
CPSC 310
October 5, 1998
© G. Murphy

1

Oct. 5, 1998
CPSC 310
© G. Murphy 5

Singleton...

Singleton

static Instance()
SingletonOperation()
GetSingletonData

static uniqueInstance
singletonData

return uniqueInstance

Structure

Oct. 5, 1998
CPSC 310
© G. Murphy 8

An Example

● I used a variation on the Singleton pattern
recently when developing a data-flow analysis
program. This program reads through C source
code and determines all possible definitions for
a given use of a variable.
 2 int a, b;
 3 a = 1;
 4 b = a + 1; use of a defined at 2
 5 a = 2;
 6 b = a * 2; use of a defined at 5

1HHG�WR�WUDFN
OLQH�QXPEHU�
RQO\�DW�RQH�OLQH
DW�DQ\�JLYHQ
WLPH

Oct. 5, 1998
CPSC 310
© G. Murphy 9

Example...

class LineInfo {
public:

void setLineNumber (int);
 int getLineNumber ();
};
class LastLineInfo: public LineInfo {
public:

static LineInfo* Instance();
protected:
 LastLineInfo();
private:
 static LineInfo* _ instance;
}; Oct. 5, 1998

CPSC 310
© G. Murphy 10

A Common Situation

● You’ve partitioned your system into a collection
of cooperating classes. This partitioning has the
advantage that you might be able to reuse the
classes. But…

● you need to maintain consistency between
related objects. To maintain reusability, you
don’t want to tightly couple the classes…

● Some examples...

Oct. 5, 1998
CPSC 310
© G. Murphy 12

Observer Pattern...

Applicability
Use when:
● “an abstraction has two aspects, one dependent on the

other. Encapsulating these aspects in separate objects
lets you vary and reuse them independently.

● When a change to one object requires changing the
others and you don’t know how many objects need to be
changed.

● When an object should be able to notify other objects
without making assumptions about who those objects
are.” [Gang of Four, p. 294]

Oct. 5, 1998
CPSC 310
© G. Murphy 13

Observer Pattern: Structure

observers
Subject

Attach (Observer)
Detach (Observer)
Notify()

ConcreteSubject

GetState()
SetState()
subjectState

Observer

Update()

ConcreteObserver

Update()
observerState

subject

CPSC 310
October 5, 1998
© G. Murphy

2

Oct. 5, 1998
CPSC 310
© G. Murphy 14

Observer Pattern: Collaborations

Collaborations
Two configurations of interest: setting up the publish-

subscribe interaction; actually causing the interaction to
occur.

aConcreteSubject aConcreteObserver

Attach (aConcreteObserver)

Attach (anotherConcreteObserver)

another
ConcreteObserver

Oct. 5, 1998
CPSC 310
© G. Murphy 15

ObserverPattern: Collaborations...

aConcreteSubject aConcreteObserver another
ConcreteObserver

Notify()

Update()

GetState()

Update()

GetState()

Oct. 5, 1998
CPSC 310
© G. Murphy 16

A Sample Implementation of the
Observer Pattern

● In Java

public class Subject {
 public void attach(Observer obs) {
 // add to list of Observers }
 public void notify() {
 // for each obs in Observers list
 // obs->update(); }

 private /* listOfObservers
}

public class Observer {
 public void update() {
 // draw a graph
 // or something
 }
}

This code could be provided
in a library. Oct. 5, 1998

CPSC 310
© G. Murphy 17

A Sample Use of the Observer
Pattern

public class Spreadsheet extends Subject {
 public void newCellValue(…) {
 // Remember the new value
 // Then inform observers
 notify();
 }

public class Graph extends Observer {
 public void update() {
 // Better ask Subject for new
 // values and update the graph!
 }
}

Oct. 5, 1998
CPSC 310
© G. Murphy 18

Implementation Issues

● Observing more than one subject
● need to extend Update interface to know which

subject is notifying the Observer

● Who triggers the update?
● State-setting operations on Subject (Observable) call

Notify after they change the subject’s state.
❘ Advantage: Clients don’t have to know about notify
❘ Disadvantage: ?

• If there are several consecutive updates it may be
inefficient.

Oct. 5, 1998
CPSC 310
© G. Murphy 19

Implementation Issues...

● Who triggers the update…
● Clients call Notify at the right time.

❘ Advantage: Handle the consecutive change
scenario

❘ Disadvantage: Clients have to do it.

● Dangling references to deleted subjects
● Have subject notify observers when it is destructed

● Specifying modifications of interest explicitly
● Extend the subject’s registration interface to allow

observers to register for specific events

CPSC 310
October 5, 1998
© G. Murphy

3

Oct. 5, 1998
CPSC 310
© G. Murphy 20

Implementation Issues...

● Avoiding observer-specific update protocols:
push and pull models

● Push: subject sends observers detailed information
about change whether they want it or not

● Pull: Subject sends nothing; observers ask for details
explicitly

● The push model may make observers less reusable.
The pull model may be inefficient

Oct. 5, 1998
CPSC 310
© G. Murphy 21

Other Uses of ObserverPattern

● Smalltalk Model/View/Controller (MVC)
● Smalltalk and ET++ provide a general

dependency mechanism of Subject/Observer in
the parent class of all other classes in the
system

● InterViews, Andrew, Unidraw

Oct. 5, 1998
CPSC 310
© G. Murphy 22

Some Patterns...

● Abstract Factory
● Builder
● Factory Method
● Prototype
● Singleton

● Adapter
● Bridge
● Composite
● Decorator

● Façade
● Flyweight
● Proxy

● Chain of Responsibility
● Command
● Interpreter
● Iterator
● Mediator
● Memento
● Observer...

