
Separation and Composition of Overlapping and Interacting Concerns

António Rito Silva
INESC/IST Technical University of Lisbon

Rua Alves Redol no9, 1000 Lisboa, PORTUGAL
Rito.Silva@fACM.org | INESC.ptg

Abstract

This position paper presents some of the problems we
had and the results we achieved in the last 4 years of
work when defining and developing DASCo [24]. DAS-
Co (Development of Distributed Applications with Separa-
tion of Concerns) is an approach for developing object-
oriented concurrent and distributed programs using a
separation of concerns strategy. In this position pa-
per we emphasize separation and composition of non-
orthogonal concerns. The interested reader can ob-
tain more information from the DASCo web page at
http://www.esw.inesc.pt/˜ars/dasco.

1. Introduction

Separation of concerns approaches have to deal with two
different issues: abstractions and integration mechanisms.
The former describes solutions for domain-specific aspects
of the software, e.g. object synchronization. The latter are
responsible for integrating abstractions among themselves
and with the functionality object, e.g. the integration of
an object synchronization abstraction with the functionality
object.

Non-separation of concerns approaches, called unifica-
tion approaches, do not separate the abstractions from the
object model. For instance, in the POOL-T [2] object mod-
el, all objects possess an internal activity, they are called
sequential objects. That way, integration mechanisms are
not necessary, because whenever an object is defined it is
immediately a sequential object, it is from the very be-
gin integrated with an abstraction for object concurrency.
The advantage of unification approaches is in the simplicity
they present to the final programmer. For instance, object
concurrency abstractions are more transparent. However,
unification approaches, to be flexible, have to include in the
object model composition and extensibility primitives [6]
associated with abstractions, which, sometimes, have unex-
pected repercussions on the semantics of the object model.

The inheritance anomaly problem [15] is a well-known sit-
uation, extensively discussed in the literature, that results of
unification approaches [17].

To avoid the flexibility problems of unification approach-
es, separation of concerns approaches, e.g. [3], integrate
abstractions only in the final program. The gain is in flexi-
bility, for abstractions are separated from functionality, thus
facilitating their customization and reuse.

The first requirement for separation of concerns ap-
proaches is to provide flexible abstractions for software con-
cerns.

The separation of concerns forces their later composi-
tion. Two perspectives exist regarding concern composi-
tion: orthogonal and non-orthogonal. The orthogonal per-
spective considers abstractions to be completely orthogonal
being enough to join them [1, 5, 16], e.g. join them se-
quentially, while the non-orthogonal perspective considers
that concern composition must consistently integrate the
abstractions parts exhibiting semantic overlapping [18, 12].
Note that the orthogonal compositionperspective is domain-
independent, since there is no semantic overlapping. In that
case the composition can be mostly supported by the inte-
gration mechanism.

The second requirement for separation of concerns ap-
proaches is to support abstraction composition.

In terms of integration mechanisms, separation of con-
cerns approaches may be based on design solutions [7], on
compilers [3], or on reflection [14].

The Proxy pattern [7] is an example of an integration
mechanism based on design solutions. For instance, when
applying theProxy pattern to the functional object, the inter-
face is separated from the implementation. The integration
of abstractions is done through a new implementation of
the functional object’s interface which uses the previous
functionality implementation. Thus, the integration does
not change the functional object’s implementation, facilitat-
ing incremental development. Moreover, clients need not be
changed for the interface they use remains the same. The dis-
advantage of this solution is that all functional classes must
have an abstract interface and objects creating instances of

1



these classes must use anAbstract Factory [7] so that they
may ignore the actual class implementation they are using.

When using a compiler as an integration mechanism [3],
code generation is automatic and avoids the need for func-
tional classes to have abstract interfaces. However, this
integration mechanism does not allow run-time substitution
of concurrency support constructions.

Reflection [14] is an integration mechanism1 which al-
lows control and customization of a computational system’s
behavior through changes to a meta-system built of meta-
objects [10]. Meta-objects should support the abstractions.
It is the responsibility of the reflection’s object model to
integrate the abstractions. In addition, reflection allows run-
time meta-object replacement.

The third requirement for separation of concerns ap-
proaches is to describe abstractions and abstraction com-
position independently of integration mechanisms.

Obviously, the flexibility provided by separation of con-
cern approaches pay a price on simplicity. It would be
important to have a good balance between flexibility and
simplicity.

The fourth requirement for separation of concerns ap-
proaches is to balance abstraction flexibility and use sim-
plicity.

