Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

A Light-Weight Framework for Hardware Verification

Christoph Kern, Tarik Ono-Tesfaye, Mark R. Greenstreet*

Dept. of Computer Science, University of British Columbia
Vancouver, BC V6T 1Z4, Canada
e-mail: {ckern,tesfaye,mrg }@cs.ubc.ca

Received: date / Revised version: date

Abstract. We have developed a verification framework that has motivated several recent efforts to combine the two-tech
combines deductive reasoning, general purpose decisien prniques. One approach is to embed state-space exploration al
cedures, and domain-specific reasoning. This paper describ gorithms as decision procedures in a general purpose tieore
this framework and presents a case study in which we veriprover [41,21,22]. In this approach, the design and speeific
fied a SRT divider circuit. Our proof starts with a high-level tion are represented by formulas in the logic of the prover,
description of the SRT algorithm on rational numbers. Weand decision procedures are oracles, introducing new theo-
verified the correctness of the algorithm. With a sequence ofems into the system. Alternatively, some researchers have
five refinement proofs, we established that a transistatlev augmented state-space exploration tools with simple émor
implementation with timing is a refinement of a high-level proving capability [24,1,6,39]. We follow the first apprdac

specification of the high-level division algorithm. Designers can usually provide explanations for why they
Our approach is made practical by integrating formal the-expect their designs to work; we seek to exploit this domain
orem proving techniques with informal domain-specific rea-expertise in our verification. These explanations are spic
soning. User-defined inference rules provide domain sgecifi «informal” in the sense that they are expressed in language
decision procedures, while an LCF-style, first-orderdde- o notation that lacks a complete and precise semantics. Fur
orem prover allows results from these procedures to be comhermore, these arguments typically focus on key prinsiple
bined into a complete proof. Including these “semi-formal” while ignoring technical side conditions. These techniteal
rules as hypotheses of the theorems in which they are usegils are essential for the construction of a rigorous proof
preserves the logical validity of the proofs and tracks ametd they often render formal methods unusable by most design-
uments the use of domain-specific reasoning. ers. For example, if one operation always completes before
another, the designer should be able to clearly state tbfs pr
erty. However, we do not expect the designer to have the time
or the mathematical expertise to be able to express standard
timing verification algorithms as formal mathematical argu
1 Introduction ments.

Domain specific decision procedures can discharge many

Most formal verification of hardware designs is based orstat gf the tedlotl)Js“pt;llgatlcl)P.s O:‘ a formalhpro?]f. These proce-
space exploration or theorem proving. State space exjdarat 9Ures may be “informal”in the sense that they may not per-

provides an automatic approach for verifying properties ofform an expl|c_|t sequence Of. Iog|<_:al transform_atlons to re-
designs described by relatively small models. In pringiple duce proof obligations to basic axioms or previously proven

theorem proving techniques can be applied to much |argep1eorems. Furthermore, the decision procedures or their im

and more detailed design descriptions. However, the lagge d plementations may no_t come with a pr_oof of cor.rectness.. E.X'

mands for the time of expert users prevent the wide-scale apqmples of such decision procedures include binary decision

plication of theorem proving techniques diagrams (BDDs) for deciding predicate logic formulas,-syn
The strengths and weaknesses of state-space exploratig)%ctIC transformation rules for reasoning about programd,

. - . graph-based timing verification algorithms. Although eath
and theorem proving are in many ways complementary. Thls‘?hese could in principle be formalized in terms of basic math

* This work was supported in part by NSERC research grant OGP-.ematiCaI aXiomS.a the effort to do so is not justified for many,
0138501, a NSERC graduate fellowship and a UBC graduatanfstiip. if not most, designs. For example, although the algorithms

