
Presenting Crosscutting Structure with Active Models

Wesley Coelho
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada

coelho@cs.ubc.ca

Gail C. Murphy
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada

murphy@cs.ubc.ca

ABSTRACT
When modifying or debugging a software system, among
other tasks, developers must often understand and manipu-
late source code that crosscuts the system’s structure. These
tasks are made more difficult by limitations of the two ap-
proaches currently used to present details of crosscutting
structure: tree views and structural diagrams. Tree views
force the developer to manually synthesize information from
multiple views; structure diagrams quickly suffer from graph-
ical complexity. We introduce an active model as a means
of presenting the right information about crosscutting struc-
ture to a developer at the right time. An active model is pro-
duced as a result of three automated operations—projection,
expansion, and abstraction. Combined with particular user
interaction features during display, these operations enable
a view of the model to be presented to the developer with-
out suffering from the complexity of existing approaches.
We have implemented an active model tool, called ActiveA-
spect, for presenting crosscutting structure described by As-
pectJ aspects. We report on the results of a case study in
which the tool was used effectively by two subjects to imple-
ment a modification task to a non-trivial AspectJ system.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools
and Techniques—Object-oriented design methods, User
interfaces; D.2.6 [Software Engineering]: Programming
Environments—graphical environments, integrated environ-
ments, interactive environments

Keywords
Program structure, design views, structure presentation,
aspect-oriented programming, AspectJ

1. INTRODUCTION
Many tasks performed by a software developer involve

code that crosscuts a system’s structure. For example, mod-
ification tasks often involve changing code that is spread in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 06,March 20–24, 2006, Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

a disciplined way across multiple classes and methods [18].
Most debugging tasks involve understanding execution slices
that cut across system modules [26]. Various approaches
have been proposed to help identify the crosscutting code of
interest for a task (e.g., [22, 26, 27]). These approaches are
similar in that they identify program elements and relations
of interest for a task; they differ in how the elements of in-
terest are determined from largely manual, static analyses
(e.g., [22]) to largely automatic dynamic analyses (e.g., [27]).
We refer to the program elements and relations identified by
these approaches as crosscutting structure.

In contrast to the variety of ways of identifying cross-
cutting structure, only two approaches have been proposed
to present the details of crosscutting structure: tree views,
and structure diagramming approaches (Section 2). Each
of these approaches has significant limitations. It typically
takes multiple tree views to present crosscutting structure,
placing the burden on the developer to manually synthe-
size the information of interest from multiple places. Exist-
ing structure diagram approaches suffer from graphical com-
plexity when applied to even a moderate amount of cross-
cutting structure, making it difficult for the developer to
find information of interest.

To overcome these limitations, we have developed the ac-
tive model approach that automatically determines impor-
tant crosscutting structure information and displays that
information as a structure diagram. Our approach uses sev-
eral interactive features to elide structure from a displayed
view until it is needed (Section 3). The combination of these
features overcomes the limitations of previous approaches
by providing the information of interest in one view while
avoiding unnecessary graphical complexity.

Three automated operations are used to produce an ac-
tive model: projection, expansion, and abstraction. The
projection operation selects a representative overview of the
crosscutting program structure of interest to a developer.
The expansion operation inserts additional structure incre-
mentally when it is requested by a developer to aid inves-
tigation. When the desired structure is too large to be dis-
played cleanly, an abstraction operation is applied to reduce
complexity while retaining information content.

To investigate our approach, we developed a tool called
ActiveAspect that uses the active model approach to present
crosscutting structure as described by an AspectJ [1] aspect
(Section 3). We chose to initially evaluate the active model
approach in the context of a system written in AspectJ be-
cause the crosscutting structure is clearly stated, allowing
us to focus on our approach and not on the identification of

the crosscutting structure. The approach can be applied to
other languages and representations of crosscutting struc-
ture and in this paper we also sketch how our approach can
be used to present crosscutting structure represented as a
concern graph [22] (Section 5).

An active model is only useful to a developer if the model
presents the right information to a developer at the right
time. To provide an initial assessment of whether our ap-
proach meets this goal, we undertook an exploratory case
study in which two subjects used the ActiveAspect tool for a
modification task on a non-trivial system (Section 4). Using
ActiveAspect, the two subjects were able to find the cross-
cutting structural information needed to make progress on
the assigned task. We analyzed and report on the results
of the study both quantitatively and qualitatively. We also
report on a comparison of accessing the structural informa-
tion needed by the subjects using the state-of-the-art tree
views provided by the AspectJ Development Tools (AJDT).
In short, the active model performed as expected, presenting
the information directly rather than requiring the subjects
to synthesize information from multiple views.

This paper makes three contributions:

• it introduces the active model approach as a means of
presenting crosscutting structure to a developer,

• it describes how the approach was applied to produce
a tool, called ActiveAspect, for displaying crosscutting
structure as defined by an AspectJ aspect, and

• it presents initial evidence that the approach can scale
to present non-trivial crosscutting structure effectively
to a developer.

2. EXISTING APPROACHES
Existing approaches for presenting the details of crosscut-

ting program structure are based either on tree-based dis-
plays or node-and-link structure diagrams. Although SeeSoft-
like [12] views and tree maps can be used to present a high-
level overview of crosscutting (e.g., [8, 14]); we do not in-
clude a detailed discussion of these tools as they lack de-
tailed information that is necessary for most development
tasks and thus serve a different purpose than our approach.

