One
could test this hypothesis either by taking a system that was used
in this study, representing the obstacle code as aspects, and then
subjecting the aspect form of the system to the same change and
observe the actions of the developer(s). Alternatively, one could
follow changes to a system built using aspect-oriented ideas and
technology and see if the strategy occurs. We would still expect
the change and within strategies to occur as changes were made to
an aspect-oriented system. However, we would expect the aspect
form of a system would make it easier for the developers to
analyze and understand the interactions between the change code
and the obstacles.

5. RELATED WORK
We describe the relation of our study to empirical work in two
areas: empirical studies of programmers performing parts of
software change tasks, and empirical efforts to assess aspect-
oriented programming.
Empirical Study of Programmers. A significant amount of work
has been undertaken to analyze the cognitive and mental
approaches used by programmers to understand source code.
Broadly, four approaches have been characterized: top-down
[Brooks-83, Sol-84], where the programmer begins with
understanding of a general nature, bottom-up [Schn-79, Penn-87],
where programmers begin by reading source code and by
mentally forming higher-level abstractions, knowledge-based
[Let-86] which involves assimilating domain knowledge and the
mental models formed during program analysis, and integrated
[vonM-94]
Storey and colleagues [Sto-99] describe a set of cognitive issues
to be considered when designing a software exploration tool.
They examined a number of cognitive models of program
comprehension, and gave examples of how the use of these
models could be facilitated by tool support.

Singer and Lethbridge [Sing-98] conducted a set of field studies
in which they analyzed the work practices of developers as a
means of directing tool development. They collected information
in four ways: through tool usage statistics, through a web
questionnaire, through group studies, and by shadowing a
developer for an extended period of time. Based on this data,
they concluded that programmers need support when searching
code bases, in terms of being able to store the results of their
search, and that they need support for recalling their movement
through code bases.
We see all of this work as complementary to our own. These
empirical approaches place emphasis on the work practices used
and on the types of mental and cognitive models built by
programmers while understanding code. Our work looks at a
more specific concept: what is the form and role of the code that
programmers examine when performing a program change task.
Empirical Work on Aspect-oriented Programming. In a case study
on the use of AspectJ to modularize and separate exception
detection and handling, Lippert and Lopes noted several strengths
and weaknesses of the aspect-oriented approach [Lipp-00]. In
particular, they noted that at certain points in performing tasks,
programmers needed to see the behavioural effects of aspects on
methods of interest. This finding is similar to one of the results of
this study: programmers want to see their concern with respect to
portions of the code of interest. The similarity in these findings
reinforces the result that programmers need to see the effects of
the relevant portions of a broader concern on particular portions
of code.
Walker and colleagues report on a controlled experiment to
investigate whether aspect-oriented programming could ease
program maintenance tasks [Wal-99]. They reported that
programmers found it difficult to reason about a separated
concern when the interface between the core code and the concern
code was too broad. Restated, the more constrained and defined
the interface, the easier it was for programmers to determine the
area of influence between the code and concern code. Our study
corroborates this result. The narrowest interface occurred when
programmers could reason out from their code; when they were
able to capture the interface based on information within the core
of their task. Participants working in these conditions were able
to find relevant portions of the code to change, though they noted
that it was a tedious process. The interface in this case was clear:
All methods that performed a particular function related to a
particular type had to be considered. A wider interface relates to
the inward-reasoning situation when programmers had to take
information from other portions of the code and then had to
analyze their core in terms of the assumptions and invariants in
the broader code. These participants reported more difficulty in
finding those external points of reasoning than those working with
outward reasoning. Finally, the widest interface was the one that
could not be defined at all, and which lead to the around strategy
in which the attempt to understand the concern code was
abandoned.

6. SUMMARY
This paper reports on a study conducted to examine where
developers encounter crosscutting code during a program change
task, and how the developers chose to manage that code. We
found that crosscutting code emerged as obstacles that the
programmers had to manage when making the desired change.