2 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigreamework for Hardware Verification

for manipulating BDDs have been proven correct [11], weat this level. The most detailed model includes the traoisist
are not aware of anynplementatiorof these algorithms that level structure along with its timing properties. The tigtor-
has a correctness proof. Most BDD packages including thdevel structure is extracted syntactically from the Sywehr
one that we used [46] are highly optimized for performancenized Transitions program. By inheriting safety propertie
and therefore not particularly amenable for formal verifica from the higher levels, the timing verification problem be-
tion. On the other hand, BDDs are probably among the mostomes relatively straightforward, although far too tedioo
formal of the informal procedures that we consider. For ex-perform manually. We found that a simple, conservativeplgra
ample, we use a graph-based timing analysis algorithm whostaversal algorithm was sufficient to verify the necessiany t
justification is informal. Precisely mapping the operasi@fi ing properties for the divider. Section 6.6.2 describesiour
the algorithm into the semantics of our object logic would tegration of timing verification into our tool.
require a great deal of effort and divert our attention from e Because each lower levels of the refinement hierarchy in-
amining more probable sources of errors. Rather than rejecherit safety properties from the higher levels, the transis
ing informal procedures, we provide a controlled mechanismevel model inherits the “correct division” property froimet
for including informal procedures as explicit hypotheses t top-level description. Thus, our verification establistest
the theorems we prove. the timed, transistor-level model divides correctly.

Many properties that designers want to verify require a
combination of timing verification, equivalence checkimm-
del checking, and other techniques, some general, and so
domain specific. Accordingly, we provide a simple theorem
prover for first order logic that allows the results from such Synchronized Transitions (abbr. ST) [48] is a programming
point tools to be combined in a systematic fashion to verifylanguage based on the paradigm of guarded actions executing
important system properties. Our intent is that the dedecti On a state space [18]. A ST program consists of
ar_gu_ments_ required to combine these r_esults should closely_ a collection of variables whose domains define the state
mimic the informal arguments of the designer. When such ar- : :
guments fail, we should be able to quickly identify the error space .assomated with th_e program, |
; . . — a predicate on states defining the initial set of states,
in the reasoning or the design.

We view the verification task as one of maximizing the and a collection of transitions.

probability of producing a correct design subject to schedu A transition in turn consists of a guard (a predicate on the
and budget constraints. Usimtpmain-specifi@nd possibly state space which determines if the transition is enabled in
informal decision procedures and inference rules in a deducgiven state) and a multi-assignment which determines state
tive framework, we can verify critical properties of reatde reached by executing this transition. For example,

signs that would not be practical to verify by theorem prgvin

and/or model checking alone. Section 2 elaborates thisiclai K X>2Y = XYy =Y X =

and section 3 describes our implementation of this frame- - :
work. Section 4 describes the self-timed chip that we veifie is a transition that is enabled to exchange the values of the

as a case study for our approach. Sections 5 and 6 present Ova}riablesx andy whenx is greater thag. A transition writ-
e y for ourapp ' P &h without a guard is always enabled; a transition written
verification of this divider.

without a multi-assignment leaves the state space uncldange
when executed.
1.1 Running Example: Asynchronous Divider Verification Transitions may be combined using the asynchronous com-
. binator,||; the strong synchronous combinataror the weak
We have implemented a_proo_f—of-concept tool ba_sed on t_h%ynchronous combinatot;. For example, the ST program
methodology presented in this paper and used it to verifyt, |+,) consists of two transitiong; andt,, composed with
the design of a self-timed divider [S0]. Our divider verifica the asynchronous combinator. Program execution condists o
tion establishes refinement between progressively more d%peatedly selecting a transition, testing its guard, #rnide
tailed .d_escriptions of the design written in the Synchrediz_ guard is satisfied, performing the multi-assignment. The or
Transitions language [48]. Each level of the hierarchy in-ger jn which transitions are selected is unspecified: this no
herits the safety properties of the higher levels: by show-yeterminism models arbitrary delays in a speed-independen
ing that the top-level model divides correctly, we estdblis mggel. If two transitions are composed with the strong syn-
that all of the lower level models divide correctly as well. chronouscombinator, the multi-assignments can be pegdrm
The highest level model is an abstract specification of radix 45 5 single atomic action if both guards are satisfied. Ieeith
2 SRT [14] division on rational numbers. This algorithm is gyard is not satisfied, then no action is enabled. Operdljona
similar to the binary version of the traditional “paper-and performing two or more transitions as a single atomic action

pencil” algorithm except that quotient bits are chosen frompyeans that all reads for the guards and multi-assignmeats ar
the set{—1,0,1} instead of the more traditiondD, 1}. As performed before any writes. Thus,