2.1 Tree Views
Several tools use tree views to present crosscutting struc-

ture (e.g., [3, 4, 7, 17, 20]). These views display program ele-
ments according to a hierarchical relationship that is rooted
at an element of interest. Typically, nodes in the tree remain
collapsed until the details about the children of the node are
required, at which time the child nodes may be expanded.

To explain some of the advantages and limitations of tree
views, we describe the use of the state-of-the-art AspectJ
Development Tools (AJDT) [3] plug-in for the Eclipse [2] de-
velopment environment to investigate crosscutting structure
associated with the Billing aspect in a sample telecommu-
nications program distributed with AspectJ (Figure 1).

One advantage of tree views is their simplicity. The Out-
line view in Figure 1 clearly shows which calls are advised
by a particular piece of advice in the aspect (the children of
the expanded afterReturning node). A significant disad-
vantage of using tree views for presenting crosscutting struc-
ture is that developers must often synthesize information
across multiple views. For example, a relationship between

Figure 1: AJDT and Eclipse tree views displaying
part of the crosscutting Billing aspect structure.

the calls that are advised becomes apparent only after con-
sidering information in the Hierarchy view on the top right
of Figure 1. A developer must synthesize information across
these views to build a model of the program’s crosscutting
structure. Another disadvantage of tree views is that they
are frequently replaced (re-used) for new queries, causing
developers to have to remember key parts of the structure
as it is discovered.

The heart of the problem is that the structure of a tree-
based presentation does not match the structure of the cross-
cutting information being presented. A tree is well-suited to
presenting a single program relationship that is strictly hi-
erarchical, such as inheritance. However, crosscutting struc-
ture consists of a, potentially cyclic, directed graph of pro-
gram elements and relationships. This mismatch between
program structure and presentation structure requires the
developer to mentally map between the two. This mismatch
also makes it difficult to detect structural patterns involving
multiple relationship types, such as the constructors of all
subclasses of a particular class being advised.

2.2 Static Structure Diagrams
Static structure diagrams, such as UML class diagrams [19],

are node-and-link diagrams where the nodes are program el-
ements (e.g., classes and methods) and the links are program
relationships (e.g., method invocations and inheritance).
These diagrams can directly show crosscutting program struc-
ture in a single view, accommodate multiple relationship
types, and make it easier to identify structural patterns.

Several existing round-trip engineering tools produce
object-oriented structure diagrams from code(e.g., [6]). All
too often, the diagrams produced by these tools quickly be-
come cluttered with nodes and relationships. Consider, for
example, displaying just the subset of program structure
that performs event logging in a system. This crosscutting
structure could involve nearly all classes in the system. The

presentation of this structure by an existing round-trip engi-
neering tool would contain each of the affected classes with
some number of relationships, such as associations, between
them. The resulting diagram would be excessively compli-
cated for any non-trivial application.

One possibility to overcome this graphical complexity prob-
lem is to introduce new notations specifically for modeling
crosscutting program structure. Several notations have been
proposed for modeling such structure associated with an as-
pect [24, 25, 9, 15]. The approaches taken in these notations
apply one of two high-level strategies: aspect classifiers or
aspect bindings.

In the first strategy, a new classifier1 is introduced to rep-
resent aspects similar to how a class is modeled in UML [24,
25]. A classifier for an aspect is then associated with the pro-
gram elements it affects by connecting lines between the in-
volved classifiers. This strategy displays crosscutting struc-
ture directly, but suffers from graphical complexity as it adds
more connections to already complicated diagrams of object-
oriented structure.

In the second strategy, crosscutting structure is described
separately from the base structure [9, 15] and a binding
mechanism is used to associate the two. The separation of
the two structures can reduce graphical complexity. How-
ever, the separation makes it more difficult to understand
the combined structure. A developer must parse the bind
statements and combine the two structures mentally. Any
automated means of presenting the results of these parse
and bind operations would again result in an overly com-
plex node-and-link diagram.

3. ACTIVE MODELS
In our active model approach we want to retain the ben-

efits of node-and-link diagrams while mitigating their main
weakness of graphical complexity. We achieve these benefits
through a combination of user interaction techniques and
operations that display a representative subset of a struc-
ture of interest to a developer. In this section we describe
the general active model approach using specific examples
from a concrete implementation of the approach called Ac-
tiveAspect.

An active model is a data structure that represents a part
of a program’s structure, such as classes, methods, and in-
heritance relationships, for the purpose of displaying it in an
interactive class diagram-like view. The initial content of an
active model is selected automatically from a given descrip-
tion of the crosscutting structure of interest. Examples of
structure descriptions include concern graphs captured by
the FEAT tool [4] and the crosscutting structures encap-
sulated by aspects in aspect-oriented languages. As shown
in Figure 2, an active model may also contain structure ob-
tained directly from the source code in addition to the source
code structure identified by the structure description.

A developer creates an active model by requesting a pro-
jection of a given crosscutting structure description (Fig-
ure 3). The projection operation selects the important struc-
ture to include in the initial active model. As part of this
process, the abstraction operation may reduce the complex-
ity of the produced structure diagram; the abstract elements
and relationships introduced by this operation are kept in

1The term classifier refers to encapsulation constructs such
as classes, interfaces, and aspects.