2. DASCo Approach

DASCo approach is based on design patterns, compo-
sition patterns, and object-oriented frameworks to, respec-
tively, describe abstractions, describe abstractions compo-
sition, and implement and integrate abstractions and their
compositions. This approach fulfills the four requirements
mentioned in the previous section.

When introducing DASCo approach we will use exam-
ples from concurrent programming concerns, as object syn-
chronization and object concurrency. A complete descrip-
tion of these concerns can be found in [22].

2.1. Design Patterns

A design pattern [7] is defined for each abstraction. De-
sign patterns must have the following properties in order to
describe flexible abstractions:

� Expressiveness. Several abstraction policies are sup-
ported by specializing the design pattern associated
with the abstraction. For instance: an object concur-
rency pattern has, among others, specializations for
sequential and concurrent objects.

1Briot et al.[4] considers reflection as classifying a set of approaches.
This classification is centered on the properties of integration mechanisms.

� Modularity. Each concern’s design pattern must sep-
arate the abstraction from the object’s functionality.
Modularity facilitates incremental development, for it
is possible to develop and replace the implementation
of the abstraction separately from the object’s function-
ality.

� Reusability. Each abstraction and functional objects
must be separately reusable and extendible. For in-
stance, synchronization and functionality must not be
reused together using, for instance, inheritance. That
way, synchronization can be integrated,a posteriori,
with each concrete class to be synchronized.

2.2. Composition Patterns

Abstraction composition is obtained from the composi-
tion of each concern’s design patterns. For instance, to ob-
tain an abstraction for a synchronized and concurrent object
it is necessary to compose design patterns corresponding to
the object synchronization and object concurrency abstrac-
tions.

The composition of design patterns also constitute an ab-
straction described by a design pattern which participants are
built by composing each involved pattern’s participants. In
addition, the composition pattern’s collaborations are built
from the collaborations of each pattern participating in the
composition.

From our experimentation, we concluded that orthogonal
composition is rather restrictive. In many situations there
is semantic overlapping between the different abstractions.
Moreover, we verified that some composition abstractions
have their own policies that are not trivially inferred from
each of the composed abstractions:“The whole is more than
the sum of its parts” [22].

So, in order to support abstraction composition, compo-
sition patterns must possess the following properties:

� Conservation. The properties of each of the partici-
pating design pattern’s properties must be preserved.
For instance, the expressiveness of each design pattern
must be maintained isolated in the composition pattern.

� Consistency. In spite of conservation, the semantic
overlapping between abstractions should be handled.
To deal with the synergy generated by the abstraction
composition, the composition pattern should describe
the new policies, that result from the composition. It
should also describe what are the consistent combina-
tions of overlapping parts and what are the restriction
to policy composition. A matrix can be used to identi-
fy new policies and the associated participants patterns
policies combination restrictions.

2



CONCERN LAYER

COMPOSITION LAYER

APPLICATION LAYER

CONCERN B

COMPOSITION Y

PROGRAM

COMPOSITION X

CONCERN A

CLASS C1 CLASS C2
CONCERNS A,B

composition
concern

composition
concern

composition
concern

component
integration

component
integration

policy policy policy

CONCERN A

customization customization customization

Figure 1. Architecture of the Three-layered Object-oriented Framework with Separation of Concerns.

We have found that not all the policies composition re-
strictions can be easily described with generality. When
the policy is not object-independent there is no generic rule
to describe those restrictions. This happens because the
abstraction depends on the object implementation. For in-
stance, consider a readers/writers policy on an object that
uses a update-in-place recovery policy [23], the object is
immediately updated by invocations. In this situation two
write operations on the same attribute can not execute con-
currently. However, if a deferred-update policy [23] is used,
the invocations execute on different copy objects, two write
operations can execute concurrently without generating a
crash.

2.3. Three-layered Object-oriented Framework

Since the design patterns and composition patterns de-
scribe abstractions withoutconsideringa specific integration
mechanism, DASCo approach satisfies the third requiremen-
t. To fulfill the fourth requirement it is necessary to consider
abstractions implementation because simplicity will be pro-
vided by interfaces and encapsulation.

Design and composition patterns are implemented in a
three-layered object-oriented framework with separation of
concerns. In this framework, classes implementing design
and composition patterns are grouped within components2.

2A component is defined by Nierstrasz & Dami[19] as being an ab-
straction of a software module which encapsulates its implementation’s

In the object-oriented framework’s concrete case, compo-
nents consist of classes implementing design and composi-
tion patterns, and are instantiated either through instantiation
of the explicit interface’s parameters or through specializa-
tion of some of their classes.