described in section 4.2, such redundancy is used in nearly
all hardware dividers because it facilitates efficient ieapl K g1—11i= >R ga— o= o>
mentations. We prove functional correctness of the algorit = <<qg1 A ga—ly, 2= 1, 19>

n,;éz Synchronized Transitions

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 3

If two transitions are composed with the weak synchronousn the divider that we consider computes one bit per itematio
combinator, then if one of the transitions is enabled, the co Like our approach, Clarket. al. made liberal use of out-
responding multi-assignment can be performed, and if bottside decision procedures. In particular, their theoremgmo
transitions are enabled, then both multi-assignments ean bAnalytica [17], is written in the Mathematica command lan-
performed as a single atomic action. In other words, theimult guage [52] and uses Mathematica’s symbolic computation fa-
assignments all enabled transitions composed with the weatilities. Although Mathematica is based on well-definedimat
synchronous combinator are performed as a single, atomiematical concepts, the implementation has not been subject

action. Formally, to any form of formal verification. Clarket. al. modeled the
hardware at a level of fairly large functional units such as
Kgr—=li= 1> +<Lga—hi= 1> adders and look-up tables.
= < Amge> Ruefet. al. have described a verification of an imple-
| <91 A =gz—lai= 11> mentation of the radix-4 SRT algorithm [42]. They used the
| <791 A g2—lai= 12> PVS [36] theorem prover for their verification. Like Clarke
| <91 A go—lis l2i= 11, 72> et. al, they modeled the hardware at a level of large func-
tional units. The proof consisted of an initial case split fo
1.3 Semantics lowed by evaluation of ground predicates. This strategy ex-
ploits the tightly integrated decision procedures of PVS.
We employ awp semantics (see [18]) for ST. P is a pro- Mooreet. al.[32] studied a different implementation of

gram andy is a predicate, themp(P, Q) is the weakest con- division, namely the microcode implementation of the AMD
dition that must hold such th#} is guaranteed to hold after K5 microprocessor using the Ngthm/ACL-2 theorem prove}.[26
any single action allowed by is performed. LetS be the The K5 uses Newton-Raphson iteration instead of the SRT
state-space of a prografh Consider a transitiorcG—M>> algorithm. The distinctive achievement of the Moaite al.

of P: the guard(7, denotes a predicate : S — {{rue, false}. proofis that they showed compliance with the the IEEE float-
The multi-assignmenf\/, denotes a functioM : S — S. A ing point standard [25] including its various rounding mode

wp semantics of ST includes and support for denormalized numbers. Moore has conjec-
tured [31] that the facilities of a large theorem prover sash
wp(KG—=M>,Q) = Qn = QoM Ngthm/ACL-2, HOL98, or PVS are necessary to manage the
_ intricacies of the floating point standard.
t1||t2] - .- ||tn, = ti, - . . -
wp(talfta]] - fItn, @) z:/\l wp(ti, Q) Aagaard and Seger verified a floating point multiplier us-

ing gate-level models [1]. They used trajectory evaluatoyn
whereo denotes function composition. their verification, and the properties that they verified aver
We make extensive use ivariants A predicatel isan stated as trajectory formulas. These formulas corresgbnde
invariant if I holding in some state ensures thawill hold gjrectly to the properties in the IEEE specification. Altgbu
in all possible subsequent states of the program. In péaticu \ye pelieve that the ensemble of properties that they proved
I'is an invariant ofP iff I = wp(P,I). A predicateQ isa establishes implementation of the IEEE standard, the limi-
safety propertyf P if @ holds in all states reachable in any tations of trajectory formulas prevented them from stating
execution ofP. As shown in [27],Q) is a safety property of gimple, top-level theorem that “obviously” captures the de
P if and only if there is an invariant such that), = I and signer’s intent.
I=Q. The verification presented in this paper is unique because
Intuitively, program?’ is arefinemenof P if every reach- of the mechanisms that our framework provides to integrate
able state transition thdt’ can make corresponds to a move jnformal, heuristic decision procedures into a simplepthe
of P. More formally, refinement is defined with respect to an yjem proving environment. This approach allowed us to verify
abstraction mappingl that maps the states 6f to P’ (see 3 givider starting with a simple theorem of functional catre
[2]). P" is a refinement of” under abstraction mapping ness and eventually showing that this correctness is weser
iff for every reachable statg of P’ and every state; that py 3 model at the level of transistors modeled as switches. In

is reachaE:)Ie by pe/rforming a single transitionfdffrom s3, particular, we were able to verify several timing assunmyio
eitherA(s}) = A(sp) (a stuttering action), or there is a tran- made by the designer in order to optimize the performance of
sition of P that effects a move from(s}) to A(s5). the divider.