Figure 2: Active model data flow.

Figure 3: Active model work flow.

the active model. When the developer requires more detail
about the crosscutting structure, the expansion operation
is used to add detail to the model and diagram. As with
the initial projection, the abstraction operation may again
be used to help control the complexity of information in the
diagram and model.

The content of an active model is displayed as a design-like
diagram view. Figure 4 shows an example of a diagram view
of an active model. Detailed structure information present
in the model may not be visible in an initial view; the de-
veloper interacts with the view to investigate specific details
as required. There are many interaction models that can be
supported by the diagram view. For example, hovering over
a particular method of a class can cause method calls from
that method to temporarily appear in the diagram. Clicking
on the method could cause these relationships to be perma-
nently displayed or can cause the display of the source code
for the method.

Our ActiveAspect tool implements the active model ap-
proach to present crosscutting structure defined in an As-
pectJ aspect. ActiveAspect is packaged as a plug-in for
Eclipse, and implementation details can be found in [10].
Developers invoke ActiveAspect on an aspect of interest to
investigate its crosscutting structure.

3.1 Active Models for AspectJ
We consider the basis of an active model as the informa-

tion that can appear in a UML class diagram extended with
calls relationships. ActiveAspect extends this basic model
and diagram view with constructs for AspectJ.

3.1.1 Aspects
In an AspectJ active model, an aspect is represented as a

classifier in the same way as a class or interface. In addition
to fields and methods, aspects can have pointcuts and advice
as members. In the diagram, aspects are differentiated from
other classifiers by an ’A’ icon; pointcuts and advice also
have special icons. Figure 4 (top left) shows an aspect with
two advice denoted by cog icons.

Figure 4: A diagram of an active model of the Billing aspect.

3.1.2 Advice
When a method execution is advised, this is represented in

the active model and corresponding diagram by a member-
to-member advises relationship between the advice and the
advised method. When a method call or field reference is ad-
vised, the advises relationship connects the advice with the
relationship representing the advised call or field reference.

Advice often advise a number of parts of the program
structure and are therefore interactively displayed by hover-
ing over affected parts of the diagram to avoid unnecessary
complexity. Icons are used to indicate parts of the struc-
ture that are advised. In Figure 4, the user is hovering
over an icon that indicates that the method call is advised.
This causes the dashed advises relationship to be temporar-
ily drawn, revealing the advice that applies at that location.

3.1.3 Inter-type Declarations anddeclare parents

The members declared by inter-type declarations are mod-
eled and displayed as part of the target classifier rather than
in the declaring aspect because this allows the combined ef-
fect of inter-type declarations and advice on a particular
classifier to be displayed clearly. Furthermore, it is natu-
ral to reason about an inter-type declaration as part of the
target type because it runs in the scope of that type. Ac-
tive models include introduces relationships connecting the
inter-type declaration and the declaring aspect.

In the diagram, introduces relationships are drawn from
the name of the declaring aspect classifier to the inter-type
declaration. These relationships are shown by hovering over
the name of the declaring aspect or the declared inter-type
member. Icons are used to indicate which members are
inter-type declarations. For example, the payer field and
callRate() method in the Connection class in Figure 4 are
inter-type members.

AspectJ declare parents statements are modeled and
diagrammed by inserting the declared inheritance (or re-
alizes) relationship between the target type and it’s new
supertype. The inheritance relationship is annotated with
an icon to indicate that the relationship is declared by an
aspect. Hovering over the icon temporarily draws a relation-
ship indicating the declaring aspect.

3.2 Projection
The initial content of an active model is produced by the

projection operation which uses a set of heuristics to deter-
mine the most important elements and relationships of the
crosscutting structure. The operation selects elements and
relationships based on type and on structural properties,
such as the number of relationships to and from a particular
element. The heuristics can also determine which relation-
ships are to be permanently displayed in the diagram or
shown only while hovering over its endpoints.

In ActiveAspect, the projection operation selects program
structure that is directly influenced by the aspect of interest
as well as the aspect itself. The crosscutting structure di-
rectly influenced by the aspect is determined by its advice,
inter-type declarations, and declare parents statements.
The effect of each such statement in the given aspect is
added to the active model.

For each advice in the aspect, the advice is added as a
member of the aspect and the structure associated with the
static shadow of the advice is added to the model. This
structure can include methods whose executions are advised
or advised method call relationships as well as their source
and target methods. Inter-type members declared in the
aspect are added to the model as members of their target
types. For each declare parents statement in the aspect,
the specified subtype and supertype are added as well as an
inheritance or realization relationship between them. Fig-
ure 4 shows a diagram of the Billing aspect after these
projection rules have been applied to produce the model.
The user’s mouse is hovering over an icon that indicates the
presence of additional structure. This causes a relationship
(dashed in the diagram) to be drawn.

3.3 Expansion
The expansion operation is invoked by the developer to

add additional structure to an active model which provides
either more detail about the structure already present in the
model, or additional structural context. The operation con-
siders program elements and relationships neighboring those
that are currently visible in the diagram. Since some struc-
tural elements are more important than others, all possible
additions are ranked by an importance value, which mea-

Figure 5: A diagram from the active model of Billing after the expansion operation has been applied.

