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Abstract. We have developed a verification framework that
combines deductive reasoning, general purpose decision pro-
cedures, and domain-specific reasoning. This paper describes
this framework and presents a case study in which we veri-
fied a SRT divider circuit. Our proof starts with a high-level
description of the SRT algorithm on rational numbers. We
verified the correctness of the algorithm. With a sequence of
five refinement proofs, we established that a transistor-level
implementation with timing is a refinement of a high-level
specification of the high-level division algorithm.

Our approach is made practical by integrating formal the-
orem proving techniques with informal domain-specific rea-
soning. User-defined inference rules provide domain specific
decision procedures, while an LCF-style, first-order-logic the-
orem prover allows results from these procedures to be com-
bined into a complete proof. Including these “semi-formal”
rules as hypotheses of the theorems in which they are used
preserves the logical validity of the proofs and tracks and doc-
uments the use of domain-specific reasoning.

1 Introduction

Most formal verification of hardware designs is based on state-
space exploration or theorem proving. State space exploration
provides an automatic approach for verifying properties of
designs described by relatively small models. In principle,
theorem proving techniques can be applied to much larger
and more detailed design descriptions. However, the large de-
mands for the time of expert users prevent the wide-scale ap-
plication of theorem proving techniques.

The strengths and weaknesses of state-space exploration
and theorem proving are in many ways complementary. This
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has motivated several recent efforts to combine the two tech-
niques. One approach is to embed state-space exploration al-
gorithms as decision procedures in a general purpose theorem
prover [41,21,22]. In this approach, the design and specifica-
tion are represented by formulas in the logic of the prover,
and decision procedures are oracles, introducing new theo-
rems into the system. Alternatively, some researchers have
augmented state-space exploration tools with simple theorem
proving capability [24,1,6,39]. We follow the first approach.

Designers can usually provide explanations for why they
expect their designs to work; we seek to exploit this domain
expertise in our verification. These explanations are typically
“informal” in the sense that they are expressed in language
or notation that lacks a complete and precise semantics. Fur-
thermore, these arguments typically focus on key principles
while ignoring technical side conditions. These technicalde-
tails are essential for the construction of a rigorous proof, but
they often render formal methods unusable by most design-
ers. For example, if one operation always completes before
another, the designer should be able to clearly state this prop-
erty. However, we do not expect the designer to have the time
or the mathematical expertise to be able to express standard
timing verification algorithms as formal mathematical argu-
ments.

Domain specific decision procedures can discharge many
of the tedious obligations of a formal proof. These proce-
dures may be “informal” in the sense that they may not per-
form an explicit sequence of logical transformations to re-
duce proof obligations to basic axioms or previously proven
theorems. Furthermore, the decision procedures or their im-
plementations may not come with a proof of correctness. Ex-
amples of such decision procedures include binary decision
diagrams (BDDs) for deciding predicate logic formulas, syn-
tactic transformation rules for reasoning about programs,and
graph-based timing verification algorithms. Although eachof
these could in principle be formalized in terms of basic math-
ematical axioms, the effort to do so is not justified for many,
if not most, designs. For example, although the algorithms
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for manipulating BDDs have been proven correct [11], we
are not aware of anyimplementationof these algorithms that
has a correctness proof. Most BDD packages including the
one that we used [46] are highly optimized for performance
and therefore not particularly amenable for formal verifica-
tion. On the other hand, BDDs are probably among the most
formal of the informal procedures that we consider. For ex-
ample, we use a graph-based timing analysis algorithm whose
justification is informal. Precisely mapping the operations of
the algorithm into the semantics of our object logic would
require a great deal of effort and divert our attention from ex-
amining more probable sources of errors. Rather than reject-
ing informal procedures, we provide a controlled mechanism
for including informal procedures as explicit hypotheses to
the theorems we prove.

Many properties that designers want to verify require a
combination of timing verification, equivalence checking,mo-
del checking, and other techniques, some general, and some
domain specific. Accordingly, we provide a simple theorem
prover for first order logic that allows the results from such
point tools to be combined in a systematic fashion to verify
important system properties. Our intent is that the deductive
arguments required to combine these results should closely
mimic the informal arguments of the designer. When such ar-
guments fail, we should be able to quickly identify the error
in the reasoning or the design.

We view the verification task as one of maximizing the
probability of producing a correct design subject to schedule
and budget constraints. Usingdomain-specificand possibly
informal decision procedures and inference rules in a deduc-
tive framework, we can verify critical properties of real de-
signs that would not be practical to verify by theorem proving
and/or model checking alone. Section 2 elaborates this claim,
and section 3 describes our implementation of this frame-
work. Section 4 describes the self-timed chip that we verified
as a case study for our approach. Sections 5 and 6 present our
verification of this divider.

1.1 Running Example: Asynchronous Divider Verification

We have implemented a proof-of-concept tool based on the
methodology presented in this paper and used it to verify
the design of a self-timed divider [50]. Our divider verifica-
tion establishes refinement between progressively more de-
tailed descriptions of the design written in the Synchronized
Transitions language [48]. Each level of the hierarchy in-
herits the safety properties of the higher levels: by show-
ing that the top-level model divides correctly, we establish
that all of the lower level models divide correctly as well.
The highest level model is an abstract specification of radix-
2 SRT [14] division on rational numbers. This algorithm is
similar to the binary version of the traditional “paper-and-
pencil” algorithm except that quotient bits are chosen from
the set{−1, 0, 1} instead of the more traditional{0, 1}. As
described in section 4.2, such redundancy is used in nearly
all hardware dividers because it facilitates efficient imple-
mentations. We prove functional correctness of the algorithm

at this level. The most detailed model includes the transistor-
level structure along with its timing properties. The transistor-
level structure is extracted syntactically from the Synchro-
nized Transitions program. By inheriting safety properties
from the higher levels, the timing verification problem be-
comes relatively straightforward, although far too tedious to
perform manually. We found that a simple, conservative, graph-
traversal algorithm was sufficient to verify the necessary tim-
ing properties for the divider. Section 6.6.2 describes ourin-
tegration of timing verification into our tool.

Because each lower levels of the refinement hierarchy in-
herit safety properties from the higher levels, the transistor
level model inherits the “correct division” property from the
top-level description. Thus, our verification establishesthat
the timed, transistor-level model divides correctly.

1.2 Synchronized Transitions

Synchronized Transitions (abbr. ST) [48] is a programming
language based on the paradigm of guarded actions executing
on a state space [18]. A ST program consists of

– a collection of variables whose domains define the state
space associated with the program,

– a predicate on states defining the initial set of states,
– and a collection of transitions.

A transition in turn consists of a guard (a predicate on the
state space which determines if the transition is enabled ina
given state) and a multi-assignment which determines state
reached by executing this transition. For example,

<< x > y → x, y := y, x >>

is a transition that is enabled to exchange the values of the
variablesx andy whenx is greater thany . A transition writ-
ten without a guard is always enabled; a transition written
without a multi-assignment leaves the state space unchanged
when executed.

Transitions may be combined using the asynchronous com-
binator,‖; the strong synchronous combinator,∗, or the weak
synchronous combinator,+. For example, the ST program
(t1‖t2) consists of two transitions,t1 andt2, composed with
the asynchronous combinator. Program execution consists of
repeatedly selecting a transition, testing its guard, and,if the
guard is satisfied, performing the multi-assignment. The or-
der in which transitions are selected is unspecified: this non-
determinism models arbitrary delays in a speed-independent
model. If two transitions are composed with the strong syn-
chronous combinator, the multi-assignments can be performed
as a single atomic action if both guards are satisfied. If either
guard is not satisfied, then no action is enabled. Operationally,
performing two or more transitions as a single atomic action
means that all reads for the guards and multi-assignments are
performed before any writes. Thus,

<<g1→l1:= r1>>∗<<g2→l2:= r2>>
≡ <<g1 ∧ g2→l1, l2:= r1, r2>>
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If two transitions are composed with the weak synchronous
combinator, then if one of the transitions is enabled, the cor-
responding multi-assignment can be performed, and if both
transitions are enabled, then both multi-assignments can be
performed as a single atomic action. In other words, the multi-
assignments all enabled transitions composed with the weak
synchronous combinator are performed as a single, atomic
action. Formally,

<<g1→l1:= r1>>+<<g2→l2:= r2>>
≡ <<¬g1 ∧ ¬g2>>
‖ <<g1 ∧ ¬g2→l1:= r1>>
‖ <<¬g1 ∧ g2→l2:= r2>>
‖ <<g1 ∧ g2→l1, l2:= r1, r2>>

1.3 Semantics

We employ awp semantics (see [18]) for ST. IfP is a pro-
gram andQ is a predicate, thenwp(P, Q) is the weakest con-
dition that must hold such thatQ is guaranteed to hold after
any single action allowed byP is performed. LetS be the
state-space of a programP . Consider a transition<<G→M>>
of P : the guard,G, denotes a predicateG : S → {true, false}.
The multi-assignment,M , denotes a functionM : S → S. A
wp semantics of ST includes

wp(<<G→M>>, Q) = G⇒ Q ◦M

wp(t1‖t2‖ . . . ‖tn, Q) =

n
∧

i=1

wp(ti, Q)

where◦ denotes function composition.
We make extensive use ofinvariants. A predicateI is an

invariant if I holding in some state ensures thatI will hold
in all possible subsequent states of the program. In particular,
I is an invariant ofP iff I ⇒ wp(P, I). A predicateQ is a
safety propertyof P if Q holds in all states reachable in any
execution ofP . As shown in [27],Q is a safety property of
P if and only if there is an invariantI such thatQ0 ⇒ I and
I ⇒ Q.

Intuitively, programP ′ is arefinementof P if every reach-
able state transition thatP ′ can make corresponds to a move
of P . More formally, refinement is defined with respect to an
abstraction mappingA that maps the states ofP ′ to P (see
[2]). P ′ is a refinement ofP under abstraction mappingA
iff for every reachable states′1 of P ′ and every states′2 that
is reachable by performing a single transition ofP ′ from s′1,
eitherA(s′1) = A(s′2) (a stuttering action), or there is a tran-
sition ofP that effects a move fromA(s′1) to A(s′2).

1.4 Related Work

The highly publicized Pentium division bug [7] has been fol-
lowed by active research in the verification of floating point
calculations in general and division in particular. Clarkeet.
al. [16] verified an implementation of the radix-4 SRT algo-
rithm. The radix-4 algorithm computes two bits of the quo-
tient per iteration whereas the simpler, radix-2 algorithmused

in the divider that we consider computes one bit per iteration.
Like our approach, Clarkeet. al. made liberal use of out-
side decision procedures. In particular, their theorem prover,
Analytica [17], is written in the Mathematica command lan-
guage [52] and uses Mathematica’s symbolic computation fa-
cilities. Although Mathematica is based on well-defined math-
ematical concepts, the implementation has not been subject
to any form of formal verification. Clarkeet. al.modeled the
hardware at a level of fairly large functional units such as
adders and look-up tables.

Rueßet. al. have described a verification of an imple-
mentation of the radix-4 SRT algorithm [42]. They used the
PVS [36] theorem prover for their verification. Like Clarke
et. al., they modeled the hardware at a level of large func-
tional units. The proof consisted of an initial case split fol-
lowed by evaluation of ground predicates. This strategy ex-
ploits the tightly integrated decision procedures of PVS.

Moore et. al. [32] studied a different implementation of
division, namely the microcode implementation of the AMD
K5 microprocessor using the Nqthm/ACL-2 theorem prover [26].
The K5 uses Newton-Raphson iteration instead of the SRT
algorithm. The distinctive achievement of the Mooreet. al.
proof is that they showed compliance with the the IEEE float-
ing point standard [25] including its various rounding mode
and support for denormalized numbers. Moore has conjec-
tured [31] that the facilities of a large theorem prover suchas
Nqthm/ACL-2, HOL98, or PVS are necessary to manage the
intricacies of the floating point standard.

Aagaard and Seger verified a floating point multiplier us-
ing gate-level models [1]. They used trajectory evaluationfor
their verification, and the properties that they verified were
stated as trajectory formulas. These formulas corresponded
directly to the properties in the IEEE specification. Although
we believe that the ensemble of properties that they proved
establishes implementation of the IEEE standard, the limi-
tations of trajectory formulas prevented them from statinga
simple, top-level theorem that “obviously” captures the de-
signer’s intent.

The verification presented in this paper is unique because
of the mechanisms that our framework provides to integrate
informal, heuristic decision procedures into a simple, theo-
rem proving environment. This approach allowed us to verify
a divider starting with a simple theorem of functional correct-
ness and eventually showing that this correctness is preserved
by a model at the level of transistors modeled as switches. In
particular, we were able to verify several timing assumptions
made by the designer in order to optimize the performance of
the divider.

2 Verification Approach

Like many theorem provers, our verification tool presents a
deductive style of verification. Our approach differs from tra-
ditional theorem proving in three crucial ways:

Integration of informal reasoning. Our framework supportsthe
inclusion of domain-specific decision procedures and in-
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ference rules. Such procedures provide an algorithmic en-
capsulation of formal or informal domain expertise; this
allows domain expertise to be introduced as hypotheses
of a proof. The framework keeps track of the set of infer-
ence rules used in a proof.

Syntactic embedding of the HDL. Our framework favors an
embedding of the hardware description language (HDL)
at a syntactic level. Inference rules operate directly on the
HDL’s abstract syntax.

Merging of inference rules and decision procedures. In tra-
ditional theorem provers, inference rules provide pattern-
based rewriting of proof obligations, while decision pro-
cedures (if any) decide the validity of leaf obligations in
a proof tree. In our framework, inference rules may per-
form non-trivial computations to decide the soundness of
a proof step, or to derive the result of an inference step.

