
1

October 3, 2001
1

© G. Murphy

CPSC 310
Software Architecture:

Client/Server Architectural Style
Dr. Gail Murphy

By the end of this class, you should be able to:

• Define what is meant by the term “software
architectural style”

• Describe some characteristics of a client/server
architecture



2

October 3, 2001
2

© G. Murphy

Software Architecture: 
What is It?

• Your development team has nailed down a 
version of the requirements for a system

• You have built an analysis model
• Now you must think about how you are really 

going to implement the system
• Need to choose an overall structure for the 

system; i.e, evaluate and choose an architecture 
for the system



3

October 3, 2001
3

© G. Murphy

Software Architeture

• A software architecture for a system describes
– the subsystems and (large-scale) components 

that comprise the system
– the organization of those subsystems and 

components
– the global control structures
– the protocols for communication
– the management of data 



4

October 3, 2001
4

© G. Murphy

Architectural Style (Buildings)

18th Century Georgian Architecture
“Old Corner Bookstore”
Boston MA

Early Gothic Architecture
Notre Dame, Paris

Buildings can be classified according to style. Asking for 
“Victorian features” in a house can help an architect produce a 
design that meets your requirements. Style in software architecture 
plays a similar role, although instead of appearance, the qualit ies of 
interest are reusability, adaptability, etc.

If a building meets a Gothic architecture, it means it has a few key features 
and rules for combining these features so that architectural integrity is 
preserved.



5

October 3, 2001
5

© G. Murphy

Architectural Style (Software)

• Handbook of basic structures and an analysis of 
their tradeoffs that can be used for structuring a 
system

• Selection of a style helps dictate qualities the 
system will have
– e.g., modifiable? secure? scalable? fast? configurable? 

reliable? etc.

• About ½ dozen styles, including call/return, pipe 
and filter, repository, client/server, etc.



6

October 3, 2001
6

© G. Murphy

Imagine…

• Your software development company has been 
contracted to build a course delivery system (think 
WebCT)

• It has to support:
– Display of lecture notes
– Private/secure grade access
– Multiple users
– Bulletin board
– etc.

One possibility is to have everyone log into a server and to provide some client 
that accesses a central repository.

Better is to try to distribute the processing: take advantage of the user’s 
desktop.



7

October 3, 2001
7

© G. Murphy

Client/Server Architecture

• A “server” subsystem provides services to 
multiple instances of “client” subsystem

• Client and server are connected by a network
• Control is typically a client requests services from 

the server
• Server provides data access and maintains data 

integrity
• To handle load, can have more than one server



8

October 3, 2001
8

© G. Murphy

Consider Two Use Cases

1. Displaying the main course page 
– User requests the main course page
– Main course page is displayed

2. Reading a message on the bulletin board
– User requests the bulletin board
– The headers of unread messages for that user are 

displayed
– User requests to view a particular message
– Message is displayed

What functionality belongs in client and what functionality belongs in server. 
Pretty clear if we have chosen a web client/server system. What goes where 
for the first use case? May be pretty simple to implement this use case: if it’s a 
static web page, standard infrastructure will do. Run an off-the-shelf web 
server. Put the page on the server. Run a standard web browser on the client. 
Ask for the URL: voila its done!

What about the second use case? Now we actually need specialized
functionality in the browser. How do we do this? 

We’ll briefly go over the servlet approach. Assume you have gathered the 
information about what user is asking for the information.



9

October 3, 2001
9

© G. Murphy

Servlets

• Interfaces a server application with the web
• Allows you to write your server application 

as a Java program
• Associate a Java program with a URL
• The program runs in a servlet container 

within the web server
– Lightweight: Separate thread for each request



10

October 3, 2001
10

© G. Murphy

Hello World Example
import java.io.*;
import javax.servlet.http.*;

public class SimpleHello extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println(
"<html>" +
"<head><title>Hello</title></head>" +
"<p>Hello, world!</p>" +
"</body>" +
"</html>"

); 
} 

}

To support our second use case, the servlet would have to be able to now what 
course web was being accessed and what user was requesting unseen bulletin 
board messages. These can be passed as parameters.

http://<host>/<servlet>?name=somebody

Can then have a bulletin board object that knows about all messages. It can 
also know about a set of users, and each user can remember which messages it 
has read. Ask the user for the unread messages (ask bulletin board for ids of 
known messages). Ask bulletin board for headers of unread messages. Format 
a page. Send it back.