Table 1: These reference types are added to the
active model during expansion in the listed order.

Order Relationship
1 Method call from advice body
2 Reference from inter-type method
3 Reference to inter-type method
4 Reference from advice body to field in an-

other type
5 Reference to inter-type field

sures the likelihood that the addition will be of interest to
the developer. Importance values are computed as a func-
tion of the element or relationship type and other structural
information in the source code, such as the parent type and
number of associated relationships. The expansion opera-
tion selects the top ranking entries to add to the model and
diagram. The intent of the operation is to allow the devel-
oper to focus on understanding the crosscutting structure,
rather than on forming queries to access the information, as
is the case in other tools.

The expansion operation in ActiveAspect adds additional
method calls and field references to the model. The classi-
fiers containing referenced methods or fields are also added
as required. ActiveAspect uses a simple ranking as the im-
portance values as shown in Table 1.

For the programs we used to tune the heuristics,2 we con-
sistently found that the most important references to be dis-
played are method calls made from advice bodies. Advice
bodies implement the crosscutting behavior of an aspect and
therefore the calls made by them are particularly useful for
understanding the aspect’s effect.

After calls made by advice, we believe that calls made by
inter-type methods are likely to be relevant for similar rea-
sons. Inter-type methods implement crosscutting behavior
and it is important for developers to see how they interact
with the system. In general, we believe that field references
are lower-level details but are more likely to be of interest if

2Telecom and SpaceWar sample programs in the AspectJ
distribution and AspectTetris developed by Gustav Everts-
son (http://www.guzzzt.com/coding/aspecttetris.shtml).

Figure 6: A diagram of an active model of a pro-
filing structure where many elements have been ab-
stracted.

they are referenced from outside the class in which they are
declared.

Figure 5 shows the result of applying the expansion opera-
tion to the Billing aspect twice using ActiveAspect. The op-
eration has added several method calls made from the advice
in the Billing aspect because these relationships have the
highest ranking (Table 1). The Timer class and getTime()

method were added to the model because getTime() is the
target of one of the new relationships.

3.4 Abstraction
Crosscutting structures are frequently too large to be

drawn cleanly in one diagram. The abstraction operation
automatically reduces the complexity of the model after
projection and expansion operations by aggregating classi-
fiers, members, and relationships using structural informa-
tion from the source. To ensure the diagram retains detailed
information, a small number of examples of the aggregated
information are included. Examples are selected based on
their importance value, which is a function of their type and
the type of their relationships.

The diagram in Figure 6 shows that the around advice in
the Profiling aspect advises a number of elements aggre-
gated by the telecom package classifier. The members of
the telecom package classifier are examples of classes, and
methods in those classes, that are advised by Profiling.
The last member in the Profiling package classifier aggre-
gates six more classes that are advised by Profiling.

Hierarchical structure in a Java program can be used
to abstract related classes; a package classifier can be in-
troduced into the model and diagram with several classes
retained as examples. When hierarchical structure in the
source cannot help directly, we look for a shared property,
such as implementing a common interface, then a non-source
related aggregate member may be introduced into the class
(e.g., the aggregate member may be named: n methods im-
plementing IInterface). In the extreme case, we may have
several elements that are not obviously related, if they are
of low importance, we sometimes choose to create a new ag-
gregate member that simply groups these elements (e.g., the
aggregate member may be named: n more methods).

In ActiveAspect, abstraction of classifiers is guided by the
advice in the aspect of interest. Substantial parts of an
aspect’s crosscutting structure are often related through the
advice that applies to them. ActiveAspect takes advantage
of this relationship by selecting a small number of concrete
examples from large advice shadows and aggregating the
remaining structure, as shown in Figure 6.

Examples are selected based on a simple model of the
element characteristics that suggest they may be of interest
to the developer. In our model, the importance value of
an element is given by the value assigned to its element
type plus the sum of the values assigned to the relationships
connecting to the element.

The values assigned to elements and relationships by Ac-
tiveAspect for example selection are listed in Table 2. Ad-
vice are considered central to understanding the presented
aspect structure and are therefore assigned the highest value.
Fields are often lower-level implementation details and are
unlikely to be selected as examples. Relationship values were
selected so that elements with several relationships of the
types listed will be selected before elements of any type that
do not have relationships. Elements with many relationships
are more likely to be an important part of a crosscutting
structure.

When there are many members in a classifier, ActiveA-
spect aggregates members that have similar characteristics.
For example, methods advised by the same advice or intro-
duced by the same aspect may be grouped. Similarly, meth-
ods implementing a particular interface can be represented
by a single aggregate method.

ActiveAspect also uses the relationship aggregation fea-
ture of the active model notation to aggregate advises re-
lationships. When there are many members of a classifier
advised by the same advice, they can be represented by a
single aggregate advises relationship. In this case, the ag-
gregate relationship connects from the advice to the name
of the classifier containing many advised elements.

Several other approaches for abstracting structure dia-
grams have been proposed (e.g. [11, 21]). However, these
techniques do not provide detailed examples and the ab-
straction operations are limited to operating on the higher
level semantics available in UML class diagrams.