Figure 1 represents a component diagram. It illustrates
the architecture of the three-layered object-oriented frame-
work with separation of concerns.

The object-oriented framework’s three layers are:

� Concern. The concern layer contains classes imple-
menting each of the design patterns. These classes
are grouped within components called concern com-
ponents. In addition to ensuring the design patterns’
properties, concern components must provide a set of
classes to support composition of concern components
and customization of concern policies to be done, re-
spectively, in the composition and application layers.

� Composition. The composition layer contains classes
implementing composition patterns. These classes are
grouped within components called composition com-
ponents. In addition to ensuring the composition pat-
terns’ properties, composition components must define
aminimal interface. A composition component’s mini-
mal interface is instantiated to integrate the component
in the application layer. Using the minimal interface,

details and has an explicit interface through which systems can be built by
instantiating its parameters and connecting to other components.

3



the final programmer does not need to know the details
of the patterns’ composition, which are encapsulated
by the component, thus simplifying the framework’s
use. The singular composition of concern components,
e.g. Composition X in figure 1, is needed to give
the corresponding concern component a minimal inter-
face.

� Application. In the application layer composition
components are integrated in the final program and
concern components are customized so that they pro-
vide the policies required by the program’s functional
objects. For instance, to obtain a concurrent and syn-
chronized object it is necessary to integrate the func-
tional object and the concurrent synchronized object
composition component using its minimal interface. In
addition, it is necessary to customize the correspond-
ing concern components by specializing some of their
classes. It should be noted that the composition com-
ponent must be independent from customizations of
concern components. Integration and customization in
the application layer must respect the following prop-
erties:

– Transparent Integration. The integration of com-
positioncomponents with functionalobjects must
be as transparent as possible, so that function-
al objects and their clients need not be changed.
This property depends on the integration mecha-
nism to be used.

– Incremental Customization. The customization
of concern components must be independent from
the customizations of the remaining concern com-
ponents. For instance, incrementally changing a
synchronized object into a concurrent and syn-
chronized object should require only, from the
customization point of view, the concurrency
component’s customization. The previous cus-
tomization of the synchronization component is
reused. This property establishes a compromise
between conservation and consistency properties
of composition patterns, the complexities of com-
position are hidden by the composition compo-
nent but concern components customization still
orthogonal.

The object-oriented framework implements the property
of pattern reusability either as white-box reuse or as black-
box reuse. Customization of concern component classes
is white-box reuse, which has great flexibility but requires
the programmer to know about the design pattern’s inter-
nal structure. However, if the programmer uses predefined
policy implementations then black-box reuse is being done

for the programmer has only to create instances of previ-
ously customized classes and associate them with the cor-
responding invocations. In this situation, arrowpolicy
customization in figure 1 indicates, in fact, that a pre-
viously customized policy is being used.

3. Related Work

DASCo follows a multi-dimensional separation of con-
cern [25] where abstractions are hyperslices. In this section
we discuss other separation of concerns approaches.

Subject-oriented programming [9, 20] is a separation of
concerns approach which defines classes by composing them
from subjects. Each subject provides a particular point of
view of a class. A subject can be related with a DASCo
design pattern. Subject composition rules do not distinguish
composition from customization.

Kicsales et al.[11] defines a set of rules for defining
modules using reflection, called open implementation [13].
These modules seek to establish a trade-off between black-
box reuse and white-box reuse. Thus, each module offers
a meta-interface through which the programmer is able to
choose the module’s implementation details, e.g. the imple-
mentation type of a list module. As conclusion of his exper-
iments with open implementation, Haines[8] indicates, as
this approach’s main problem, the difficulties in composing
meta-interfaces which are not completely orthogonal. In our
opinion, this problem arises from not defining two compo-
sition levels, for composition and customization are carried
out using the meta-interface.

The decomposition in components of finer granularity,
proposed in the CodA reflective architecture [16] seek-
s to avoid the problems of abstraction composition. Co-
dA defines seven meta-objects:send, accept, queue,
receive, protocol, execution, andstate. The
seven meta-objects which form the architecture must be
customized and composed among themselves in order to
support the required concerns. Due to the fine granularity of
each meta-object, these have a small number of responsibil-
ities and their composition is orthogonal, for it is sufficient
to specialize each of them separately. The disadvantage
of CodA is in the complexity associated with meta-object
composition, for they do not have a correspondence with
concerns and thus it is necessary to understand all roles a
meta-object has in different concerns. Again, this problem
arises from not having two composition levels as proposed
in the three-layered framework. In contrast, in the DASCo
approach it is easier to define each concern’s customization,
for it is separated from composition, and the composition
component encapsulates the complexity associated with the
composition of concern components.