A request can then come into the same or another servlet to ask for a particular 
message. A page can be formulated and sent back.

When we program a client/server application with the web and servlets, we 
have to think about what servlets we want to support and what the structure of 
each servlet should be. Does a servlet have an architecture? Sort of. Its fuzzy 
where the line is between architecture and design. It gets further confused 
because one of the kinds of architectural style is the object-oriented 
architectural style.



11

October 3, 2001
11

© G. Murphy

Do Servlets Have Architecture?

• Maybe
• It’s a fuzzy line where architecture ends and 

more detailed software design begins
• Even more confusing because one 

architectural style is the object-oriented 
style



12

October 3, 2001
12

© G. Murphy

Building the Course Web System

• If we choose a client/server architecture, 
can take advantage of lots of standard 
infrastructure in the web

• Client is just the browser
• Server is a set of servlets sharing a database
• Get a scalable solution where it is 

(relatively) easy to upgrade the application



13

October 3, 2001
13

© G. Murphy

(Original) Architecture of the 
Web?

• library (libWWW) to hide all hardware, OS, and 
protocol dependencies

HTML
Editor

HTML
Browser

Server using
libWWW

Client using
libWWWHTTP



14

October 3, 2001
14

© G. Murphy

LIBWWW

Generic Utilities

Core

Stream Modules

Access Modules

Application Module

Layered Architecture

45 minutes in at end of slide

Ask students what the diagram tells them (without explaining it).



15

October 3, 2001
15

© G. Murphy

Meaning of Layers
• These notes describe a bit about the layers in the libwww diagram:

– Generic Utilities has building blocks for system such as network
management, container classes, and string utilities. This layer allows other 
layers to be platform independent, easing the task of porting the library.

– The Core has all the basic functionality for a WWW applications such as 
network access, logging, etc. This layer just provides a standard interface 
with actual functionality provided by “plug-ins” and “call-outs”. Plug-ins 
are modules registered by an application at run-time and do things like 
sending data. Call-out functions are arbitrary application-specific 
functions that can be called before or after requests to protocol modules.

– The stream layer abstracts a stream of data.
– The access layer provides network-protocol-aware modules like HTTP, 

NNTP (news), WAIS (wide-area information system), FTP, TELNET, etc.
– The top layer consists of WWW application modules such as caching, 

registering proxy servers, history maintenance, etc.



16

October 3, 2001
16

© G. Murphy

A Client/Server Architecture 
using LIBWWW

Presentation
Manager

UI
Manager

Access
Manager

Protocol
Manager

Stream
Manager

Cache
Manager

[BCK98, p.156]
External
Viewer

WWW Client

Stream
Manager

HTTP
Server

Path
Resolver

Access
List

CGI

WWW Server

HTTP

Not all parts of the client-server are built from libWWW. (e.g., UI manager is 
not part of libwww). Managers don’t relate directly to layers in the libwww.

UI gets user’s request as a URL and passes it to the access manager. The 
access manager checks the cache and if it is cached, it is retrieved and given to 
the Presentation Manager. If its not cached, the protocol manager determines 
the type of request and invokes the appropriate protocol suite to service the 
request. When the stream manager gets a response, it hands it to the 
presentation manage rfor display.

Include discussion of how this is changing with servlets, etc.

Ask how each quality on the next slide is met.



17

October 3, 2001
17

© G. Murphy

Summary

• Architecture determines the fundamental structure 
of a system

• Earliest design decisions
• Architectural styles guide choice of architecture: 

encode common patterns for achieving certain 
quality goals

• Client/Server architectural style can help provide a 
scalable, responsive system

• Many good building blocks to support 
development of client/server systems