4. EVALUATION
Active models attempt to focus a developer’s time and ef-

fort on understanding the crosscutting structure of interest,
rather than on moving between views, disentangling compli-
cated diagrams, and searching through source code. To be
successful in meeting this goal, an active model must select
the information of highest interest to the developer most of

Table 2: Element and relationship values used to
select examples during the abstraction.

Elements
Type Value
Advice 10
Classifier 5
Pointcut 5
Inter-type Method 5
Inter-type Field 5
Constructor 3
Method 2
Field 1

Relationships
Type Value
Advises 5
Introduces 4
Uses Pointcut 4
Extends 3
Realizes 3
References 2

the time, and must make it straightforward to get to ad-
ditional detailed information when needed. As an initial
determination of whether active models have these features,
we performed a case study of the use of ActiveAspect by
others on a software modification task, and we compared
the information found with ActiveAspect for this task to
what can be found with AJDT, the current state-of-the-art
tool for displaying crosscutting structure.

4.1 Case Study
The case study involved a change task to the AspectJ

code for our own ActiveAspect tool. ActiveAspect com-
prises more than 100 classes and approximately 7000 lines
of code. We chose to use our own tool as the target be-
cause it was the largest available AspectJ system that did
not use aspect libraries, which are not yet supported by the
tool. The system was developed before it was determined
that the code would be used in the case study and the as-
pects were written without regard for their potential use as
concern descriptions.

The task was to enable a user to make a relationship that
is shown only on hover permanently visible by clicking on ei-
ther of its endpoints. We replicated this case study with two
different subjects. In each case, the subjects attempted to
implement the task using ActiveAspect. We were interested
in whether the heuristics in ActiveAspect were effective in
selecting information of interest to present, and whether the
desired information was presented when it was needed by
the developer.

4.1.1 Setup
To ensure we did not bias the study to a case for which Ac-

tiveAspect was particularly well-suited, we asked two grad-
uate students to suggest a range of possible changes to the
tool. We limited these students to suggestions that in-
volved one of eight features implemented, at least in part,
by an aspect. The students suggested 7 additions; we se-
lected the click-to-stick task randomly from this list. This

Table 3: Excerpt from a log of recorded structure
information events.

Structure Event Type In Model
Callers of setHidden() Query Yes
Two advice call showOn-
Demand()

Noticed Yes

Type hierarchy of Ab-
stractGraphicalEditPart

Query No

Call hierarchy for
mouseEntered()

Query No

task involves gaining an understanding and modifying the
OnDemandRelationships aspect, that contains 30 declara-
tions. A solution to this task by an author of this paper
required edits to three locations in the source code. The Ac-
tiveAspect model used by the author to complete the change
task involved over 100 program elements and relationships.
The chosen task thus involves a non-trivially sized crosscut-
ting structure.

The two subjects who participated in the study were grad-
uate computer science students who were familiar with As-
pectJ syntax but did not have substantial AspectJ develop-
ment experience. Neither subject had previously used Ac-
tiveAspect. To familiarize them with active model concepts,
each subject was given an overview of the approach and of
the use of the ActiveAspect tool. To ensure comprehension
of key concepts, subjects were asked to use ActiveAspect
to answer four questions about the crosscutting structure
of the Billing aspect (Section 2.1). Subjects were able to
answer these questions correctly with only a small amount
of assistance or clarification from the investigator.

We gave each subject a starting point—the name of the
aspect describing the structure associated with the change
task—because we found in a pilot run that the task was too
difficult for a developer without any prior knowledge of the
system to implement in a short period of time. We also gave
each subject a sketch of the overall user interface design to
focus on the use of ActiveAspect, rather than on an investi-
gation of the GEF user interface framework architecture on
which the tool is based [5].

Subjects were then asked to perform the modification task
using ActiveAspect as a source of crosscutting structure in-
formation they required. If the needed structure could not
be found, subjects were to use other features of the develop-
ment environment. While implementing the task, subjects
were asked to describe aloud the nature of any crosscut-
ting structure they discovered or wished to know. The ex-
perimenter, who is an author of this paper, logged these
instances, including whether the information was found us-
ing ActiveAspect. Table 3 shows an excerpt from the log
recorded during an experiment (We explain the second and
third columns in section 4.1.2.1).

4.1.2 Results
We analyzed the data gathered from the study quanti-

tatively to assess how much of the crosscutting structure
needed by the subjects was presented in the active model.
This assessment helps answer the question of whether the
active model has the right information. We rely on a quali-
tative analysis to assess whether the active model was pre-
senting the information at the right time.

4.1.2.1 Quantitative Analysis.
Both subjects were able to use ActiveAspect as the pri-

mary source of the crosscutting structure information they
required as they implemented the change task. A total of 16
and 13 events were logged for each subject, respectively. For
10 (63%) and 11 (83%) of the events, respectively, the struc-
ture information of interest was found in the active model.