2.1 Informal Reasoning in Formal Verification

At first, the suggestion of allowing informal reasoning to be
introduced into a formal proof appears to be outrageous: if
an informal inference rule is unsound, it can invalidate any
proof in which the rule is used. However, informal rules pro-
vide a practical way to tailor our verification tool to specific
domains and verify properties that would not be practical to
address by strictly formal approaches. When errors are found
in a design, the verification effort is worthwhile even if some
steps are justified only informally.

A potentially insidious danger of using informal inference
rules is that a faulty decision procedure could render contra-
dictory judgements. The user could then derive the theorem
“false” which can be used to prove any other assertion. Here,
the simplicity of our theorem prover offers some protection: if
a user finds such a contradiction and uses it to prove an unre-
lated theorem, then he or she deserves the unpleasant fate that
awaits. We suspect that the dangers of “informal” decision
procedures would be more serious in a more powerful deduc-
tive framework such as Nqthm/ACL2 [10] or the tightly in-
tegrated decision procedures of PVS [35] where complicated
chains of inference can be performed without specific direc-
tion from the user. We are not arguing against the benefits
of more powerful theorem provers; we simply note that the
integration of new decision procedures can be more difficult
when working with sophisticated theorem proving heuristics
(see [9]).

Informal reasoning is commonplace in many verification
efforts. For example, model-checking is typically appliedto
an abstraction of the design that was produced informally by
a verification expert [23,40]. Although the absence of errors
in the abstraction does not guarantee the correctness of the
actual design, errors found in the abstraction can reveal errors
in the actual design. Many theorem-proverbased verifications
model functional units at the register transfer level; the gate-
and transistor-level models of the design are validated only
through simulation and informal reviews [47].

We make two uses of informal rules. First, an informal
rule can provide an algorithmic encoding of domain knowl-

edge where a formalization in logic would be unacceptably
time-consuming. For example, we used a timing analysis pro-
cedure that derives a graph whose nodes correspond to the
channel connected regions of the transistor-level circuit. The
circuit topology is syntactically encoded in the text of theST
program, and the procedure derives timing bounds through
graph traversal. The correspondence between the graph and
the original circuit and the soundness of the graph traversal
have only been shown informally.

Second, we use several ‘semi-formal’ rules for reasoning
about ST programs. For instance, the proof rules for reason-
ing about invariants, safety properties, and refinements are
founded on theorems that were formally proven (although the
proofs have not been mechanically checked). These theorems
are based on a formal semantics of a core language only, and
their extension to the full language with records, arrays, func-
tions, and modules is informal.

In our framework, informal inference rules and decision
procedures can be seen as a generalization of the concept of
using a hypothesis in a proof: Usually, a hypothesis is simply
a formula that is assumed to be valid. An informal rule in
contrast is an algorithm; the corresponding hypothesis is that
it only generates sound inferences.

Since the soundness of a proof depends on the soundness
of the inference rules used in its construction, one’s confi-
dence in the truth of a theorem verified in our framework will
depend on one’s confidence in the soundness and correct im-
plementation of the inference rules used. Our framework rec-
ognizes this and includes a mechanism which allows a user to
track the set of rules used in the proof of a particular theorem.
When a theorem is posed, the set of inference rules which can
be used in its proof must be stated; any attempt to use any
other rule will be rejected by the system. The system can be
queried to recursively compute the set of inference rules used
in the proof of a particular theorem, and other theorems used
in its proof.

2.2 Syntactic Embedding of the HDL

Formal verification requires a description of the design as a
formula in the appropriate logic. If it is not practical to de-
scribe the design directly in logic [19], e.g. because of lack
of tool support for simulation, synthesis etc, an embeddingof
the HDL in the logic has to be devised. Such embeddings are
commonly divided into two classes: deep and shallow [8]. In
a deep embedding, both the (abstract) syntax of the HDL as
well as its semantic interpretation are defined within the logic
in terms of an abstract data type and a semantic function, re-
spectively. This provides a very rigorous embedding and al-
lows meta-reasoning about the HDL semantics. However, the
effort for producing such an embedding can be substantial,
although it may be possible to amortize this effort over many
designs.

In ashallow embeddingin contrast, the semantic interpre-
tation of the HDL occurs outside the logic. Shallow embed-
dings can be easier to implement than deep embeddings be-
cause the translation process is informal with a corresponding
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loss of rigor. Because program structures are not represented
in the logic, theorems that refer to the syntactic structureof
the HDL description can be neither stated nor proven [8].

We propose a third variant, asyntactic embedding: The
syntax of the HDL becomes part of the syntax of the logic
(see section 3.4 for the embedding of ST). As in a shallow
embedding, the semantic interpretation is informal. However,
the procedures that perform this interpretation are encapsu-
lated as domain-specific inference rules. This provides a tighter
integration with the prover than could be achieved with a
shallow embedding. In particular, decision procedures can
consider the syntactic structure of the program being verified.
However, as with shallow embeddings, no meta-reasoning
about the semantics of the specification language is possible.

We have found that a syntactic embedding simplifies the
implementation of semi-formal or informal inference rules.
Such rules are often based on syntactic analysis of the un-
derlying program. These rules are easier to implement, and
hopefully less prone to implementation errors, because the
abstract syntax of the program is immediately available in
the syntactic embedding.

2.3 Merging of Decision Procedures and Inference Rules

Traditional mechanized theorem provers generally use only
decision procedures in the classic sense of an algorithm that
decides the validity of a formula. Such decision procedures
are used to discharge proof obligations in a single automatic
step, i.e. they operate on the leaves of a proof tree. Proof steps
interior to the proof tree, however, are generally justifiedby
matching them with an inference rule schema, and possibly
checking side conditions or provisos.

We remove the restriction of decision procedures to leaf
obligations and allow inference rules to use arbitrary algo-
rithms to decide the soundness of a proof step. Theoretically,
lifting this restriction has no significance; such an “inference
procedure” can be replaced by the corresponding leaf de-
cision procedures, and inferences using propositional logic.
However, there are significant practical advantages to our ap-
proach. In many cases, it is convenient to let the inference
rule compute the derived obligations rather than requiringthe
user to provide them.

Consider using a proof rule which implements thewp se-
mantics for ST. Suppose we want to prove that a predicate is
an invariant of a program and arrive at the obligation

n ≤ 10
⇒ wp(<<n < 10→n := n + 1>>, n ≤ 10)

The proof rule can rewrite this obligation to the equivalent
obligation

n ≤ 10
⇒ (n < 10⇒ n + 1 ≤ 10)

by computing the expression forwp(P, Q) based on the se-
mantic rules forwp. Note that computing the expression for
wp(P, Q) is much more straightforward than verifying that

object logic

inference rulessyntax/types

generic core (proof states, theorems)

library of

procedures
decision

tactics, proof management

Fig. 1.Proof Checker Architecture

an arbitrary expression (supplied by the user) is equivalent to
wp(P, Q).

Of course, one could perform two computations of the de-
rived obligation: one outside of the trusted core to derive the
result for the user, and the other in the core to verify the result.
Such an approach has obvious disadvantages with respect to
efficiency and software maintenance. These problems would
be particularly severe in a framework such as ours where ease
of adding and extending domain-specific inference rules and
decision procedures is important. Our “inference procedures”
provide a simple mechanism for avoiding these problems.

3 Prototype Implementation

We have implemented a proof-of-concept verification envi-
ronment for our approach. Figure 1 shows the main archi-
tectural components of our tool. The system’s core provides
infrastructure for managing proof states and theorem objects.
The implementation of this core is generic in nature, i.e., in-
dependent of a particular object logic. Generic components
are depicted as shaded boxes in figure 1.

The object-logic-specific components of the checker in-
clude data-structures representing the abstract syntax and types
of the logic, and the proof rules of the logic. The latter make
use of a library of commonly used decision procedures.

A goal and proof tactic package provide an interface be-
tween the user and the core as well as the object logic. Proofs
are represented as functions in the implementation language
of our tool, Standard ML (SML) of New Jersey [4], which
also acts as the user interface for proof development.

While an existing generic theorem proving environment
(such Isabelle [37]) may have been a viable option for use
as the core of our system, we have chosen to design and im-
plement our own infrastructure. This decision was based on
the observation that implementing both our approach of syn-
tactically embedding the object logic as well as an interface
for domain-specific decision procedures into an existing en-
vironment is a non-trivial exercise; we felt that making useof
a core that is designed with our specific needs in mind was
the preferable option.

3.1 Generic Core

Similar to theorem proving environments such as HOL, PVS
or Isabelle [20,36,37], a (backwards-style) proof in our proof
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signature JUDGEMENT = sig
(* abstract type for judgements *)
type form
(* the well-formedness predicate *)
val wellFormed : form -> bool

(* abstract type for the environment in which a judgement
is to be interpreted (e.g. symbol tables) *)

type environment
val setEnvironment : environment -> unit
(* ... *)

end

signature PROOF_STATE = sig
structure Judgement : JUDGEMENT
(* a judgement with an identifier attached *)
type namedForm = string * Judgement.form

(* abstract types for proof states and theorems *)
type proofState
type theorem

(* Proof rule functions *)
type proofRuleFn = {obls : namedForm list, newObls : Judgeme nt.form list,

auxInfo : exn, importedThms : theorem list,
bookKp : Judgement.bookkeepingInfo}

-> {newObls : namedForm list, bookKp : Judgement.bookkeepi ngInfo}
(* a proof rule is a proofruleFn with a name *)
type proofRule = {name:string, rule:proofRuleFn}

(* create a goal state from a claim. Only proof rules and theor ems
imported here can be used in the proof *)

val goalState : {claim : namedForm, env : Judgement.environ ment,
theorems : theorem list, rules : proofRule list}

-> proofState

(* datatype used to select obligations by index or identifie r *)
datatype obligationSpec = Idx of int | Nm of string
(* apply the proof rule named to the obligations selected *)
val applyProofRule : (string * proofState * obligationSpec list *

Judgement.form list * exn) -> proofState

(* a proof is a function from proof states to proof states *)
type proof = proofState -> proofState
(* stating a theorem associates a proof with a claim *)
val stateTheorem : {name : string, proof : proof, pstate : pro ofState }

-> theorem
(* ... *)

end

Fig. 2.SML signatures for generic core

checker is represented as a sequence of proof states. A proof
state consists of the claim, the pending obligations, and some
bookkeeping information. The claim and obligations are judg-
ments which can be, for instance, a sequent (in a sequent cal-
culus), or a formula (in a natural deduction style calculus).
A proof begins with an initial proof state in which the list of
pending obligations consists only of the claim. Rules of infer-
ence are implemented as functions from proof state to proof
state, and are used to transform one or more pending obliga-

tions into zero or more (simpler) obligations. The available
proof rules are registered with the claim state and cannot be
modified afterwards; in a sense, they become hypotheses of
the theorem. This permits user-defined domain-specific proof
rules to be introduced without modification of the core.

A proof state with no pending obligations corresponds to
a proven claim, i.e. atheorem. To allow for theorems to be
used in later proofs without having to check, and therefore
execute, their proof before each use, we provide theorem ob-
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jects. A theorem object associates a claim with a proof, i.e.,
a function that takes the claim proof state and returns a proof
state with no pending obligations. Theorems can only be used
in a proof if they were imported into the initial proof state.We
provide facilities that analyze the dependency between theo-
rems, ensure the absence of circularity, check all proofs that
a theorem depends on, and generate reports.

All of the above components are parameterized in the
syntax of the logic and a well-formedness predicate for proof
obligations. Figure 2 shows the SML signatures correspond-
ing to the representation of judgements, proof states and the-
orems (for the sake of presentation, some details have been
omitted). SML signatures act as interface specifications for
SML structures (the SML notion of a module).

SignatureJUDGEMENTprovides an abstract interface be-
tween the domain-specific aspects of the proof infrastruc-
ture and its generic core. This abstract view consists of a
type form for judgements, the predicatewellFormed ,
and a typeenvironment . The environment mechanism al-
lows the imperative-style implementation of entities, such as
global symbol tables, that are not conveniently expressed in
a functional style, as attributes of an object of typeform .
The core maintains this environment and guarantees that
setEnvironment is invoked before any operation on a
form is performed.

The generic implementation of proof states and theorems
is realized as a SML functor that returns a structure that matches
signaturePROOF_STATEand takes a structure that matches
JUDGEMENTas argument:

functor FProofState (structure F : JUDGEMENT)
: PROOF_STATE =

struct (*....*) end

The SML type system ensures that only types specified in
signaturePROOF_STATEare exported. The typeproofState
is exported as an abstract type, which ensures that the only
way to create an object of this type is using one of the func-
tions in signaturePROOF_STATEthat returns such an ob-
ject. FunctiongoalState is the only function that creates
a freshproofState . No function alters the list of imported
theorems and proofRules of a proofState . Func-
tion applyProofRule is the only one that modifies the
list of pending obligations; it does so by looking up (in the
proof state) theproofRuleFn indicated by the first argu-
ment, applying it to the specified obligations, and replacing
these obligations with the returned new ones. Additional ar-
guments are available for rule-specific auxiliary information
(such as instantiations with a quantifier rule) and persistent
bookkeeping information.

As indicated above, proofs in our system are SML func-
tions from proof states to proof states. We provide a library
of higher-order functions on proof rules (analogous to tacti-
cals in e.g. HOL or Isabelle) which facilitate the construction
of proofs from basic proof rules (which correspond to HOL
tactics). Figure 3 shows a listing of the SML signature of the
tactics interface. Typetactic is the type of functions from
proof state to proof state. FunctionelseTAC , for example,

is a higher order function that, given a pair of tactics, returns
a new tactic. The tactic returned is a function that applies the
first tactic to its proof state argument, and if this fails, returns
the result of applying the second tactic. Failure of applying
a tactic is communicated through SML exceptions. Similarly,
repeatTAC repeatedly applies a tactic to a proofstate, until
this tactic fails. Tacticals for other commonly used composi-
tions of proof steps are provided as well.