When obstacle code related to a broader concern was
encountered, developers had to try to understand both how the
changes they were making affected the crosscutting concern, and
how the crosscutting concern affected their change. We
discovered they used one of three strategies to deal with the
crosscutting concern: in some cases, developers altered the
crosscutting code to accommodate the change, in other cases,
developers made the change work in the context of the
crosscutting code, and in yet other cases, developers worked
around the crosscutting code. These different strategies
corresponded to different forms of the obstacle code. When there
were suitable structural links and a developer could reason out
from the obstacle point in the code related to the change to the
concern code, the first strategy, the change strategy, was used.
When there were behavioural patterns but no structural links,
developers reasoned from the concern code into the change code
and adopted the second strategy, the within strategy. When
neither of these reasoning approaches was possible because of
dense and subtle code, developers took the third approach of
working around the crosscutting code.
This paper provides empirical evidence to support the existence
and type of crosscutting concerns on which aspect-oriented
programming approaches are based. The strategies for coping
with crosscutting concerns in existing systems suggest particular
tool support that is needed. As one example, developers may
benefit from views that can be computed on demand to show the
ramifications of a change on a particular set of crosscutting
concerns. Finally, this paper lays the groundwork for further
assessment of aspect-oriented programming.

ACKNOWLEDGMENTS
This work was funded, in part by Siemens AG Corporation, in
part by a University of British Columbia Graduate Fellowship,
and in part by a grant from the National Science and Engineering
Research Council of Canada (NSERC).
We thank all participants who provided their time and experiences
for our study.
A shorter, earlier version of this work was reported in the
Workshop on the Advanced Separation of Concerns held at
Object-Oriented Programming, Languages and Applications
2000. (www.cs.ubc.ca/labs/spl/papers/2000/oopsla2000-asoc-
eb.html)

REFERENCES
[AspJ] AspectJ web site: www.aspectj.org
[Ber-92] L. Bergmans, M. Askit, K. Wakaita and A. Yonezawa.

An Object-Oriented model for extensible concurrent
systems: The composition-filters approach. Technical
Report, 1992

[Brooks-83] R. Brookes. Towards a theory of the comprehension
of computer programs. International Journal of Man-
Machine Studies, 18:543-554, 1983

[Coa-01] Yvonne Coady, Gregor Kiczales, Mike Feeley and Greg
Smolyn. Using AspectC to Improve the Modularity of Path-
Specific Customization in Operating System Code, FSE
2001.

[Gos-96] K. Arnold, J. Gosling: The Java Programming
Language. ACM Press Books, Addison Wesley Longman,
1996.

[Gris-01] W. G. Griswold, Coping with Software Change using
Information Transparency. Technical Report CS98-585,
Department of Computer Science and Engineering,
University of California, San Diego, April 1998 (revised
August 1998). A version of this paper is to appear at
Reflection 2001, Kyoto, 2001.

[Hann-01] Hannemann, J., and Kiczales, G. Overcoming the
Prevalent Decompositionof Legacy Code, Proceedings for
the Workshop on Advances Separation of Concerns at the
International Conference on Software Engineering, 2001

[HyJ] Hyper/J web site:
www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

[Ker-88] Kernighan, B. W., and Ritchie, D. M. The C
Programming Language. Prentice Hall, Englewood, New
Jersey, 1988. The second edition

[Ker-99] M. Kersten and G. Murphy, Atlas: A Case Study in
Building a Web-based Learning Environment using Aspect-
Oriented Programming. In Proceedings of OOPSLA’99.
Denver, CO, USA. November 1999, ACM Press, pp. 340-
352, 1999.

[Kic-97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect Oriented
Programming. In ECOOP’97 – Object-Oriented
Programming, 11th European Conference, LCNS 1241, pages
220-242, 1997.

[Let-96] S. Letovsky Cognitive Processes in Program
Comprehension. In Empirical Studies of Programmers, 58-
79. Ablex Publishing Corporation, 1986.