The logged information events can be classified as either
structure queries or noticed structure. A structure query
event occurs when the subject needs explicitly to know some-
thing about the structure, such as asking “What are the
callers of showOnDemandRels()?” (Subject 1). A noticed
structure event occurs when the subject finds structural in-
formation believed to be important but for which the subject
was not explicitly looking, such as “I see that setHidden()

is introduced from the aspect” (Subject 2).
During the implementation of the modification, 12 and

7 structure queries were logged for each subject, respec-
tively. Subject 1 was able to satisfy 50% of the 12 queries
using the active model; Subject 2 was able to satisfy 86%
of their queries using the active model. Some queries, such
as those involving inter-type declarations and shadows of
advice associated with the aspect of interest, were found
easily. With some effort, through the use of the expansion
operation, queries regarding method calls to and from parts
of this structure were also satisfied. The active model did
not provide answers to queries that involved structure re-
lated only distantly to the task. Examples include a query
about the members of the Figure class from the drawing
framework used to implement the tool, and a request for
the call hierarchy for the mousePressed method, which is
invoked by the drawing framework. These types of queries
partially account for the lower percentage of required struc-
ture found by Subject 1 using the active model. There
was a single logged case in which the answer to a subject’s
structure query could not be answered using the model but
would clearly have contributed to their understanding. This
query by Subject 1 was “What is the type hierarchy for
AbstractGraphicalEditPart?” The answer to this query
would help determine the best place in the hierarchy for
declaring a new field needed for the task.

In addition to structure that was explicitly investigated,
the subjects reported noticed structure, structure they
deemed relevant but for which they did not actively search.
Both subjects discovered such structure in 4 and 6 events,
respectively. For Subject 1, the active model was the source
of the noticed structure in all 4 cases. The relevant struc-
ture information noticed by Subject 2 was found in the ac-
tive model in 5 (83%) of cases. Table 4 summarizes the
structure information events from the log for each subject.

4.1.2.2 Qualitative Analysis.
Figure 7 shows a diagram of the active model for the

OnDemandRelationships aspect after the expansion oper-
ation has been applied six times. The presented structure
includes all three classifiers that were edited by the sub-
jects: ModelRelationship, MemberEditPart, and OnDemand

Relationships). For the ModelRelationship class, four
members for controlling the visible state of a relationship
that are introduced through inter-type declarations are shown.
In the MemberEditPart class, the displayed mouseEntered

method is similar to the mousePressed method that is a re-
quired part of the code to understand for the change task.

Table 4: Summary of recorded structure informa-
tion events.

Subject S1 S2
Total recorded structure
events

16 13

Total number of events satis-
fied by ActiveAspect

10 (63%) 11 (85%)

Number of structure queries 12 7
Structure queries satisfied by
ActiveAspect

6 (50%) 6 (86%)

Useful structures noticed 4 6
Useful structures noticed in
ActiveAspect

4 (100%) 5 (83%)

When the mouseEntered method is hovered, an arrow ap-
pears indicating the presence of an advice that applies to
that method. Both subjects’ solution for the change task
involved writing an advice very similar to the one shown.
Thus the diagram was able to show simultaneously much of
the structure that was useful in implementing the task.

Subjects used the expansion operator primarily to look for
callers of a method of interest. This approach was success-
ful in nearly all cases. However, both subjects found this
feature awkward to use because the operation needed to be
performed several times before the relationship of interest
appeared. When the relationship did appear, the diagram
had often become cluttered with relationships in which the
the subject was not interested at the time. Furthermore,
some relationships added by the expansion operation were
shown only when hovering over an associated member. The
subjects found this behavior confusing because they could
not see the result of an expansion. They both suggested
that expanding relationships associated with a particular
member of interest would likely improve the ability of the
expansion operation to provide the information of interest.

The active model investigated in the study included an ag-
gregate element advised by the OnDemandRelationships as-
pect (top-center in Figure 7). This aggregate node presents
one or more methods in each of four classes. Neither of the
subjects’ logged events involved any of these classes. We
consider the aggregation successful because it prevented the
display of three unnecessary classifier nodes. The abstrac-
tion operation also aggregated two accessor methods in the
ModelRelationship class. At one point during the task,
Subject 2 wished to see the callers of one of the methods,
although this was not required for implementing the change
task. In this case, the abstraction caused the call arrows to
connect to a single aggregate member, which made it diffi-
cult to determine the call targets.

Overall, within a reasonable number of expansion steps,
the active model included most of the crosscutting structural
information needed by the subjects. The abstraction intro-
duced in the model helped to elide information that would
otherwise have cluttered the diagram. Some refinement on
the way the expansion operation is invoked is needed to
make it easier for developers to focus the model to provide
detail on the most relevant program structure.

4.2 Comparison With AJDT
AJDT is the most commonly used tool for presenting

crosscutting structure described by an AspectJ aspect. To

Table 5: Number of Eclipse or AJDT tree views
required to satisfy logged information events.

View S1 S2
Outline 3 1
Call Hierarchy 7 4
Type Hierarchy 1 1
Total Views Required 11 6

further evaluate whether ActiveAspect presents the right
structural information within fewer views, we compare where
the information of interest to the developers would be found
in the views provided by AJDT.

The information needed by the subjects can be obtained
using the AJDT outline, AJDT call hierarchy, and Eclipse
JDT type hierarchy tree views. To satisfy the events we
logged during the study, subjects 1 and 2 would have needed
to open 11 and 6 views, respectively (Table 5).

The need to use several views requires a developer to syn-
thesize information between views. For example, the key
structure to understand to complete the modification task
was an advice on mouseEntered methods, another advice
on mouseExited members, and a method invoked by these
advice to set relationship visibility in the diagram. Using
AJDT and Eclipse views to discover this structure requires
separate investigation of the shadows of each advice using
the outline or two cross reference views, as well as a callee
hierarchy for each advice.3 In contrast, this information
can be obtained from an active model simply by hovering
over the advice of interest and noting the symmetry of their
shadows and that they both invoke the same method.