As is apparent from figure 3,tactic s apply to entire
proof states, i.e. the tactic may act on all pending obligations.
However, many proof rules apply to a single obligation only,
specified by aPS.obligationSpec . Such a proof step
is represented as atactickle , and a corresponding set of
higher order functions for compositions oftactickle s is
available.

To facilitate the interactive development of proofs, we
provide a simple goal package, which maintains a current
proof state to which rules can be applied, and allows proof
steps to be undone.

The implementations of both the tactic and goal package
are generic, and realized as SML functors that take a structure
matching signaturePROOF_STATEas an argument.

3.2 Library of Common Decision Procedures

This library comprises core routines of several commonly
used decision procedures. The library is independent of a par-
ticular object logic; instantiating a decision procedure for a
logic requires writing a small amount of interface code.

To support Boolean tautology checking as well as sym-
bolic model checking, the library provides an abstract data
type for boolean expressions in a canonical representation.
The underlying implementation of this data type is a state-of-
the-art Binary Decision Diagram (BDD) [12] package [46]
that was integrated into the SML/NJ runtime system. The
interface provides full access to the control aspects of the
BDD package, such as variable reordering strategies, cache
sizes etc. Based on the BDD package, we have implemented
a package for symbolic manipulation of bit-vectors and arith-
metic operations thereon.

Components for arithmetic decision procedures include
a package for arbitrary precision integer and rational arith-
metic, polynomials, and a decision procedure for linear arith-
metic based on an implementation of the simplex linear pro-
gramming algorithm on arbitrary precision rational numbers.

Based on these library components, we have implemented
a decision procedure that discharges arbitrary tautologies com-
posed of linear inequalities with boolean connectives. Thede-
cision procedure is based on rewriting the negation of a for-
mula into sums-of-products and refuting each product term [44].
If the original formula was a Boolean combination of linear
inequalities, each of the products thus obtained defines the
constraints of a linear program; refuting a product term is
then equivalent to showing that the linear program has no
solution. So far, we have not felt the need to implement a
decision procedure for combinations of theories and/or un-
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signature TACTIC = sig
structure PS : PROOF_STATE

(* a tactic is a proof step *)
type tactic = PS.proofState -> PS.proofState
(* elseTAC is the tactic that applies the first tactic, and if

this fails the second one *)
val elseTAC : (tactic * tactic) -> tactic
(* repeatTAC is the tactic that repeatedly applies the given

tactic until it fails *)
val repeatTAC : tactic -> tactic
(* ... *)

(* tactics apply to entire proof states, tactickles to singl e
obligations, but are otherwise analogous *)

type tactickle = PS.obligationSpec -> tactic
val elseTac : tactickle
val repeatTac : (tactickle * tactickle) -> tactickle
(* ... *)

end

Fig. 3.SML signature for tactic interface

interpreted functions (e.g. [33,45]) as our simple procedures
were sufficient for the divider proof.

All decision procedures include counterexample facilities
for non-valid formulas. For example, if a boolean formula
composed of linear inequalities is not a tautology, then the
decision procedure will exhibit a valuation of the variables
for which the formula is not satisfied. With the decision pro-
cedure we are using for linear arithmetic, a counterexampleis
obtained as a byproduct of the proof attempt: Recall that the
decision procedure proves a formula by rewriting its nega-
tion into a disjunction of conjunctions of linear constraints
and showing that each such set of constraints is unsatisfiable.
Unsatisfiability is shown by attempting to find a solution to
a linear program with a corresponding set of constraints. If
a solution is indeed found, this solution is a counterexample
for the original formula.

Likewise, if the model checker rejects a safety property,
it will provide a trace that starts in a state satisfying the ini-
tial state predicate, and ends in a state that violates the safety
property. The model checker is based on reachable state set
computation [13]; counterexamples are constructed by pick-
ing states from the sets of states defined by the iterations of
the reachable state set computation. Each transition of the
trace is labeled with the transition of the model that effects
it. Counterexamples such as these allow the human verifier to
quickly identify errors in the design or in the intended proof
so that the appropriate corrections can be made.

3.3 Embedding of BDDs in Object Logic

Our BDD library provides facilities that allow the syntactic
embedding of an object logic to be defined such that Boolan
subexpressions can be represented by a BDD that is embed-
ded into the expression itself. We have implemented an inter-
face layer on top of the basic BDDs that provides a BDD

datatype whose variables are (Boolean-typed) formulas of
the object logic. Furthermore, such a BDD can appear as a
(Boolean-type) subexpression of a formula of our logic. Thus,
a BDD can appear anywhere in place of a Boolean formula,
and vice versa. Note that many Boolean formulas do not have
a compact BDD representation. For example, the formulas
that relate a dividend and divisor to their quotient and re-
mainder have sizes that are exponential in the number of bits
of their operands. Having a choice of representation allows
us to exploit the efficiency of BDDs where applicable; sub-
expressions that do have a compact BDD can be represented
as such, while the top-level structure of the expression re-
mains explicitly represented.

This mixed representation is useful for example in con-
junction with a proof rule that rewrites Boolean-valued sub-
expressions involving bit-vectors into an equivalent predicate
on individual bits by expanding bit-vector operations into
their corresponding bitwise logical/arithmetic operations. In
general, later proof steps would reason about this predi-
cate using a BDD-based decision procedure for propositional
logic, which requires the predicate to be transformed into an
equivalent BDD.

Instead of constructing a (potentially large) formula for
the predicate which is later rewritten into a BDD, in our frame-
work the proof rule can directly and efficiently construct the
BDD, and replace the original subformula of the obligation
with this BDD.

3.4 Object Logic for Synchronized Transitions

We have instantiated the generic core with a logic suitable
for reasoning about ST programs. The proof system is a se-
quent calculus for explicitly typed first-order logic that is ex-
tended with all types, constants and operators of ST, includ-
ing transition-valued expressions.
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The abstract syntax of the logic is represented in the usual
manner [38] as a SML datatype with constructors correspond-
ing to literals, identifiers and operators. Type-checking of for-
mulas is carried out by a function that recursively traverses a
formula and annotates each well-typed formula with its type,
and raises an exception for ill-typed subformulas. Once com-
puted, the type of each subformula is cached for efficiency.
Since the logic is explicitly typed (i.e. all identifiers need to
be declared with their type), type-checking is efficiently de-
cidable.

The well-formedness predicate for this logic states that all
formulas that of a sequent must be well-typed and of Boolean
type.

For the prototype implementation, we have avoided the
effort of writing a parser for the language, and instead use
SML’s parser by declaring, at the SML top-level, a construc-
tor with the appropriate fixity for each ST operator. ST source
modules are transliterated into this form by a translator that
shares its front-end with a compiler that compiles ST into
executable code for simulation. An additional benefit of this
choice is that the well-tested existing front-end providesin-
dependent syntax and type checking of the ST programs.

Assertions on ST programs, such as invariants, safety prop-
erties and refinement, are formulated in terms of predicates
on transition-valued expressions. We provide proof rules,such
as thewp-based rule for invariants, that allow such obliga-
tions to be reduced to obligations that are purely within quantifier-
free logic with boolean connectives, arithmetic,If-expressions,
and arrays and records under store and select. The latter is
achieved by rules which rewrite operations on individual cells
of an array (or components of a record) into operations on the
entire array (record) as a single variable. For instance, anas-
signment

A[5] := b

would be written as

A := store(A, 5, b),

Wherestore(A, 5, b) denotes the arrayA with the cell at in-
dex 5 updated with valueb.

As an example, consider a proof state that includes the
pending obligation:

HasInvariant( <<i > 0→ i:= i− 1>>
‖ <<i < N → i:= i + 1>>,

0 ≤ i ≤ N)

This obligation states that the two transitions maintain the
given invariant. An application of the proof rule forHasIn-
variant rewrites this obligation as

(0 ≤ i ≤ N)⇒
wp( <<i > 0→ i:= i− 1>>

‖ <<i < N → i:= i + 1>>,
0 ≤ i ≤ N)

An application of the proof rule forwp, which implements
the semantics given in section 1.3, yields:

(0 ≤ i ≤ N)⇒
( ((i > 0)⇒ (0 ≤ i− 1 ≤ N))
∧ ((i < N)⇒ (0 ≤ i + 1 ≤ N)))

This last obligation can be discharged using the decision pro-
cedure for linear inequalities with boolean connectives.

As explained in the previous section, proof rules are in-
voked by supplying the name of the proof rule to the func-
tion applyProofRule of signaturePROOF_STATE. For
each proof rule, we provide a wrapper function returning a
tactic or tactickle , given auxiliary arguments if appli-
cable. For example, proof ruleByTheorem , which inserts a
theorem identified by its name into the list of antecedents ofa
sequent, is encapsulated as a wrapper function with signature

val byTheorem : string -> tactickle

These wrapper functions are necessary for interaction with
the tactics package. For instance, the proof that carries out the
proof steps described above can be succinctly written as

( invariantByWp
thenTac linArith)

Here,invariantByWp is a compound tactickle that ap-
plies the first two steps, whilelinArith is a wrapper func-
tion that directly invokes the proof rule that implements our
decision procedure for linear arithmetic. Given two tactickles
A andB, (AthenTacB) is the tactickle that applies firstA
and thenB, and fails if either of the two steps fails.

Further proof rules include the usual rules for sequent ma-
nipulations, rewrites, simplification and lifting ofIf-expressions,
quantifier manipulations, and arithmetic simplifications.To-
gether with decision procedures for propositional calculus
and linear arithmetic, these are frequently sufficient to dis-
charge obligations arising from assertions about ST programs.
More specialized proof rules will be explained briefly in the
context of the divider verification presented in the remainder
of the paper.

4 The Self-Timed Divider: Overview

We evaluated the proof checker by verifying Williams’ self-
timed divider [50], which implements the radix-2 SRT algo-
rithm [14]. We reconstructed the design from the descriptions
in [50] and [51]. A variation of this design is incorporated in
the HAL SPARC CPU.

The verification of the divider while implementing the
proof-of-concept tool in parallel took two people about four
months. Finding appropriate invariants turned out to be sur-
prisingly easy, usually only requiring a small number of iter-
ations.

This section presents an overview of the divider design.
Sections 4.1, 4.2, 4.3 are tutorial in nature describing carry-
save addition, SRT division, and precharged logic respectively.
Section 4.4 describes the particular divider from [50].

4.1 Carry-Save Arithmetic

Figure 4 shows three common ways to implement two’s com-
plement addition (see [14]). In all three cases, the adders re-
ceive as inputs two words,a andb of n bits each, Each adder
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Fig. 4. Three Common Adder Designs

outputs ann-bit sum word,Σ. Each adder consists ofn one-
bit adders, where theith one-bit adder computes the sum of
input bitsa[ i] andb[ i] and outputs bitΣ[ i] . The differ-
ences between the three designs lay in the ways that carries
are handled.

The simplest adder is a carry-ripple. Each one-bit adder
receives its carry-input from the previous stage (or the en-
vironment for adder for the least significant bit). This imple-
mentation resembles the traditional “paper-and-pencil”method:
before computing the sum and carry at biti, the carry from bit
i− 1 is required. In the worst-case,O(n) time is required to
compute ann-bit sum. As described in section 4.2, the SRT
division algorithm requiresO(n) additions Thus, SRT divi-
sion using carry-ripple adders requiresO(n2) time for worst-
case data value.

Carry look-ahead adders can compute ann-bit sum in
O(n log n) time. While there are many variations on the de-
sign, all use some kind of tree structure to determine the
carry-input values for each stage. While carry look-ahead ap-
proaches are very useful for general-purpose arithmetic units,
carry-save adders provide higher performance from a simpler,
smaller circuit for application where a large number consecu-
tive of additions or subtractions are required. Division isjust
such an application.

In a carry-save adder, each one-bit adder receives its carry
input from the adder for the previous bit of thepreviousadder.
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Fig. 5. Carry-Save Addition

Basically, the carry-save design takes advantage of the fact
that addition is associative and commutative. Therefore, the
carries can be added to the partial sums in any order to pro-
duce the same final result. Figure 5 shows ripple carry and
carry-save addition when computing12+13+14+15+16.
The outputs of the carry-save adders are represented with two
bits per binary digit. The left bit in a pair for digiti represents
Σ[i]; the right bit representsc out[i-1] . The advantage of
carry-save addition is that each addition can be computed in
O(1) time. As the SRT division algorithm requiresO(n) ad-
ditions, SRT division using carry-save adders requiresO(n)
time.

The complication introduced by carry-save addition is that
it is a redundant representation: each binary digit of a value
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Fig. 6.Radix-2 Long Division

is represented by two bits. Accordingly, the same number can
be represented with several different encodings. For example,
every four-bit value has sixteen representations; the sixteen
four-bit representations of the integer 5 are shown below:

00 01 00 01 00 01 00 10 00 00 11 01 00 00 11 10
00 10 00 01 00 10 00 10 01 11 11 01 01 11 11 10
11 01 00 01 11 01 00 10 11 00 11 01 11 00 11 10
11 10 00 01 11 10 00 10 10 11 11 01 10 11 11 10

The traditional, non-redundant,value can be extracted by form-
ing two words, one for the partial sum, and one for the carries.
The sixteen encodings of 5 shown above correspond to:

0 +16 5 1+16 4 2+16 3 3+16 2
4 +16 1 5+16 0 6+16 15 7+16 14
8 +16 13 9+16 12 10+16 11 11+16 10

12+16 9 13+16 8 14+16 7 15+16 6
where+16 denotes addition modulo 16. Likewise, a non-
redundant result for the example from figure 5, is obtained by
computing00110110 + 00010000 which yields01000110,
the value computed by the ripple adder. For SRT division, this
final add can be computed by either a ripple-carry or a carry-
lookahead adder and preserve theO(n) time requirement.