[Leth-00] Lethbridge, T., Sim, S. and Singer, J. (1998 July),
Studying Software Engineers: Data Collection Methods for
Software Field Studies, Submitted May 2000 to Empirical
Software Engineering

[Lipp-00] Martin Lippert and Cristina Videira Lopes. A Study on
Exception Detection and Handling Using AspectOriented
Programming. Proc. 22 nd International Conference on
Software Engineering, 2000.

[Lop-97] Lopes C. V, "D: A Language Framework for
Distributed Computing", Ph.D. Dissertation, College of
Computer Science, Northeastern University, Boston, 1997

[Lop-98] Christina Vedeira Lopes and Gregor Kiczales. “Recent
Developments in AspectJ”. Aspect-Oriented Programming
Workshop, ECOOP’98. In Object-Oriented Technology:
ECOOP’98 Workshop Reader, S. Demeyer, J. Bosch (eds),
Lecture Notes in Computer Science, Vol. 1543, pp.398-401,
Springer, 1998.

[Lop-99] Lopes, C.V., Lieberherr, K.J., 1994. Abstracting
process-to-function relations in concurrent object-oriented
applications. Proc. European Conf. on Object-Oriented
Programming (ECOOP'94), LNCS 821, Springer-Verlag, 81-
-99

[MRob-01] Martin P. Robillard, Gail C. Murphy Concern
Graphs: Finding and Describing Concerns Using Structural

Program Dependencies. Technical Report UBC-CS-TR-
2001-13, Department of Computer Science, University of
British Columbia, 10 September 2001.

[Ols-87] G. M. Olson, S. Sheppard and E. Soloway Change
Episodes in Coding: When and How Do Programmers
Change Their Code. Empirical Studies of Programmers:
Second Workshop.. 1987: Norwood, NJ, Ablex. pp. 185-197.

[Oss-96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V.
Kruskal. Specifying subject-oriented composition. TAPOS,
2(3):179-202, 1996.

[Parnas-72] D. L. Parnas, "On the Criteria To Be Used in
Decomposing System into Modules" Communications of the
ACM pp. 1053-1058 (December 1972)

[Penn-87] N. Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, 19:295-341, 1987.

[Sch-79] B. Schneiderman, R. Mayer. Syntactic/semantic
interactions in programmer behaviour: A model and
experimental results. International Journal of Computer and
Information Sciences, 8(3):219-238, 1979.

[Sing-98] J. Singer and T. Lethbridge. Studying work practices to
assist tool design in software engineering. In 6th
International Workshop on Program Comprehension
(WPC'98), Ischia, Italy, pages 173--179, June 1998.

[Sol-84] E. Soloway, K. Erlich. Empirical studies of
programming knowledge. IEEE Transactions on Software
Engineering, SE-10(5):595-609

[Sto-99] M.-A.D. Storey, F.D. Fracchia and H. A. Müller.
Cognitive Design Elements to support the Construction of a
Mental Model During Software Exploration. Journal of
Software Systems, special issue on Program Comprehension,
volume 44, pp. 171-185, 1999.

[Str-91] Bjarne Stroustrup. The C++ Programming Language:
Second Edition. AddisonWesley Publishing Co., Reading,
Mass., 1991.

[Tarr-99] Peri Tarr, Harold Ossher, William Harrison and Stanley
M. Sutton. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of the 21st
International Conference on Software Engineering, pages
107-119, May 1999.

[vonM-94] A. von Mayrhayser, A. Vans. Comprehension
processes during large scale maintenance. In Proceedings
of the 16th International Conference on Software
Engineering, pages 39-48, 1994.

[Wal-99] R. Walker, E. Baniassad and G. Murphy. An Initial
Assessment of Aspect-Oriented Programming. In
Proceedings of the 21st International Conference on Software
Engineering, pages 120-130, May 1999.