Many of the information events in the log could be satis-
fied using the outline view for the OnDemandRelationships

aspect. However, this view shows all 30 declarations in the
aspect. When fully expanded, 70 program elements and
their relationship to the aspect are visible. Due to the hier-
archical presentation, a developer must synthesize informa-
tion even within this view. Finding advice with the same
shadows, for instance, requires expanding child nodes and
comparing the results manually. Understanding that classes
containing some of the advised elements realize a common
interface requires similar digging through the nodes and
synthesizing information. In contrast, ActiveAspect clearly
shows the pattern (Figure 7).

4.3 Limitations
Our case study results rely upon the log of events cre-

ated by the experimenter as the subjects performed the task.
This log may be incomplete because the subjects found it
difficult to state precisely the structure in which they were
interested. The log may also be incomplete because sub-
jects did not always volunteer information, rather the exper-
imenter had to prompt for whether a query about structure
was occurring. The possibility thus exists that there is struc-
tural information not provided by ActiveAspect that we did
not consider in our analysis. If such situations occurred, we
believe they were mostly limited to localized information a
subject could glean from the source code as we prompted

3We have assumed this feature to be available for the pur-
pose of this analysis although the current version of AJDT
does not yet support callee hierarchies for advice.

Figure 7: A snapshot of the active model diagram for the structure associated with the case study change
task after six expansions. The user is currently hovering over the mouseEntered(..) method.

the subjects for their query when they accessed crosscutting
structural information presented in other Eclipse views.

5. DISCUSSION
Although further validation is necessary, the case study

presented in the previous section provides initial evidence
that useful active models of crosscutting structure can be
produced automatically. However, several open questions
remain.

5.1 Alternative Structure Descriptions
One question is whether the active model approach can

be applied to present other means of identifying crosscut-
ting structure. To sketch what would be required, we con-
sider the steps involved in building an active model tool
for concern graphs [22] as captured by the FEAT [4] tool.4

The first consideration is what elements and relationships
to support in the active model. In this case, these elements
and relationships would be the same as those in a struc-
tural representation of a Java program. A subset of the
elements and relationships in ActiveAspect would suffice.
The second consideration is the notation used to display a
diagram from the active model; here also, a subset of the
ActiveAspect notation would suffice. Third, we must define
heuristics for projection, which might be selecting only pub-
lic members and relationships in the concern graph. Fourth,
we must choose expansion heuristics; there may be similar
to ActiveAspect’s, such as adding inter-class method calls
first, followed by field references. Finally, rules for abstrac-
tion must be set, such as if a method calls similarly named
methods in N other classes, they should be aggregated with
only one call selected as an example. Although creating a

4A concern graph describes crosscutting structure as pro-
gram elements and relationships drawn from a program
model. The FEAT tool supports the creation of concern
graphs from the structure comprising a Java program. A
similar set of steps would be needed to create an active
model tool for concerns described with CME [7].

new active model tool is not insignificant, we believe the
effort in selecting appropriate rules and heuristics is reason-
able as the developer is answering questions within a frame-
work, rather than attempting to reduce a graphical clutter
problem with no structure.

5.2 Improving the Expansion Operation
A second question is whether a general expansion opera-

tion is appropriate, or if the expansion should be directed
by the developer. We had chosen to investigate a general
expansion operation as a means of reducing the need for a
developer to break out of the flow of their work to access
more information to form a specific query. However, both
subjects in our case study commented that they most often
needed to see additional relationships for a particular pro-
gram element rather than for the whole model. Each subject
expanded repeatedly until relationships appeared for the el-
ement of interest. These operations required too much time,
and the subjects were often not interested in the other rela-
tionships that were added to the model. Another problem
was that some newly added structure was immediately set
to be only shown on mouse hover. This made it difficult to
determine where new structure was added.

These comments suggest a focused expansion approach in
which a classifier or specific member of a classifier is used
as the focus for which more relationships are desired. This
approach is similar to that supported by Relo [23] although
Relo does not automatically manage complexity through ab-
straction. Focused expansion would have more quickly satis-
fied each of the method call structure queries logged during
the case study and has been implemented in a later version
of ActiveAspect.

5.3 Alternative Presentations
A third question is whether ActiveAspect’s effectiveness

could be improved through alternative active model presen-
tation and interaction techniques. We consider ActiveA-
spect to be an experimental user interface for active models
and there are many variations that could be implemented.

For example, member highlighting could be used in place
of relationship arrows and the click-to-stick functionality
implemented in the case study appears to be a promising
improvement. There are also many possible variations for
the visual cues used to indicate the presence of crosscut-
ting structure. Further study is required to investigate and
validate these alternatives.

5.4 Scalability
There is a question as to whether the abstraction oper-

ation is sufficient to allow the approach to scale to han-
dle most crosscutting structures with which developers will
need to work. One indication that the approach will work
with moderately sized crosscutting structures comes from
the structure used in the task for the case study. As de-
scribed earlier, this crosscutting structure includes well over
100 program elements and relationships.