4.2 The SRT Division Algorithm

To motivate the SRT algorithm, first consider the traditional,
“long-division” algorithm with binary arguments. Figure 6
shows binary, long division for computing177 ÷ 241. The
left column (labeled “q”) shows the quotient bits as they are
calculated, the column labeled “binary” shows the calcula-
tions in binary notation, and the column labeled “decimal”
shows the same calculations in decimal notation. The algo-
rithm starts with a comparison of177 and241. Because177

is less than241, the integer part of the quotient is zero. Sub-
tracting0 ∗ 241 from 177 yields177, which is the first partial
remainder for the calculation. Letd denote the divisor,r de-
note the current partial remainder, andb denote the radix of
the algorithm (for binary calculations, theb = 2). The com-
putation of the quotient proceeds by repeatedly applying the
following three steps:

1. Multiply the partial remainder by the radix:p = b ∗ r.
2. Select the next quotient bit:q = bp/dc.
3. Compute the next partial remainder:r = p− q ∗ d.

For radix-2 division, step 1 can be implemented by shifting
the bits ofr one position to the left; step 2 is a comparison of
p andd (i.e. q = 0 if p < d andq = 1 if p ≥ d); step 3 is a
subtraction. When carry-save arithmetic is used, the compari-
son in step 2 of the long division algorithm becomes difficult.
Performing an exact comparison basically requires propagat-
ing all “pending carries” in the carry-save word to produce a
non-redundant value, which would nullify the advantages of
the carry-save approach.

The SRT algorithm implements division efficiently using
carry-save arithmetic. SRT employs a redundant representa-
tion of the quotient – for the radix-2 algorithm, a quotient
digit can be−1, 0, or 1. Each iteration of the SRT algorithm
is similar to an iteration of the long division computation:
the partial remainder is multiplied by the radix and compared
with the divisor; a quotient digit is selected; and the product
of the quotient digit and the divisor is subtracted from the
scaled partial remainder to produce a new remainder. The re-
dundancy in the quotient digits allows the comparison of the
divisor and the partial remainder to be approximate, which
in turn allows carry-save arithmetic to be used. As long as
the magnitude of the partial remainder remains less than or
equal tod, there is a sequence of quotient digits that drives
the partial remainder to zero. With the radix-2 SRT algorith,
one quotient bit is computed per iteration; accordingly, ifthe
quotient is requied to the same precision as the operands, SRT
division performsO(n) additions to compute a quotient given
n bit operands.

A charming feature of the radix-2 SRT algorithm is that
valid quotient digits can be selected by only considering the
four most-significant binary digits of the partial remainder,
even when the partial remainder is represented in the carry-
save style. We will describe the particular implementation
that we verified. Our verification shows the correctness of the
mantissa calculation of the divider. The operands to the di-
vider are normalized floating point numbers1. Therefore, we
assume that the divisor and dividend mantissas are in the in-
terval [0.5, 1). A critical invariant of the divider (verified in
section 6.1) is|r| ≤ d < 1. Figure 7 shows the valid choices
of the quotient digit such that this invariant is maintained.

The divider uses a two’s complement, carry-save repre-
sentation of the partial remainders. The most significant bit in

1 IEEE floating point [25] allows for “denormalized numbers.”Typical
implementations of this standard include additional mechanisms for handling
denormalized divisors with a loss of performance. In this paper, we assume
that the divisor is normalized.
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our implementation has weight−2. If a non-redundant rep-
resentation were used for the partial remainder, then this bit
would be unnecessary. With carry-save addition, this bit helps
disambiguate the value of the partial remainder as we explain
below.

Assume that the partial remainder,r, hasn digits with
n ≥ 4. The rational number value ofr can be estimated
by using a four-bit, carry-ripple adder to compute the non-
redundant, two’s complement value for the top four digits of
r. This ignores the remainingn−4 digits. Because two’s com-
plement notation is used, this neglected term must be positive
or zero. The most-significant digit of the partial remainder
has weight−2. Therefore, the fourth most significant digit
has weight1/4. The neglected term is the sum of two words,
each of which has a value of less than1/4. Therefore, the
neglected term has a value in the interval[0, 0.5).

This redundancy allows quotient bits to be selected with-
out first propagating all carries in the partial remainder cal-
culation. Instead, the top few bits of the partial remainderare
calculated, deferring carry propagation from lower bits until
subsequent iteration. Based on the top few bits of the par-
tial remainder, a small range that contains all possible values
of the partial remainder can be determined. The redundant
representation allows a quotient digit to be selected that is
valid for any value of the partial remainder in this range. Af-
ter the complete quotient has been computed, the traditional,
non-redundant representation can be obtained by performing
a single subtraction operation. For floating point applications,
the mantissa of the divisor can be assumed to be normalized;
therefore it lies in the interval[0.5, 1). For the radix-2 algo-
rithm, quotient digits can be selected based on the value of the
partial remainder without considering the value of the divisor.

Table 1 shows the quotient selection used in the divider
presented in this paper. The column labeled “CRA sum” gives
the output of the four bit carry-ripple adder described above.
The column labeledr gives bounds on the value value of the
partial remainder given the value of CRA sum, and the col-
umn labeledq gives the quotient digit for this value of CRA

CRA sum r q

0000 [0.00, +0.50) +1
0001 [+0.25, +0.75) +1
0010 [+0.50, +1.00) +1
0011 [+0.75, +1.00) +1
1011 (−1.00, −0.75) −1
1100 (−1.00, −0.50) −1
1101 [−0.75, −0.25) −1
1110 [−0.50, 0.00) −1
1111 [−0.25, +0.25) 0

Table 1.Quotient bit selection for the radix-2 SRT divider

sum. For example, if the CRA sum is 0000, then the partial
remainder must be in the interval[0, 0.5). As shown in fig-
ure 7, a quotient digit of+1 is allowed whenever the partial
remainder is non-negative, justifying this entry in table 1. If
the CRA sum is1011, then the 2’s complement value of the
CRA sum is−1.25. In this case, the invariant|r| < 1 estab-
lishes the lower bound forr. This means that theremustbe
pending carries in the neglected part of the partial remainder
word; in other words, the neglected part has a value of at least
1/4. If the CRA sum is1111, the sign of the partial remainder
depends on the the pending carries from the neglected part of
the partial remainder word. In this case, we note that the mag-
nitude of the partial remainder is at most1/4. From figure 7,
a quotient digit of 0 is allowed for any such partial remainder.
This is the value chosen in the table. The explanations for the
other entries in table 1 are similar to those stated above. There
are no entries for sums from0100 through1011; the invariant
|r| < 1 precludes the occurence of such values.

Figure 8 shows the calculations of the SRT algorithm when
computing177/256

241/256 – this corresponds to the long division ex-
ample from figure 6 with the divisor and dividend scaled to
be in [0, 0.5). The calculations employ 10-bit, two’s comple-
ment to represent the divisor, the dividend, and the partial
remainders. The (redundant) quotient is

(0).(+1)(-1)(+1)(0)(0)(0)(-1)(0)(+1)(-1)(-1)(-1).
To obtain the traditional (non-redundant) quotient, we sub-
tract the -1’s word from the 1’s word, i.e.:

0.1010000010002

−0.0100001001112

0.0101111000012

= 0.7348632812510

4.3 Precharged Logic

Our verification starts with a proof of correctness for the radix-
2 SRT algorithm described above and then progresses through
a sequence of five refinement proofs to produce a verifica-
tion of at timed transistor-level model. To prepare for these
detailed models, we now describe the general style of logic
circuits used in the divider.

We start with a one paragraph review of switch mod-
els for transistors (see, e.g. [49] for a more complete ex-
position). Figure 9 shows an n-channel MOSFET transistor
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Fig. 8. SRT Division Example

and a p-channel MOSFET transistor along with their switch
level models. Each transistor has three terminals: the gate,
the source, and the drain, labeledg, s , andd respectively
in the figure. The source and drain are interchangeable; two
different names exist for historical reasons. In a simple mo-
del, the transistor operates as a switch controlled by the volt-
age on the gate. For an n-channel transistor, a connection is
made between the source and the drain when the gate is at a
high voltage, and no connection is made when the gate is at a
low voltage P-channel devices operate with a reversed sense
of the drain: when the drain is high, no connection is made;
when the drain is low, a connection is made.

The divider that we verified makes extensive use ofprecharged
logic. Figure 10 shows a generic precharged logic gate and a
specific example, an AND-OR gate. Precharged gates operate
using a cycle of three phases. The first phase is theprecharge
phase. In this phase, the logic inputs (i.e.a, b, c , . . . ) are low,
and the “precharge bar” (i.e. negated precharge) signal,pb ,
is asserted by settingpb low. This creates a connection be-
tween nodex and the power supply (labeled1 in the figure).
The pull-up transistor is made large enough that it can over-
power the n-channel transistors in the pull-down network and
the small inverter whose output is connected tox . Thus, node
x is driven high. Oncex is high, nodey is driven low. At the
end of the precharge phase, the output,y , of the gate is low.

s

d

g=0

s

d

g=0g=0

s

d

g

s

d

g=1

s

d

s

d

g

n−channel MOSFET p−channel MOSFET

Fig. 9. Switch models for transistors

The second phase is theevaluatephase. In this phase, the
precharge-bar node,pb , is set-high, and the logic inputs are
allowed to change to high. If the combination of high inputs
establishes a connection from nodex to ground, then node
x goes low, which causes nodey to be driven high. If the
logic function is not satisfied, then the small feedback inverter
maintains the high level on nodex and nodey remains low.
At the end of the evaluate phase, the output of the gate is the
value of the function for the current inputs.

For example, the pull-down network of the AND-OR gate
makes a connection fromx to ground if the inputa is high
and if either theb or c input is high. Thus, this gate computes
the function

a ∧ (b∨ c).
The third phase is theholdphase. In this phase, the inputs

return to low values, and the precharge-bar node,pb , remains
high. In this phase, the pull-down network does not make a
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connection from nodex to ground, and the pull-up transistor
does not make a connection fromx to power. In this phase,
the small feedback inverter maintains nodex at the value that
it had at the end of the evaluate phase. Throughout the hold
phase, the output of the gate is the value of the function from
the preceding evaluate phase.

The divider that we verified is self-timed. Rather than us-
ing a clock signal to control the sequencing in the SRT it-
erations, control circuitry detects when stages complete their
operations and enables subsequent operations accordingly. To
enable completion detection, most signals are encoded using
a dual-rail code[43]. If y is a boolean valued variable, then
nodey.T is driven high during an evaluate phase if the func-
tion for y evaluates to true, andy.F is driven high if the
function fory evaluates to false. During the precharge phase,
both y.T and y.F are driven low. Therefore, the comple-
tion of precharge is indicated when bothy.T andy.F are
low, and the completion of evaluation is indicated when either
y.T andy.F are high. Figure 11 shows a dual-rail AND-OR
gate with completion detection.

4.4 The Divider Chip

Figure 12 shows the hardware that implements a single step
of the SRT division algorithm. Stagei receives the partial re-
mainder and a quotient digit from stagei-1 on busesr(i-1)
and q(i-1) respectively. The quotient digit,q(i-1) , is
used to select whetherd, 0, or-d will be added in the carry-
save adder,CSA, to the previous partial remainder,r(i-1) ,
whered is the divisor (see section 4.2). Thisshift module is
simply a relabeling of wires that shifts the output of the carry-
save adder one bit to the left to effect a multiply by two. The

55

5555

55

55

Q

S

L

C

S

A

mux

r(i−1)

r(i)

q(i)

q(i−1)

d

−d

4 4

shift

0

C

A

R

Fig. 12.A Divider Stage

s

a
t

g
e
2

s

a
t

g
e
1

s

a
t

g
e
0

r(2)

pb(0) pb(1) pb(2)

q(0) q(1) q(2)

precharge control

r(1)r(0)

Fig. 13.Divider Architecture

carry-ripple adder,CRA, converts the top four bits of the par-
tial remainder to the standard, non-redundant representation.
The quotient-select-logic,QSL, uses this sum to determine
the next quotient digit.

As depicted in figure 13, the entire design consists of
three of the above stages, arranged in a ring [51]. As men-
tioned in section 4.3, the iteration is controlled by embedding
completion information in the data signals. Most values are
encoded using dual-rail codes. Quotient bits are encoded us-
ing a three-wire, “one-hot” scheme [30]. At most one wire
may be high at any time; the four values of the code are
empty, -1 , 0, and+1.

The divider design includes two performance optimiza-
tions that exploit timing details of the circuits. First, a stage
can precharge faster than its predecessor can evaluate. The
allows stagei+1 to precharge in parallel with the evaluation
phase of stagei . If no timing assumptions were made, these
operations would have to be performed sequentially. Second,
the partial remainder word becomes valid during an evaluate
phase before the quotient digit, relies on the quotient digit
of a stage being the last output to change during the evalua-
tion phase. This allows the computation of stagei+1 to start
as soon as the quotient digit from stagei is output, without
any additional hardware to check the completion status of the
partial remainder.

5 Verification Strategy

Our overall goal is to verify that the transistor-level imple-
mentation of William’s divider correctly computes division.
There are two major challenges to be faced: First, we have
to show that the algorithm that this design is based on is
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functionally correct. Second, we need to demonstrate that the
implementation adheres to this algorithm. In particular, this
requires showing that the timing-critical control of the self-
timed design works as intended.

Since the division algorithm is of an iterative nature, we
employed an invariant-based argument to establish its cor-
rectness. However, it is not practical to directly formulate the
necessary invariants at the level of detail for which we verify
the divider: a timed, transistor level model. In particular, such
an invariant would be too tedious for manual formulation; it
is unreasonable to expect state-space-exploration-basedtools
to automatically find an invariant that supports the property
of correct division; and the heuristics of sophisticated theo-
rem provers would almost certainly get lost in the myriad of
details of the model without finding the desired proof.