Compositionfilters [1] extend the object model with vari-
ous non-functionalcomponents - composition filters - which

4



intercept object messages, both incoming and outgoing, ex-
pressing restrictions such as, for instance, on synchroniza-
tion. Composition filters are sequentially composed and
the composition semantics is given by the logical operators:
AND, if a message has to pass through both filters; andOR,
if a message needs only to pass through one of them. So,
composition is orthogonal. It has been seen that consistent
compositions are not necessarily sequential or nested com-
positions. This leads to the representation of each concern
by several filters, to allow non-sequential and non-nested
compositions. In this way, the goal of having a filter for each
concern is not accomplished. The solution becomes clos-
er to the fragmentation present in the CodA approach [16],
with the complexity problems already mentioned above.

Aspect-oriented programming [12] consists of a com-
ponent language to program functionality, one or more as-
pect languages to program concerns, and an aspect weaver
which combines languages. Programs are separately built
using the different languages. Aspect-oriented program-
ming allows non-orthogonal composition and delegates on
the aspect weaver the resolution of complexity associated
with concern combination. The weaver is the integration
mechanism. We have seen that several composition policies
may exist, being the programmer’s responsible for choosing
one of them. Using aspect-oriented programming, it will
be necessary, in this context, to define a language capable
of expressing the several composition policies: a language
capable of composing aspect languages. This language is
not considered, to the extent of our knowledge, by aspect-
oriented programming approaches. In addition, the relation-
ship between these composition languages and the aspect
weaver is not clear.

The only approach, we are aware of, that distinguishesan
application layer from a composition layer is described by
Mulet et al.[18] in the context of meta-object composition.
In this approach, a composition architecture is defined which
hides from the final programmers the details of meta-object
implementation and of their composition. In addition, the
approach identifies three properties meta-objects must pos-
sess in order to be composed: encapsulation, independence
(modularity), and exclusiveness. However, the approach
does not consider the possibility of concern customization
by the user, for their customization is done jointly with their
composition.

Role model design [21], where (i) design patterns may be
described using role models; (ii) composition patterns may
be described as compositions of the role models of the partic-
ipating design patterns; and (iii) object-oriented frameworks
may be described using class models including role models
of both design patterns and composition patterns, seems to
be a suitable formalism to describe DASCo design patterns,
pattern composition and object-oriented frameworks.

4. Conclusion

The approach proposed in this paper is based on separa-
tion of concerns and uses design patterns to separately de-
scribe abstractions. Implementations of design patterns fol-
low a three-layered architecture with separation of concerns.
The minimal interface property of the architecture’s compo-
sition components simplifies their use by the programmer
of functional classes, for it limits the set of concepts the
programmer must know and handle. The properties defined
for the abstractions and the three-layered architecture do not
impose the use of a specific integration mechanism.

In order to control the complexity associated with the
development of programs different abstraction levels have
been defined. Each corresponds to a different kind of us-
er/programmer:

� The final programmer may use the object-oriented
framework knowing only the policy, for instance, read-
ers/writers, needed for the functional object. In this
case, the programmer uses a predefined policy of the
object synchronization pattern. If the programmer
wants to customize the policy according to specific
needs, then a specific synchronization policy has to be
implemented. For this, the programmer must possess
the knowledge described by the abstraction and know
how it is implemented in the corresponding concern
component. In this situation, the programmer is not re-
quired to know about the particularities of composition
patterns nor about their implementation.

� Framework programmers need to have more knowl-
edge, both of specific domain abstractions: object syn-
chronization, object concurrency, and object recovery;
and of the patterns’ implementation and their compo-
sition.

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Y-
onezawa. Abstracting object interactions using composition
filters. In R. Guerraoui, O. Nierstrasz, and M. Riveill, editors,
Proceedings of the ECOOP’93 Workshop on Object-Based
Distributed Programming, volume 791 ofLecture Notes in
Computer Science, pages 152–184. Springer-Verlag, 1994.

[2] P. America. Pool-t: A parallel object-oriented language.
In A. Yonezawa and M. Tokoro, editors,Object-Oriented
ConcurrentProgramming, pages199–220.MIT Press, 1987.