The ability of our approach to handle large crosscutting
structures rests largely on the effectiveness of the abstraction
operation. We believe useful abstraction rules can be stated
because the intent of the approach is to provide detailed, fo-
cused information. With each display of the model, we can
choose to elide structure that is not the focus of the current
part of the investigation by the developer. Our approach is
more closely aligned with a fish-eye view [13] of the structure
of interest, than of earlier reverse engineering approaches
(e.g., [16]), which attempted to abstract an overview of the
structure. The reverse engineering approaches suffer from
a difficulty in producing meaningful names for abstracted
entities. By remaining close to the source, and by providing
examples of the aggregation, we remove the need to auto-
matically produce such a name, and hence do not suffer from
this problem.

6. SUMMARY
Existing approaches for presenting crosscutting structure

include tree views, which require developers to manually
synthesize information across multiple views, and existing
static structure diagrams, which tend to suffer from exces-
sive graphical complexity. We have introduced active models
as an approach that addresses these problems by presenting
the right subset of crosscutting structure at the right time.
The right information is determined through automatic pro-
jection and abstraction operations that select elements and
relationships likely to be of interest and that abstract those
elements and relationships to control the diagram complex-
ity when too many similar cases occur. The information is
presented at the right time through a combination of a user-
driven expansion operation that adds detail to the model,
and interaction features that show some information only
on demand by the user.

Active models differ from existing modeling approaches
by allowing a developer to focus on a slice of the model of
the entire system. Active models differ from existing visu-
alization approaches by considering how to present a small,
focused, detailed view of program structure. We believe that
active models hold promise for breaking developers out of
source code only views of their systems.

7. ACKNOWLEDGMENTS
The authors would like to thank Mik Kersten for his assis-

tance with the AspectJ compiler and Chris Dutchyn, Kevin

Sullivan, and Miryung Kim for commenting on earlier drafts
of this paper. This work was supported by a UBC graduate
fellowship and NSERC.

8. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj/, 2005.

[2] Eclipse. http://www.eclipse.org/, 2005.

[3] Eclipse AspectJ Development Tools Project.
http://www.eclipse.org/ajdt/, 2005.

[4] FEAT: An Eclipse Plugin for Locating, Describing,
and Analyzing Concerns in Source Code.
http://www.cs.ubc.ca/labs/spl/projects/feat/, 2005.

[5] Graphical Editor Framework.
http://www.eclipse.org/gef/, 2005.

[6] Omondo. http://www.omondo.com/, 2005.

[7] The Concern Manipulation Environment Project.
http://www.eclipse.org/cme/, 2005.

[8] Asbro.
http://www.cs.manchester.ac.uk/cnc/hendrik/asbrohome.php,
2006.

[9] S. Clarke and R. J. Walker. Composition patterns: An
approach to designing reusable aspects. In Proc. of
ICSE, pages 5–14, 2001.

[10] W. Coelho. Presenting Crosscutting Structure with
Active Models. Master’s thesis, University of British
Columbia, 2005.

[11] A. Egyed. Semantic abstraction rules for class
diagrams. In Proc. of ASE, page 301, 2000.

[12] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner.
Seesoft-a tool for visualizing line oriented software
statistics. IEEE Trans. Softw. Eng., 18(11):957–968,
1992.

[13] G. W. Furnas. Generalized fisheye views. In Proc. of
CHI, pages 16–23, 1986.

[14] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting
the map metaphor in a tool for software evolution. In
Proc. of ICSE, pages 265–274, 2001.

[15] I. Groher and S. Schulze. Generating aspect code from
UML models. In AOSD Workshops, 2003.

[16] D. Hutchens and V. Basili. System structure analysis:
Clustering with data bindings. SE-11(8):749–757,
1985.

[17] D. Janzen and K. D. Volder. Navigating and querying
code without getting lost. In Proc. of AOSD, pages
178–187, 2003.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proc. of ECOOP,
pages 220–242. 1997.

[19] OMG. The Unified Modeling Language Specification.
Version 1.4, 2001.

[20] J. Pfeiffer, A. Sardos, and J. R. Gurd. Complex code
querying and navigation for aspectj. In Proc. of
Eclipse Technology eXchange, 2005.

[21] F. D. Racz and K. Koskimies. Tool-supported
compression of uml class diagrams. In Proc. of UML,
1999.

[22] M. P. Robillard and G. C. Murphy. Concern graphs:
finding and describing concerns using structural
program dependencies. In Proc. of ICSE, pages
406–416, 2002.

[23] V. Sinha, R. Miller, and D. Karger. Interactive
exploratory visualization of relationships in large
codebases for program comprehension. In Proc. of
Eclipse Technology eXchange, 2005.

[24] D. Stein, S. Hanenberg, and R. Unland. Designing
aspect-oriented crosscutting in UML. In AOSD
Workshops, 2002.

[25] J. Suzuki and Y. Yamamoto. Extending UML with
aspects: Aspect support in the design phase. In
ECOOP Workshops, pages 299–300, 1999.

[26] M. Weiser. Programmers use slices when debugging.
Commun. ACM, 25(7):446–452, 1982.

[27] N. Wilde and M. C. Scully. Software reconnaissance:
mapping program features to code. Journal of
Software Maintenance, 7(1):49–62, 1995.