Having concluded that we cannot hope to directly ver-
ify the correctness of the detailed model, we pursued an ap-
proach that relies heavily on refinement to manage the com-
plexity of the proof. Our goal is to prove a safety-property
of the design; this permits the use of refinement to ‘inherit’
correctness properties that are shown for an abstraction ofthe
design down to the implementation level [15]. We have de-
vised a hierarchy of refinements that relates an abstract, algo-
rithmic descriptions of SRT division on rational numbers to
the transistor-level implementation of the design. There are
several intermediate descriptions in the hierarchy; thesehave
been chosen to allow each successive refinement step to focus
on one particular aspect of the overall correctness property.

The transistor-level implementation contains thousands
of timedsignals. This makes both deductive and state-exploration-
based reasoning about the timed behavior of the design im-
practical. Instead, we employ a refinement argument between
the transistor-level implementation and the next higher mo-
del in our refinement hierarchy. This argument requires us
to show that certain timing properties hold for the transistor
level model. These can be shown by simple graph-traversal
methods given that certain side conditions hold. In our frame-
work, the graph-traversal algorithm is incorporated as a domain-
specific decision procedure, and the side conditions become
proof obligations that we discharge using deductive, refine-
ment based arguments. By combining domain-specific de-
cision procedures with general purpose deductive theorem
proving, we can verify a design that would not be possible
or practical to verify by either approach alone.

In the following, we first introduce theorems that provide
the foundation for refinement-based reasoning about ST pro-
grams. We then give an overview of the refinement hierarchy
used to show correctness of the divider, and finally provide
more detailed descriptions of each proof step.

5.1 Refinement between ST Programs

Intuitively, programP ′ is a refinement ofP if every state
transition thatP ′ can make corresponds to a move ofP . More
formally, letS′ be the state space ofP ′, S be the state space
of P , andA be a mapping fromS′ to S. The mappingA
is referred to as anabstraction mapping; for simplicity, we

assume thatA is a function. LetQ0 andT be the initial state
predicate and set of transitions forP andQ′

0, T ′ the same for
P ′.

Let s′1 be a state ofP ′. We say that the transitions ofP ′

are matched by the transitions ofP at states′1 iff for every
states′2 that is reachable by performing a single transition of
P ′, there is a transition ofP that effects a move fromA(s′1)
to A(s′2). Stuttering actions (whereA(s′1) = A(s′2)) are ex-
empted. We writematchtrans,A(T ′, T )(s′) to denote that the
transitions ofP ′ are matched by those ofP at states′, with

matchtrans,A(T ′, T )(s′) =
∀<<G′→M ′>> ∈ T ′. G′(s′)⇒

(A ◦M ′)(s′) = A(s′)
∨ ∃<<G→M>> ∈ T.

(G ◦A)(s′)
∧ (A ◦M ′)(s′) = (M ◦A)(s′)

whereM andM ′ denote multi-assignments of programP
andP ′ respectively. Note that a given transitiont′ ∈ T ′ does
not necessarily have to be matched with asingle transition
t ∈ T . Instead, the matching can be subject to the particular
states′ of P ′; for instance,t′ may be matched witht1 if P ′

is in states′1 and witht2 if P ′ is in states′2. In the theorem
prover, such case-splitting is straightforward.

BothP ′ andP may have associated protocols,proto and
proto′. A protocol is a relation on the states of a program,
e.g.,

proto ⊆ S × S

We use protocols to model assumptions about the environ-
ment of a model; a transition from states1 to s2 is admitted
if (s1, s2) ∈ proto. In the context of the divider verification,
we use protocols to constrain the passage of time in timed
models (see section 6.5).

We definematchproto,A in a similar fashion to indicate
matching of protocol actions, again exempting stuttering ac-
tions:

matchproto,A(proto′, proto)(s′1) =
∀s′2 ∈ S′.

proto′(s′1, s
′
2)⇒ proto(A(s′1), A(s′2))

∨ A(s′1) = A(s′2)

All actions ofP ′ are matched byP at states′ if both transition
actions and protocol actions are matched:

QP ′�
A

P (s′) = matchtrans,A(T ′, T )(s′)
∧ matchproto,A(proto′, proto)(s′)

Noting thatQP ′�
A

P (s′) is a predicate over states ofP ′, we
say thatP ′ is a refinement ofP under abstraction mapping
A if Q′

0 ⇒ Q0 ◦ A and QP ′�
A

P (s′) is a safety property
of P ′. We writeP ′�AP to denote this. Because refinement
is a safety property, refinement for Synchronized Transitions
programs can be defined using ourwpsemantics presented in
section 1.3. As shown below, verification of refinement can
often be reduced to a simple problem of tautology checking.

Note that any interpretation of refinement as a ‘correct-
ness property’ in the sense of stating that ‘P is correct be-
cause it is shown to be a refinement of the specificationP ’
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is subject to the abstraction mapping faithfully capturingthe
intention of the person who defined it. In particular, an ab-
straction mapping may in fact be defined such that it performs
part of the computation that the implementation is expectedto
do. Furthermore, our notion of refinement does not consider
liveness properties; an implementation that does nothing can
always be shown to be a refinement of a given specification
(since it will never perform an action that violates the spec-
ification). In either case, such an abstraction mapping would
clearly not capture the verifier’s intention.

Avoiding such pitfalls requires careful construction of ab-
straction mappings. In our refinement proofs, we have when-
ever possible used abstraction mappings that are composed
from mappings between state variables of the implementa-
tion and the specification which are easily seen to correspond
to what was intended. For example, one such mapping is a
function that maps a vector of Boolean variables representing
an integer in two’s complement notation into its specification-
level interpretation as a signed integer.

The next two theorems formalize two useful relationships
between refinement and safety properties. The first theorem
states that safety properties of a more abstract program are
inherited by refinements of the program.

Theorem 1. Given programsP andP ′, an abstraction func-
tion A such thatP ′�AP , and a predicateQ such thatQ is a
safety property ofP . ThenQ ◦A is a safety property ofP ′.

This theorem is easily proven by induction over traces ofP ′.
The second theorem describes how safety properties ofP

can be used to show thatP ′ is a refinement. This often re-
duces the problem of showing refinement to one of automatic
tautology checking.

Theorem 2. Given programsP and P ′ with initial state
predicatesQ0 andQ′

0, an abstraction functionA, and a pred-
icateQ such thatQ is a safety property ofP . If Q′

0 ⇒ Q0 ◦A
and(Q ◦A)⇒ QP ′�

A
P , thenP ′�AP .

A simple induction argument over traces ofP ′ shows that
QP ′�

A
P (s′) is a safety property ofP ′ and establishes the

claim.
Based on these theorems, we have implemented proof

rules for refinement between ST programs. For instance, the
rule corresponding to theorem 2 reduces an obligation of the
form

IsRefinement(Q′
0, P

′, proto′, Q0, P, proto, A)

to the obligation

Q′
0 ⇒ Q0 ◦A

∧ (Q ◦A)⇒ QP ′�
A

P

∧ HasSafetyProperty(Q0, P, proto, Q)

Note that

(Q′
0 ⇒ Q0 ◦A) ∧ ((Q ◦A)⇒ QP ′�

A
P )

is a simple predicate over states ofP ′. The only invariant that
we must find is the one required for

HasSafetyProperty(Q0, P, proto, Q)
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Fig. 14.Refinement Hierarchy

In other words, we use an invariant ofP to establish thatP ′

refinesP and thereforeP ′ inherits the safety properties ofP .
By carefully designing a refinement hierarchy, we can dra-
matically simplify the task of finding the invariants needed
for verification.

In our implementation, the abstraction mappingA is given
in the form of a list of equations(v1 = e′1, . . . , vk = e′k),
wherev1, . . . , vk are variables of the specificationP , and
e′1, . . . , e

′
k are expressions on the variables ofP ′. The rule

constructs expressions for(Q ◦ A) andQP ′�
A

P by analyz-
ing the syntactic structure ofP ′ and P , and appropriately
combining subexpressions of the programs. Expressions cor-
responding to function composition are computed using sub-
stitution; this is possible since both multi-assignments and
the abstraction mapping are represented as suitable functional
vectors.

5.2 Refinement Hierarchy for the Divider

Figure 14 depicts the hierarchy of models that we used to
verify the divider. Each model is named based on a charac-
terization of the type of control and the data representation
used. For instance, the synchronous/bit-vectormodel has syn-
chronous control and uses a bit-vector representation for the
divisor and partial remainder. For each level of abstraction,
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the figure indicates the aspect of overall correctness that the
corresponding refinement step focuses on.

The first two refinement steps are data refinements. Our
top-level model has a single stage which computes a quotient
digit and the next partial remainder in each step. The divi-
sor, dividend, and remainder have rational values. In the first
refinement step, we replace the rational values with integer
values, and the next refinement step replaces these integers
with bit-vectors.

The next two models elaborate upon the self-timed hand-
shaking protocols used in the design. The speed-independent
model has three divider stages and implements a handshak-
ing protocol that does not depend on the timing delays of
the components. In the timed, word-level model, bounds are
given on the ratio of precharge time to evaluation time; these
bounds are exploited for an optimization of the handshaking
protocol.

The lowest-level model corresponds directly to our tran-
sistor-level implementation of the divider chip. Variables in
this model are represented using dual-rail code. In the higher
level models, the remainder word was computed as a single,
atomic action. Here, each signal is set independently. Fur-
thermore, the status of the quotient bit is used to determine
the status of the entire output of the stage. This optimization
leads to a smaller, faster implementation, but it also intro-
duces timing dependencies that we must verify.

6 Verifying a Self-Timed Divider: The Proofs

This section presents each of the refinement proofs for the
divider in detail. We also present the safety and refinement
properties that are established for each model along with the
proofs for these properties. This shows how we can model a
significant design at many different levels of abstraction,and
how proofs can be carried out using a combination of gene-
ric deductive arguments and domain specific decision proce-
dures.

We present the proofs in a top-down fashion. This choice
is both historical and pedagogical. The top-down order re-
flects the order in which we developed the proofs. Further-
more, just as the proofs at the higher levels of the hierar-
chy provide invariants needed by the lower level proofs, the
descriptions of the higher level proofs provide a context in
which to understand the lower level ones. A consequence of
this presentation is that some of the most novel features of our
approach, such as reasoning about timed, switch-level mod-
els, are presented later in this section.

6.1 Functional Correctness of the Synchronous/Rational
Model

The top-level model in our refinement hierarchy is an ST pro-
gram that performs SRT division on rational numbers. We
begin our verification by proving that this program indeed
correctly divides.

Figure 15 depicts the ST code of the quotient selection
logic of our top-level, synchronous divider model. The logic
is modeled as three ST transitions which are enclosed in a
cell. A cell is a ST construct that permits the encapsulation
and re-use of ST code. Cells are instantiated much like macros;
instantiating a cell has the effect of creating a copy of the tran-
sitions in the cell, with the cell’s formal parameters replaced
by the actual parameters of the instantiation.

FunctionnextRem computes the remainder of the next
iteration as

nextRemF(rem, quot, divisor)
= 2 · rem− quot · divisor

As described in section 4.2, radix-2 SRT allows quotient dig-
its to have the value -1, 0 or 1. If the current remainderRi is
greater or equal to 0, 1 is a valid quotient digit choice. If the
remainder is negative, -1 is a valid choice for the next quo-
tient digit. If 2|Ri| ≤ divisor, the quotient digit can also be
0. In our highest-level description of the divider this overlap-
ping choice for the digit is represented by three transitions
combined with the asynchronous combinator (see fig. 15).
If more that one transition is enabled, a non-deterministic
choice takes place. For example, if the current remainder is
equal to−0.2∗D, then either the first or the second transition
may be chosen for the next step. By using non-determinism,
we avoid cluttering this description with implementation de-
tails, and at the same time modularize and simplify the proofs.
Deterministic quotient digit selection is introduced in the syn-
chronous, bit-vector model.

The complete program includes additional, synchro-
nously composed transitions that instantiate the cell
SRTDivide , store the computed quotient digits in a vec-
tor, and handle the loading of operands and the generation of
completion signals. This logic also ensures that the program’s
external behavior appears synchronous despite the use of the
asynchronous combinator, which is employed solely to ex-
press the internal non-determinism.

The following two properties are invariants of the syn-
chronous divider model:

|Ri| ≤ D (1)

2C −D

i−1
∑

j=0

qj2
−j = Ri2

1−i, (2)

whereRi is the remainder determined in iterationi, andq0, . . . , qi−1

are the quotient digits computed so far. From these two in-
variants and the initial condition that the divisorD and div-
idend C are normalized to satisfy12 ≤ D < 1 and
0 < C < D, we can prove that

DuringComputation ⇒
∣

∣

∣
2 C

D −
∑i−1

j=0 qj2
−j

∣

∣

∣
≤ 2−(i−1) (3)

is a safety property of ST programsrtDivider . During-
Computationis a predicate stating that the divider is prop-
erly initialized and currently computing a quotient. This re-
sult demonstrates that the computed quotient asymptotically
approaches the true quotientC/D.
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IMPLEMENTATION MODULE srtDivider;
STATIC

(* ... *)

SRTDivide : SRTDivideC = (* CELL( quot: sInt2; rem: Rational ;
STATIC divisor: Rational; *)

BEGIN
<< nextRem(rem,quot,divisor) <= 0.0

-> rem, quot := nextRem(rem,quot,divisor), -1 >>
|| << (-divisor <= 2.0*nextRem(rem,quot,divisor)) AND

(2.0*nextRem(rem,quot,divisor) <= divisor)
-> rem, quot := nextRem(rem,quot,divisor), 0 >>

|| << 0.0 <= nextRem(rem,quot,divisor)
-> rem, quot := nextRem(rem,quot,divisor), 1 >>

END;

(* ... *)
END.

Fig. 15.Quotient Selection in Functional Model

Proving invariants (1) and (2) requires a few additional
book-keeping invariants that e.g. state that the quotient digit
always is one of−1, 0, 1. Together, these invariants are eas-
ily proved by case-split over the value of the quotient digit,
rewriting with axioms about summation and powers-of-two,
and application of the decision procedure for linear arith-
metic. Using the these invariants, the safety property (3) is
proved in a similar fashion.