[3] C. Atkinson, S. Goldsack, A. di Maio, and R. Bayan. Object-
oriented concurrency and distribution in dragoon.Journal
of Object-Oriented Programming, 4(1):11–18, March/April
1991.

[4] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and
distribution in object-oriented programming.ACM Comput-
ing Surveys, 30(3):291–329, September 1998.

5



[5] I. Forman, S. Danforth, and H. Madduri. Composition of
before/after metaclasses in som. InOOPSLA’94, pages 427–
439, Portland, Oregon, October 1994.

[6] S. Frolund. Inheritance of Synchronization Constraints
in Concurrent Object-Oriented Programming Languages.
In ECOOP’92, pages 185–196, Utrecht, The Netherlands,
June/July 1992.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[8] M. Haines. An Open Implementation Analysis and Design
for Lightweight Threads. InConference on Object-Oriented
Programming Systems, Languages and Applications, Pro-
ceedings, pages 229–242, Atlanta, Georgia, USA, October
1997.

[9] W. Harrison and H. Ossher. Subject-Oriented Programming
(A Critique of Pure Objects). InOOPSLA ’93 Proceedings,
pages 411–428, Washington, DC, September 1993.

[10] G. Kicsales, J. des Rivieres, and D. Bobrow.The Art of the
Meta-Object Protocol. MIT Press, 1991.

[11] G. Kicsales, J. Lamping, C. V. Lopes, C. Maeda, A. Mend-
hekar, and G. Murphy. Open implementation design guide-
lines. In 19th International Conference on Software Engi-
neering, Boston, MA, USA, May 1996.

[12] G. Kicsales, J. Lamping, A. Mendhekar,C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
Technical Report SPL97-008 P9710042, XEROX PARC,
February 1997.

[13] C. Maeda, A. Lee, G. Murphy, and G. Kicsales. Open im-
plementation analysis and design. InACM Symposium on
Software Reusability (SSR), 1997.

[14] P. Maes. Concepts and experiments in computational reflec-
tion. InOOPSLA ’87 Proceedings, pages 147–155, Orlando,
Florida, October 1987.

[15] S. Matsuoka and A. Yonezawa. Analysis of Inheritance
Anomaly in Object-Oriented Concurrent Programming Lan-
guages. In G. Agha, P. Wegner, and A. Yonezawa, ed-
itors, Research Directions in Concurrent Object-Oriented
Programming, pages 107–150. MIT Press, 1993.

[16] J. McAffer. Meta-level Programming with CodA. InE-
COOP’95, pages 190–214, Aarhus, Denmark, August 1995.

[17] C. McHale.Synchronisation in Concurrent, Object-oriented
Languages: Expressive Power, Genericity and Inheritance.
PhD thesis, Department of Computer Science, Trinity Col-
lege, Dublin, 1994.

[18] P. Mulet, J. Malenfant,and P. Cointe. Towards a methodology
for explicit composition of metaobjects. InOOPSLA’95,
pages 316–330, Austin, USA, October 1995.

[19] O. Nierstrasz and L. Dami. Component-Oriented Soft-
ware Technology. In O. Nierstrasz and D. Tsichritzis, ed-
itors, Object-Oriented Software Components, pages 3–28.
Prentice-Hall, 1995.

[20] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal.
Subject-oriented composition rules. InOOPSLA’95, pages
235–250, Austin, USA, October 1995.

[21] D. Riehle and T. Gross. Role model based framework design
and integration. InConferenceon Object-Oriented Program-
ming Systems, Languages and Applications, Proceedings,
pages 117–133, Vancouver, Canada, October 1998.

[22] A. R. Silva. Concurrent Object-Oriented Programming:
Separation and Composition of Concerns using Design Pat-
terns, Pattern Languages,and Object-Oriented Frameworks.
PhD thesis, Instituto Superior T´ecnico - Technical University
of Lisbon, March 1999.

[23] A. R. Silva, J. Pereira, and J. A. Marques. Object Recovery.
In R. Martin, D. Riehle, and F. Buschman, editors,Pattern
Languagesof Program Design 3, chapter 15, pages261–276.
Addison-Wesley, 1997.

[24] A. R. Silva, P. Sousa, and J. A. Marques. Development of
Distributed Applications with Separation of Concerns. In
IEEE Asia-Pacific Software Engineering Conference, pages
168–177, Brisbane, Australia, December 1995.

[25] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton.
N degrees of separation: Multi-dimensional separation of
concerns. InProceedingsof the International Conferenceon
Software Engineering (ICSE’99), May 1999.

6