As an example, figure 16 depicts the complete proof for
invariant (1). TacticcaseQuot is a user-defined tactic that
performs a case-split over the possible valuations for the quo-
tient digit, and is defined as follows:

val caseQuot =
caseSplit "quot"

(map (fn c => (Not init %=> c))
[(quot %= (## (˜1))),

(quot %= (## 0)),
(quot %= (## 1))])

The operators%=>, %=, and## , denote implication, test for
equality, and construction of a constant in the object logic.
The distinct symbols allow the user to use both the built-in
ML operators and the operators in the object logic when con-
structing a proof. TacticcaseSplit is the core tactic for
case splits, and is specialized into the case-split over quotient
digit using SML-level partial evaluation.

The proof in figure 16 is written using the goal package;
this allows steps of this proof to be cut-and-pasted into an
interactive proof session. FunctionTAC is part of the goal-
package and applies a given tactic to the current proof state.
FunctionmapTac applies a given tactickle to selected obli-
gations of a proof state. For instance, the last proof step ap-
plies the arithmetic decision procedure to all obligations, thus
discharging all pending obligations.

6.2 Synchronous/Integer Model

In the top layers of refinement, we focus on transforming the
data-path of the circuit from one expressed in terms of ratio-
nal numbers to an implementation in terms of bit-vectors of
lengthM .

In preparation for the refinement to bit-vectors, we first
introduce an intermediate model,srtIntDivider . This
model operates on (signed) integers in the range{−2M−1, . . . , 2M−1−
1}, instead of rational numbers. Correspondingly, all opera-
tions on rational numbers are replaced by operations on signed
integers, modulo(2N ).

For instance, insrtIntDivider , the ST expression
2.0 * rem - divisor is correspondingly written as

plusMod2N(M, rem,
minusMod2N(M, rem, divisor))

In this expression,plusMod2N is a function that is de-
fined to have the exact same semantics as (signed) addition
on M -bit, two’s complement, bit-vectors. This property will
greatly simplify the next-lower refinement step.

The abstraction mapping betweensrtIntDivider and
srtDivider divides therem, divisor anddividend
variables ofsrtIntDivider by 2M−1, and directly maps
all other variables to their counterpart insrtDivider (vari-
ables ofsrtIntDivider are primed):

AIntDiv :



















rem ← 2(1−M)rem′

divisor ← 2(1−M)divisor′

dividend ← 2(1−M)dividend′

quot ← dividend′

...
count ← count′



















In order to prove refinement, it is necessary to show that
there are no overflows in the modulo-2N arithmetic performed
by srtIntDivider . However, this property is implied by
the invariants ofsrtDivider that were already used in the
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(* proof for clmInvAbsrem_lt_divisor *)
fun prfInvAbsrem_lt_divisor ps = (

setGoal ps; setObl (Idx 0); (* set up goal package *)

tac setupInv; (* apply the invariant-by-WP rule *)
tac caseQuot; (* case-split over quotient digit *)

(* split by transition and move guard to assumptions *)
TAC (mapTac (tryTac conjSplitAll) (Nms "_.case_quot"));
TAC (mapTac (tryTac impReduction) (Nms "_.case_quot"));

(* use the guard to simplify the case assumptions, and substi tute them
throughout the obligation, then simplify *)

TAC (mapTac (tryMapSeq unCond (sANms "case_quot"))
(Nms "_.case_quot"));

TAC (mapTac (eqRewrite (sANms "case_quot", sAll))
(Nms "_.case_quot"));

TAC (mapTac (simpIfsAll thenTac liftIfsAll thenTac
simpIntAll thenTac simpRatAll)

(Nms "_.case_quot"));

(* split obligations by invariant clause *)
TAC (mapTac (tryTac conjSplitAll) (Nms "_.case_quot"));

(* discharge obligations *)
TAC (mapTac linArith All);

getGoal())

Fig. 16.Proof for invariant (1)

functional correctness proof, plus an additional invariant of
srtDivider which constrains the range of the current re-
mainder, given that the current quotient has a particular value.
Thus, applying theorem 2, we can prove refinement by show-
ing that these invariants (after being subjected to the abstrac-
tion mappingAIntDiv ) together imply the refinement predi-
cateQsrtIntDivider�

A
srtDivider

2.
The proof that this implication indeed holds proceeds by

case-split over the value of the quotient digit, then requires a
non-trivial amount of rewriting with lemmas about the modulo-
2N operations, powers of two, etc., and then uses the decision
procedure for linear arithmetic to discharge obligations.

The amount of rewriting required made this proof one of
the least automated of the entire verification; a certain degree
of automation was achieved using proof tactics that automat-
ically apply a set of lemmas as rewrite-rules.

6.3 Synchronous/Bit-Vector Model

In the next refinement step, we further refine the data-path to
use a bit-vector representation for the divisor and currentre-
mainder: In the synchronous/bit-vector model, the remainder
is maintained in carry-save representation. Furthermore,the
next quotient digit is computed deterministically based onthe
top four bits of the carry-save adder. Only the top four bits of

2 We also need to show that the invariants involved are in fact safety prop-
erties, which is trivial.

the carry and save parts of the remainder are resolved by a
carry-ripple adder and fed to the quotient selection logic;the
carry of the bottom bits does not need to be resolved.

Figure 17 shows the transitions of the quotient selection
logic. CRASumBit is a function that computes the value of
bit b ∈ {0, . . . , 3} of the output of the carry-ripple adder, de-
pending on the current remainder and previous quotient digit.
Depending on these bits, the next quotient is set to 1, 0 or -1,
in two-bit signed integer representation.

The abstraction mapping between the synchronous/bit-
vector model and the synchronous/integer model is written
in terms of a functionbitVec2sIntN which interprets a
vector of booleans as a signed integer in 2’s complement rep-
resentation. This function is used to map the (M-bit) divi-
sor and (2-bit) quotient of the synchronous/bit-vector model
into the corresponding integer-subrange variables of the syn-
chronous/integer model. Furthermore, the mapping for the re-
mainder uses the signed modulo-2N arithmetic functions to
consolidate the carry and save portions of the remainder at
the bit-vector level into the remainder at the integer level.

In order to prove refinement between the two models, it
needs to be shown that for each quotient digit choice of the
bit-vector model, an equivalent choice can be made by the
higher-level model. More precisely, this requires that thequo-
tient choice made by the bit-vector model falls within a region
that allows the integer model to make a consistent choice.
Note that for a given current remainder and quotient digit,
the integer model may have more than one choice for the next
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QSL : QSLC = (* CELL(outquotient: Word2; sum, carry: WordN;
quotient: Word2; divisor: WordN); *)

TYPE bFn = FUNCTION(b:INTEGER): BOOLEAN;
STATIC

cra : bFn = BEGIN
CRASumBit(carry, sum, divisor, quotient, b)

END;
BEGIN

<< outquotient(0) := (NOT cra(2))
OR (cra(2) AND (NOT (cra(1) AND cra(0)))) >>

* << outquotient(1) := (cra(2) AND (NOT (cra(1) AND cra(0))) )
OR ((NOT cra(2)) AND cra(3) AND cra(1) AND cra(0)) >>

END;

Fig. 17.Quotient Selection in Bit-Vector Model

quotient digit; all that is required for the implementationis to
choose a quotient digit that is consistent withoneof these
choices.

Similar to the previous refinement step, the refinement
predicate is implied by safety properties inherited from the
synchronous/integermodel, which were in turn inherited from
the top-level specification. This allows us again to prove re-
finement without directly establishing invariants of the synchronous/bit-
vector model. The inherited properties establish constraints
on the possible combinations of values of the divider, current
partial remainder and current quotient digit at each iteration.
One such property states that if the current quotient is -1, then
the remainder cannot be positive. This is straightforward to
observe, and prove, at the functional level; figure 15 shows
that the transition that sets the quotient to -1 is enabled only if
the next remainder is non-positive. Directly formulating and
proving this property at the level of detail provided by the
bit-vector-level model would have been much more tedious.

The proof that the inherited safety properties imply the
refinement predicate requires reasoning about bit-vectorsin-
terpreted as signed integers, and operations thereon. A high
degree of automation for this proof step is achieved by usinga
BDD-based rewrite rule for bit-vector arithmetic. This proof
rule ‘interprets’ the functionbitVec2sIntN as well as the
modulo-2N operations such asplusMod2N and rewrites ex-
pressions written in terms of these functions into an equiva-
lent boolean expression, represented as a BDD.

Using this decision procedure, the refinement proof is very
concise. After case splitting over the value of the quotient
digit, each of these cases is automatically discharged by the
following proof tactic:

val dischBV = rewriteBVAll
thenTac liftIfsAll
thenTac rewriteBVAll
thenTac predCalcDisch;

This tactic first applies the bit-vector rewrite procedure,
then lifts If expressions, applies the rewrite procedure again,
and then uses the BDD-based decision procedure for propo-
sitional logic to show that the resulting obligation is a tau-
tology. Using this tactic, the complete proof can be written
as

(* split cases over quotient digit *)

tac caseQuot;

(* re-write with quotient digit & simplify *)
TAC (mapTac

( (splitAnt (sANm "case_quot"))
thenTac (eqRewrite

(sANms "case_quot", sAll))
thenTac simpIfsAll)

(Nms "_.case_quot"));

(* discharge the cases *)
TAC (mapTac dischBV All);

When we first attempted this proof, we discovered quo-
tient selections that could lead to a violation on the clauseof
the word-level invariant that bounds the magnitude of the par-
tial remainder. Using the counter-examples generated by our
decision procedures, we identified the cause. As previously
indicated, we reconstructed our models from published de-
scriptions [50,51]. Based on our interpretation of these sources,
we originally designed the divider with a quotient-selection
logic that is based on a three-bit carry-ripple adder. However,
doing so causes an incorrect quotient choice under certain
circumstance involving overflow of the carry-ripple addition.
We modified the design to use a fourth bit in the quotient se-
lect logic as described in section 4.2. We were then able to
prove refinement for the modified design. Later on, commu-
nication with the original designer confirmed that our initial
implementation was incomplete. Although we did not find an
error in the actual design, our verification effort revealeda
place where the published documentation for the design was
unclear.

6.4 Speed-Independent/Bit-Vector Model

In the following two refinement steps, we focus on the control
logic of the design, while the data-path remains unchanged
(i.e., the next two levels use exactly the same representation
and computation for the current remainder and quotient digit
as the synchronous/bit-vector model).

In the first of the two refinement steps, the synchronous/bit-
vector model is refined into the speed-independent/bit-vector
model. Instead of computing a new remainder and quotient
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Process: ProcessCell = (* CELL(STATIC stage: INTEGER; pb, q : ABool; sum,carry: AWordN;
cpaSum: AWordN; quotient: AWordN; divisor: WordN); *)

STATIC
prev: INTEGER = (stage+2) MOD 3;
next: INTEGER = (stage+1) MOD 3;
me: INTEGER = stage;

BEGIN
(* if successor stage has finished eval and is holding the out put,

we can start precharging *)
<< pb(next) AND q(next) AND pb(me) -> pb(me) := FALSE >>
* ClearStage(me, sum, carry, cpaSum, quotient)

(* if we’re done precharging, we can drop the done signal *)
|| << NOT pb(me) AND q(me) -> q(me) := FALSE >>

(* enable evaluation, if the successor has started precharg ing *)
|| << NOT pb(next) AND NOT pb(me) -> pb(me) := TRUE >>

(* when successor has finished precharging, we can output th e next quotient *)
|| << pb(me) AND (NOT q(next)) AND NOT q(me) -> q(me) := TRUE >>

* Divide(me, prev, sum, carry, cpaSum, quotient, divisor)
END;

Fig. 18.Control Logic of Speed-Independent/Bit-Vector Model

digit in every iteration, this model mimics the flow of con-
trol and data of the implementation: There are three ‘stages’
which cycle through states corresponding to the precharge,
evaluate and hold phases of the implementation stages. When
a stage is precharging, all of its outputs and internal signals
are forced to empty values. When a stage is evaluating, it
computes new valid (i.e. non-empty) values for its outputs
based on the values of its inputs. When a stage is holding, its
outputs retain the values from the preceding evaluate phase;
a holding stage provides stable inputs to its successor which
is evaluating.

Because the stages of the divider are connected in a ring,
one might expect to find cyclic dependencies on data values.
A fundamental safety property of the divider design is that at
all times, at least one stage is in the precharge state. Because
the signals of this stage are forced to empty values regardless
of the values of the inputs, the precharge stage provides a cut
in the data-value dependency graph. This breaking of cyclic
dependencies greatly simplifies analysis of the divider.

At this level of the refinement hierarchy, we model all
communication in the control logic and the data path as be-
ing speed-independent. This means that the computation that
is eventually performed is independent of the delays of the
components. Speed independence is a safety property [29]:
there must never be two transitions simultaneously enabled
such that one can modify the value of a variable read by the
other. By using a speed-independent model at this level of
the hierarchy, we establish important invariants without the
complications that arise when reasoning about timed models.

Figure 18 shows the ST cell that implements the control
of the speed-independent/bit-vector model. This cell is in-
stantiated once for each of the three stages. The control state
of a stagei is determined by the ‘precharge-bar’ and com-

pletion signalspb(i) andq(i), respectively. For instance, if
pb(i) = true andq(i) = false, then stagei is in evaluation
mode.

Figure 19 illustrates the flow of control as governed by
the speed-independent protocol. The upper line of three char-
acters in each state label gives the value (high or low) of
pb(0) , pb(1) , andpb(2) . The lower line gives the state
of the outputs of stages 0, 1, and 2 (empty or valid).

The actual computation of the next quotient is performed
by ST cellDivide ; it is identical to the computation per-
formed by the data-path of the synchronous/bit-vector pro-
gram (in fact, both programs importDivide from the same
ST source module). CellClearStage mimics the effect of
pre-charging a stage by forcing all outputs to a known value
(in this case all zeros). This substantially simplifies the con-
struction of an abstraction mapping during the last refinement
step to the transistor-level implementation.

Intuitively, the abstraction mapping from the speed-
independent model to the synchronous one needs to track the
circular flow of data through the ring formed by the three
stages, and pick the values of the quotient and partial remain-
der out of the stage that currently holds valid values on its
outputs. The mapping is constructed using two predicates,

holdModeP(i) = pb(i) ∧ q(i)
holdsDataP(i) = holdModeP(i)

∧ ¬holdModeP((i + 1) mod3)

PredicateholdModeP holds for a stage that is in hold
mode. However, the speed-independent protocol allows a
state where two successive stages both satisfyholdModeP .
In this case, the first stage is enabled to begin precharging
and may destroy its outputs at any time. Therefore, predi-
cateholdsDataP which characterizes the stage that holds
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Fig. 19.Speed-Independent Protocol

the current quotient and partial remainder requires the clause
¬holdModeP((i + 1)mod3). This ensures that the values are
taken from the stage that is indeed holding its outputs while
its successor is evaluating.

The abstraction mapping itself is then written as a case-
statement which maps the outputs of the stage that satisfies
holdsDataP to the corresponding variables of the synchro-
nous model.

Proving refinement entails showing that the speed-independent
control protocol works correctly, and that the stage identified
by holdsDataP is indeed the one that holds the correct val-
ues for the quotient digit and partial remainder of the current
iteration of the SRT algorithm. Note that the expressions that
actually compute these values are identical in both programs.
Therefore, discharging obligations that state the equivalence
of the computations performed by both programs is trivial.

Correct operation of the speed-independent control is es-
tablished by way of an invariant that enumerates reachable
control states as depicted in figure 19. Since there are only 15
such states, the invariant was easily formulated. Proving that
this invariant as well as the refinement predicate are safety-
properties was then done completely automatically using the
BDD-based decision procedure for propositional logic.

6.5 Timed/Bit-Vector Model

In the speed-independent model, the precharge control logic
performs an explicit check to ensure that stagei+1 has fin-
ished precharging before stagei sets its outputs. This corre-
sponds to the clauseNOT q(next) in the guard of the last
transition in figure 18. In the timed model, the control logic
only tests the completion of evaluation, and timing bounds
are used to ensure that the precharging in stagei+1 com-
pletes before the evaluation in stagei . This corresponds to
Williams’ first optimization in the design of the chip, as dis-
cussed in section 4.4. Figure 20 depicts the corresponding
state transition diagram.

We use the approach of [3] to model time: a real-valued
variabletau is added to the program to model the current
time, transition guards are strengthened to express lower bounds
on delays, and an action for advancing time is defined in
the form of an environment protocol so as to observe upper
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Fig. 20.A Timed Implementation

bounds on delays (i.e. time may not progress beyond the max-
imum delay for a pending action).

A technical issue that must be addressed is that of “Zenoness”
(see [3]). In particular, from any reachable state, the model
must admit an execution where time advances without bound.
For models such as those presented in this paper, this property
can be established syntactically: (1) the model has a finite set
of possible upper bounds for time; (2) when any bound is ac-
tive, there is an enabled transition that can be performed to
remove the bound; (3) there is a constant,ε > 0 such that
when any upper bound becomes active, it is for a time at least
ε time units in the future. Currently, we have been satisfied
with verifying these properties by inspection of the program.
In principle, these tests could be automated, but we have not
seen a need to do so.

In the timed/bit-vector model, the variablespb(i) andq(i)
are records with two components. The first component,v ,
holds the actual value, while the second,t maintains the time
at which the variable was last updated.

The clauseNOT q(next) of the guard for the evaluate
action that asserts that the successor stage is done precharg-
ing is replaced by a clause that states that the successor stage
started precharging sufficiently far in the past. Thus, the last
transition in figure 18 is replaced by

<< pb(me).v
AND (tau >= pb(me).t + MinEvalTime)
AND NOT q(me).v

-> q(me).v, q(me).t := TRUE, tau >>
* Divide(me, prev, sum, carry, cpaSum,

quotient, divisor)

MinEvalTime is a constant that provides a lower bound
on the time a stage takes to compute a new quotient.

In addition, an upper bound on the time taken to precharge
a stage is asserted by a protocol

¬Pre{pb(me).v} ∧ Pre{q(me).v}
⇒ Post{tau} ≤ Post{pb(me).t}+ MaxPrechargeTime

Recall that a protocol is a predicate that defines a relation
from states to states which poses a constraint on allowed state
transitions. ThePre andPost attributes of the state variables
are used to distinguish between variables in the pre- and the
post-state of the environment action.

The above protocol states that whenever the second tran-
sition of figure 18 (whose execution marks the end of the
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precharge phase of a stage) is enabled, time has not pro-
gressed more thanMaxPrechargeTime time units since
precharging has begun. In other words, precharging never
takes longer thanMaxPrechargeTime .

The abstraction mapping from the timed/bit-vector mo-
del to the speed-independent/bit-vector one is simple: The
.v components of the timed variables are mapped to their
counterparts in the higher-level model,tau and the.t com-
ponents are dropped, and all other variables are mapped di-
rectly.

To prove refinement between the two models, it is nec-
essary to show that whenever the evaluate transition of the
timed model is enabled, so is the corresponding transition of
the synchronous model. This corresponds to showing that for
each stageme,

pb(me).v ∧ tau ≥ pb(me).t+ MinEvalTime∧ ¬q(me).v
⇒ ¬q(next).v

is a safety property of the timed model.
Using the assumption

MaxPrechargeTime< MinEvalTime

we can establish and prove an invariant that supports the above
safety property, as well as the refinement predicate, and thus
prove refinement. This invariant enumerates the reachable con-
trol states shown in figure 20. Since there are only 9 such
states, the invariant was easily formulated. The proofs for
both the invariant and for refinement are again straightfor-
ward; the obligations are first split into a separate obligations
for each transition, which are then automatically discharged
by the decision procedure for linear inequalities with boolean
connectives.

In principle, we could have integrated a timed automata
tool such as Kronos [53], Uppaal [28], or ATACS [5], into our
tool. Although our goal is to make such integration as easy
as possible, it would still have required some effort, mainly
to define the judgements of these tools in the object logic
(roughlywp semantics) for ST. On the other hand, the timed
system for this proof has a very small number of states, and
the required invariant was nearly obvious. This shows one of
the strengths of our refinement approach: invariants are of-
ten identified and verified at a high level of abstraction where
they are free from tedious, “bookkeeping” clutter. The nec-
essary bookkeeping often becomes implicit in the abstrac-
tion mappings requiring little or no user effort. Of course,
if we found ourselves frequently constructing timing invari-
ants, then the effort to integrate a timed automata tool into
our framework could be justified.

6.6 Transistor-Level Implementation

The actual implementation of the divider has been designed
in self-timed precharged logic using dual-rail encoded data-
values as described in section 4.3. We used ST to model logic
elements implemented in precharged logic; the following ex-
ample illustrates our modeling approach.

Recall the AND-OR gate from figure 11 in section 4.3.
This circuit can be modeled in ST by the five transitions be-
low:

<< ¬pb → y.T := FALSE >>
‖ << pb ∧ (a.T ∧ (b.T ∨ c.F))

→ y.T := TRUE
>>

‖ << ¬pb → y.F := FALSE >>
‖ << pb ∧ (a.F ∨ (b.F ∧ c.T))

→ y.F := TRUE
>>

‖ << y.empty := NOT (y.T or y.F) >>

This example illustrated the design of a particular logicalop-
eration. Other operations are implemented in a similar man-
ner by substituting appropriate pull-down networks for the
ones used here. Networks of logical elements are modeled as
the asynchronous combination of the corresponding transi-
tions.

A key feature of this approach is that the topologies of the
pull-down networks for signalsy.T andy.F are encoded in
the guards for the transitions that set these signals toTRUE.
Because the syntactic structure of the program for the ST mo-
del is available in the object logic, it is straightforward to im-
plement inference rules that operate on syntactic encodings
such as this encoding of the transistor-level netlist.

To establish that the transistor-level model implements
the timed/bit-vector model, two issues have to be addressed.
First, the dual-rail encoded signals of the transistor-level mo-
del must be mapped to the bit-vectors of the timed divider,
and it needs to be shown that the computation performed by
the transistor-level model is consistent with the one carried
out by the bit-vector models. Second, in the transistor-level
model only the quotient digit output is used to determine if a
stage has finished evaluation. It therefore needs to be shown
that the quotient digit of a stage becomes valid only after
all other outputs of a stage are valid. This corresponds to
Williams’ second optimization as mentioned in section 4.4.

6.6.1 Abstraction Mapping

The first issue is addressed by defining an appropriate ab-
straction mapping between the dual-rail encoded signals of
the implementation and the corresponding binary variables
at the bit-vector level. There are two aspects to this abstrac-
tion mapping: First, we need to map the four-valued dual-rail
codes to binary values. We use the mapping characterized by
the following table:

(y.F ,y.T ) y′

(false,false) false
(false,true ) true
(true ,false) false
(true ,true ) true

This mapping maps(y.F, y.T) to y.F. Note that the tuple
(true, true) is an illegal dual-rail value and as such its map-
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ping is irrelevant3. Furthermore, an empty dual-rail value is
mapped tofalse. Since the outputs of a bit-vector-model stage
are set to all-false-vectors by cellClearStage during its
‘precharge’ transition (see figure 18), the result of precharg-
ing a transistor-level stage will be consistent under this ab-
straction mapping.

The second aspect of the abstraction mapping relates to
the asynchronous update of the individual output signals of
a stage at the transistor level: During the evaluation phase,
some dual-rail outputs of a stage may already carry valid val-
ues, while others are still empty. In the bit-vector implemen-
tation however, all the outputs of a stage are updated in one
atomic action. Thus, the abstraction mapping must be con-
structed in a way that ensures that a stage’s outputs are only
observed when they are meaningful, i.e. when the stage has
finished evaluating. This can be accomplished by defining the
abstraction mapping such that a stage’s outputs are mapped
under the dual-rail-to-binary mapping only when the stage
satisfies the predicateholdModeP , and are mapped tofalse
otherwise.

6.6.2 Timing Analysis

The implementation does not include completion detection
logic to determine when all of a stage’s outputs have assumed
a valid dual-rail value. Instead, correct operation rests on the
assumption that the output signals for the partial remainder
are always set before the quotient digit output. This assump-
tion is based on the observation that the circuitry for the quo-
tient digit (a carry-ripple adder and the quotient-selection logic)
is sufficiently many levels ‘deeper’ than the logic for the re-
mainder (a carry-save adder).

Proving refinement between the timed/bit-vector model
and the transistor-level implementation requires showingthat
this is indeed the case, and furthermore that the imple-
mentation satisfies the timing boundsMinEvalTime and
MaxPrechargeTime on evaluation and precharge time
stipulated by the timed/bit-vector model.

Using either state-space exploration or deductive reason-
ing to establish such timing bounds as safety properties of the
transistor-level model is impractical. Instead, we make use
of the observation that the circuitry of each stage forms an
acyclic netlist and is as such subject to well-understood tim-
ing analysis techniques.

We implemented a timing analysis procedure that extracts
a netlist from an ST program written in the style introduced
above, and traverses this netlist to establish bounds on the
arrival times of signals at the netlist’s outputs, given arrival
times at the inputs. The algorithm implements the simple tech-
nique of determining the shortest and longest paths in the
acyclic signal-dependency graph by a depth first traversal.
This is by no means the most sophisticated possible approach
possible for timing verification. The simplicity of this algo-
rithm made it easy to implement, unlikely to contain any
bugs, and is adequate for verifying the divider. Rather than

3 It is a corollary of the safety-properties that we establishfor the
transistor-level model that invalid dual-rail codes can never occur.
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Fig. 21.Side Hierarchy

using a complicated algorithm for timing analysis, we used a
simple algorithm augmented by the deductive capabilities of
the theorem prover as directed by the user. Details are pre-
sented in [34]. The timing analysis procedure is only applica-
ble under certain assumptions, both of static (e.g., the netlist
must be acyclic) and dynamic nature (e.g., the netlist’s inputs
must be stable and valid during evaluation).

We encapsulated this timing analysis procedure as a proof
rule which introduces the established timing bounds in the
form of a safety property. At the same time this rule syntac-
tically verifies the static assumptions and introduces obliga-
tions corresponding to the dynamic assumptions, again in the
form of safety properties. Furthermore, the rule extracts the
functionality of the netlist in the form of Boolean expressions
(represented as BDDs) for each output of the netlist as a func-
tion of its primary inputs. This provides seamless integration
of timing analysis and functional extraction into the deductive
refinement argument.

In the verification of the divider, we analyze the transi-
tions for the datapath of a single stage. The user specifies the
transitions for one stage, and the netlist is extracted syntac-
tically from the ST source code. The required static condi-
tions are verified automatically from the netlist. Then, lower
and upper bounds on the signal arrival times for the stage’s
outputs are derived, and the required dynamic conditions are
introduced as new proof obligations. We describe the verifi-
cation of these conditions in the next section.

6.6.3 Side Hierarchy

The safety properties established by the above proof rule are
sufficient to discharge the refinement predicate between the
timed/bit-vector and the transistor-level models. It remains
to prove that the assumptions of the timing analysis rule are
satisfied. However, the safety properties inherited from the
timed/bit-vector model are not strong enough to discharge
this obligation, because these properties rest on the correct
transitioning between empty and valid dual-rail values, infor-
mation which is not present at the bit-vector level.

To avoid proving these safety properties directly at the
implementation level (which would face similar challenges
as proving the refinement predicate directly), we introduced
a side hierarchy of models that were designed specifically to
allow the inheritance of said safety properties from them.

This side hierarchy, shown in figure 21, consists of
two models, referred to as timed/abstract and speed-
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independent/abstract. Both models have the same timed and
speed-independent control transitions as the corresponding
timed/bit-vector and speed-independent/bit-vector models.
However, instead of the bit-vector data-path, these models
contain an abstraction of the transistor-level data-path.In-
stead of actually computing a remainder and quotient digit,
this abstraction consists of only the dual-rail encoded outputs
of a stage, which are non-deterministically set to an arbitrary
valid value during evaluation. The motivation for this abstrac-
tion is straightforward: the actual datapath computes division,
an operation that cannot be represented with BDDs and fea-
sible amounts of memory. The non-deterministic abstraction
represents a datapath that observes the same self-timed pro-
tocols as the actual divider, but for which the actual function
computed is unspecified. In effect, the abstract datapath can
computeanyfunction. The BDD for a completely unspecified
function is very compact, allowing efficient verification.

The models in the side-hierarchy contain enough detail to
allow the formulation of the desired safety properties, such as
‘the outputs of a stage are valid and remain unchanged while
its predecessor is evaluating’. Basically, the side-hierarchy
mimics the main hierarchy, using dual-rail signals insteadof
bit-vectors, and leaving the datapath functions unspecified.
Thus, the speed-independent, abstract dual-rail model hasthe
same sequencing of precharging, evaluating, and holding op-
erations that we established for the speed-independent mo-
del, bit-vector model. In fact, the proofs are very similar and
we used much of the original proof for this version. Having
established key safety properties for the speed-independent,
abstract dual-rail model, we propagate them downward us-
ing refinement and use them to establish the required dy-
namic properties of the timed, transistor-level model. This
discharges the side-obligations generated by the timing ver-
ification procedure and allows us to establish that the timed,
transistor-level model is a valid refinement of the timed, bit-
level model.

7 Conclusions

We have demonstrated an approach to the verification of hard-
ware designs that combines deductive reasoning with algo-
rithmic decision procedures. Like theorem provers such as
HOL, Isabelle or PVS, our tool employs the notion of proof
states, to which a sequence of inference rules and decision
procedures is applied to form a proof. The most important
distinction between our tool and more traditional provers is
that the set of available inference rules and decision proce-
dures is not fixed, but may be extended with domain-specific
rules. This permits reasoning that would be unacceptably costly
to formalize rigorously in logic to be introduced into a cor-
rectness argument in a controlled manner.

We have demonstrated the practical applicability of our
approach by carrying out a top-to-bottom verification of a
non-trivial hardware design, a self-timed implementationof
SRT division. Our verification connects a high-level speci-
fication of the SRT division algorithm with a formalization

of the transistor-level implementation through a series ofre-
finement proofs. Safety-properties proven at the highest level,
in particular correct division, are propagated down the chain
of refinements and are thus established for the implementa-
tion. The proof obligations arising from the safety property
and refinement proofs varied widely in nature, from arith-
metic obligations at the algorithmic level to timing proper-
ties at the transistor level. Although there have been many
published verifications of dividers, we believe that our work
is distinguished by spanning the complete design hierarchy.
Domain-specific proof rules such as the timing-verification
procedure played a crucial role in achieving this.

A key advantage of our refinement based approach is that
we can use safety properties that have been proven at higher
levels of abstraction when proving correctness at lower levels.
As a consequence, we could formulate invariants in models
where the needed invariants were fairly simple and obvious,
without a myriad of “bookkeeping clauses” that often clut-
ter invariant based arguments. The proof of refinement then
becomes one of finding the appropriate abstraction mapping
after which the remaining proof obligations often amount to
tautologies that can be discharged by decision procedures for
boolean formulas and linear inequalities. We note that the
bookkeeping clauses are implicitly present in the composi-
tion of the abstract invariant with the abstraction function.
The user never has to write or see these clauses.

A goal in using domain-specific rules is to make formal
verification accessible to a designer who is familiar with tra-
ditional timing verifiers, model checkers, etc. To this end,we
tried to develop a proof that relies more on designer insight
than on subtleties of mathematical logic. Although we believe
that we have made significant progress toward this goal, we
readily admit that we have not yet achieved it. In particular,
a solid understanding of rewriting techniques was needed to
formulate the proof that the integer model implements the
rational model. Likewise, our design of the side-hierarchy
was motivated by an understanding of how bit-vector func-
tions are represented by BDDs. We see our current work as a
step towards making formal techniques accessible to a wider
range of designers.

Acknowledgments

We would like to thank Alan Hu for many helpful discus-
sions on the divider verification. Our thanks to Ted Williams
who explained many details of his design to one of the au-
thors several years ago. Thanks to Andrew Appel and Lorenz
Huelsbergen for answering our questions on integrating the
CUDD package into SML. Michael Gordon provided many
helpful comments on an earlier version of this paper. Finally,
we would like to thank the anonymous referees for their care-
ful and constructive feedback.



26 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weight Framework for Hardware Verification

References

1. Mark Aagaard and Carl-Johan H. Seger. The formal verification
of a pipelined double-precision IEEE floating-point multiplier.
In Int. Conf. on Computer-Aided Design, ICCAD ’95, pages 7–
10, November 1995.

2. Martı́n Abadi and Leslie Lamport. The existence of refinement
mappings.Theoretical Computer Science, 82(2):253–284, May
1991.

3. Martı́n Abadi and Leslie Lamport. An old-fashioned recipe
for real time. In J.W. de Bakker et al., editors,Proceedings of
the REX Workshop, “Real-Time: Theory in Practice”. Springer,
1992. LNCS 600.

4. Andrew W. Appel and David B. MacQueen. Standard ML
of New Jersey. In3rd Int. Symp. on Prog. Lang. Implement.
and Logic Program., number 528 in Lect. Notes Comput. Sci.,
pages 1–13. Springer-Verlag, August 1991.

5. W. Belluomini, C. J. Myers, and H. P. Hofstee. Verification
of delayed-reset domino circuits using ATACS. InProc. Inter-
national Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 3–12, April 1999.

6. N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur,
Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: Deductive-
algorithmic verification of reactive and real-time systems.
Number 1102 in Lect. Notes Comput. Sci., pages 415–418.
Springer-Verlag, August 1996.

7. Manuel Blum and Hal Wasserman. Reflections on the pentium
division bug.IEEE Trans. Comput., 45(4):385–393, April 1996.

8. Richard Boulton, Andrew Gordon, Mike Gordon, John Harri-
son, John Herbert, and John Van Tassel. Experience with em-
bedding hardware description languages in HOL. In V. Stavri-
dou, T.F. Melham, and R.T. Boute, editors,1st Int. Conf. on
Theorem Provers in Circuit Design, TPCD ’92, pages 129–156.
North Holland, June 1992.

9. R.S. Boyer and J.S. Moore. Integrating decision procedures
into heuristic theorem provers: a case study of linear arith-
metic. Technical Report ICSA-CMP-44, Institute for Com-
puting Science and Computer Applications, The University of
Texas, Austin, January 1985.

10. R.S. Boyer and J.S. Moore.A Computational Logic Handbook.
Academic Press, Boston, second edition, 1997.

11. Randal E. Bryant. Graph-based algorithms for boolean function
manipulation.IEEE Trans. Comput., C-35(8):677–691, August
1986.

12. Randal E. Bryant. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Trans. Comput., C-35(8):677–691,
August 1986.

13. J.R. Burch, E.M. Clarke, et al. Symbolic model checking for
sequential circuit verification.IEEE Trans. Comput. Aided Des.
Integr. Circuits, 13(4):401–424, April 1994.

14. Joseph J.F. Cavanagh.Digital computer arithmetic : design and
implementation. McGraw-Hill, New York, 1984.

15. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction.ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, September 1994.

16. E.M. Clarke, S.M. German, and X. Zhao. Verifying the SRT
divsion algorithm using theorem proving techniques. Number
1102 in Lect. Notes Comput. Sci., pages 111–122. Springer-
Verlag, August 1996.

17. E.M. Clarke and X. Zhao. Analytica: a theorem prover for
Mathematica.The Journal of Mathematica, 3(1), 1993.

18. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

19. Michael Gordon. Why higher-order logic is a good formalism
for specifying and verifying hardware. In G. J. Milne and P. A.
Subrahmanyam, editors,Formal Aspects of VLSI Design, pages
153–177. Elsevier Science Publishers, 1985.

20. Michael J.C. Gordon. HOL: a proof generating system for
higher-order logic. In Graham Birtwistle and P.A. Subrah-
manyam, editors,VLSI Specification, Verification and Synthe-
sis, pages 74–128. Kluwer Academic Publishers, 1988.

21. Michael J.C. Gordon. Programming combinations of deduc-
tion and bdd-based symbolic calculation. InProceedings of the
Symposium in Celebration of the Work of Tony Hoare, Novem-
ber 1999.

22. Michael J.C. Gordon. Reachability programming in hol98us-
ing bdds. InProceedings of 13th International Conference on
Theorem Proving and Higher Order Logics. Springer, August
2000. LNCS 1869.

23. Cheryl Harkness and Elizabeth Wolf. Verifying the Summit
bus converter protocols with symbolic model checking.Formal
Meth. System Design, 4:83–97, 1994.

24. Scott Hazelhurst and Carl-Johan H. Seger. A simple theo-
rem prover based on symbolic trajectory evaluation and BDDs.
IEEE Trans. Comput. Aided Des. Integr. Circuits, 14(4):413–
422, April 1995.

25. Institute of Electrical and Electronic Engineers. IEEEstandard
for binary floating point arithmetic, 1985. Std. 754-1985.

26. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers, 2000.

27. Leslie Lamport.win andsin: Predicate transformers for concur-
rency. ACM Trans. Program. Lang. Syst., 12(3):396–428, July
1990.

28. Kim G. Larsen, Paul Petterson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technol-
ogy Transfer, 1:134–152, 1997.

29. Trevor W.S. Lee, Mark R. Greenstreet, and Carl-Johan Seger.
Automatic verification of asynchronous circuits.IEEE Design
and Test, 12(1):24–31, Spring 1994.

30. R.E. Miller.Switching Theory. Wiley, New York, 1965.
31. J.S. Moore. Personal communication, 1998.
32. J.S. Moore, T. Lynch, and M. Kaufmann. A mechani-

cally checked proof of the correctness of the kernel of the
amd5k86 floating-point division program.IEEE Trans. Com-
put., 47(9):913–926, September 1998.

33. Greg Nelson and Derek C. Oppen. Simplification by cooper-
ating decision procedures.ACM Trans. Program. Lang. Syst.,
1(2):245–257, October 1979.

34. Tarik Ono-Tesfaye, Christoph Kern, and Mark R. Greenstreet.
Verifying a self-timed divider. InProc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Sys-
tems. IEEE Computer Society Press, April 1998.

35. S. Owre, J. Rushby, et al. Formal verification for fault tolerant
architectures: Prolegomena to the design of pvs.IEEE Transac-
tions on Software Engineering, 21(2):107–125, February 1995.

36. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In11th Int. Conf. Automated Deduction
(CADE ’92), number 607 in Lect. Notes Comput. Sci., pages
748–752. Springer-Verlag, 1992.

37. Lawrence C. Paulson.Isabelle: A Generic Theorem Prover.
Number 828 in Lect. Notes Comput. Sci. Springer-Verlag,
Berlin, 1994.



C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weight Framework for Hardware Verification 27

38. Lawrence C. Paulson.ML for the working programmer. Cam-
bridge University Press, 2nd edition, 1996.

39. Amir Pnueli and Elad Shahar. A platform for combining deduc-
tive with algorithmic verification. Number 1102 in Lect. Notes
Comput. Sci., pages 184–195. Springer-Verlag, August 1996.

40. F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying
distributed directory-based cache coherence protocols: S3.mp,
a case study. InProc. EURO-Par ’95 Parallel Processing, num-
ber 966 in Lect. Notes Comput. Sci., pages 287–300. Springer-
Verlag, August 1995.

41. S. Rajan, N. Shankar, and M.K. Srivas. An integration of
model-checking with automated proof checking. In7th Inter-
national Conference on Computer Aided Verification, pages 84–
97, 1995.

42. H. Rueß, N. Shankar, and M.K. Shrivas. Modular verification
of SRT division. Number 1102 in Lect. Notes Comput. Sci.,
pages 123–134. Springer-Verlag, August 1996.

43. Charles L. Seitz. System timing. InIntroduction to VLSI Sys-
tems(Carver Mead and Lynn Conway), chapter 7, pages 218–
262. Addison Wesley, 1979.

44. Robert E. Shostak. A practical decision procedure for arith-
metic with function symbols.J. ACM, 26(2):351–360, April
1979.

45. Robert E. Shostak. Deciding combinations of theories.J. ACM,
31(1):1–12, January 1984.

46. Fabio Somenzi. CUDD: CU Decision Diagram Package. URL:
http://bessie.colorado.edu/˜fabio/CUDD/cuddIntro.html.

47. Mandayam K. Srivas and Steven P. Miller. Applying formal
verification to the AAMP5 microprocessor: A case study in the
industrial use of formal methods.Formal Meth. System Design,
8(2):153–188, March 1996.

48. Jørgen Staunstrup.A formal approach to hardware design.
Kluwer Academic Publishers, Boston, 1994.

49. Neil H.E. Weste and K. Eshragian.Principles of CMOS VLSI
Design. Addison-Wesley, 1993.

50. T. E. Williams, M. A. Horowitz, R. L. Alverson, and T. S . Yang.
A self-timed chip for division. InStanford Conference on Ad-
vanced Research in VLSI, pages 75–96, March 1987.

51. Ted E. Williams. Self-timed rings and their applicationto di-
vision. Technical Report CSL-TR-91-482, Computer Systems
Lab, Dept. of EE, Stanford, May 1991.

52. Stephen Wolfram.The Mathematica Book. Cambridge Univer-
sity Press, 1996.

53. Sergio Yovine. Kronos: A verification tool for real-timesys-
tems. Software Tools for Technology Transfer, 1(1/2), October
1997.