1.4 Related Work L
2 Verification Approach

The highly publicized Pentium division bug [7] has been fol- o

lowed by active research in the verification of floating point Like many theorem provers, our verification tool presents a
calculations in general and division in particular. Clagte ~ deductive style of verification. Our approach differs fram t

al. [16] verified an implementation of the radix-4 SRT algo- ditional theorem proving in three crucial ways:

rithm. The radix-4 algorithm computes two bits of the quo- Integration of informal reasoning. Our framework supptrés
tient per iteration whereas the simpler, radix-2 algoritisad inclusion of domain-specific decision procedures and in-

4 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigreamework for Hardware Verification

ference rules. Such procedures provide an algorithmic enedge where a formalization in logic would be unacceptably
capsulation of formal or informal domain expertise; this time-consuming. For example, we used a timing analysis pro-
allows domain expertise to be introduced as hypothesesedure that derives a graph whose nodes correspond to the
of a proof. The framework keeps track of the set of infer- channel connected regions of the transistor-level cirdiie

ence rules used in a proof. circuit topology is syntactically encoded in the text of 8iE

Syntactic embedding of the HDL. Our framework favors an program, and the procedure derives timing bounds through
embedding of the hardware description language (HDL)graph traversal. The correspondence between the graph and
at a syntactic level. Inference rules operate directly @n th the original circuit and the soundness of the graph traversa
HDL's abstract syntax. have only been shown informally.

Merging of inference rules and decision procedures. In tra- Second, we use several ‘semi-formal’ rules for reasoning
ditional theorem provers, inference rules provide pattern about ST programs. For instance, the proof rules for reason-
based rewriting of proof obligations, while decision pro- ing about invariants, safety properties, and refinemerds ar
cedures (if any) decide the validity of leaf obligations in founded on theorems that were formally proven (although the
a proof tree. In our framework, inference rules may per-proofs have not been mechanically checked). These theorems
form non-trivial computations to decide the soundness ofare based on a formal semantics of a core language only, and
a proof step, or to derive the result of an inference step. their extension to the full language with records, arraysct

tions, and modules is informal.

2.1 Informal Reasoning in Formal Verification In our framework, informal inference rules and decision

procedures can be seen as a generalization of the concept of

At first, the suggestion of allowing informal reasoning to be USing & hypothesis in a proof: Usually, a hypothesis is gmpl
introduced into a formal proof appears to be outrageous: it formula that is assumed to be valid. An informal rule in
an informal inference rule is unsound, it can invalidate anycontrastis an algorithm; the corresponding hypothestsa t
proof in which the rule is used. However, informal rules pro- it Only generates sound inferences.

vide a practical way to tailor our verification tool to specifi Since the soundness of a proof depends on the soundness
domains and verify properties that would not be practical toof the inference rules used in its construction, one’s confi-

in a design, the verification effort is worthwhile even if sem depend on one’s confidence in the soundness and correct im-

steps are justified only informally. plementation of the inference rules used. Our framework rec
A potentially insidious danger of using informal inference ognizes this and includes a mechanism which allows a user to
rules is that a faulty decision procedure could render eentr track the set of rules used in the proof of a particular thewore
dictory judgements. The user could then derive the theorenfVhen a theoremis posed, the set of inference rules which can
“false” which can be used to prove any other assertion. Hered€ used in its proof must be stated; any attempt to use any
the simplicity of our theorem prover offers some protectibn ~ other rule will be rejected by the system. The system can be
a user finds such a contradiction and uses it to prove an unrélueried to recursively compute the set of inference ruleslus
lated theorem, then he or she deserves the unpleasantzate ttn the proof of a particular theorem, and other theorems used
awaits. We suspect that the dangers of “informal” decisionin its proof.
procedures would be more serious in a more powerful deduc-
tive framework such as Nqthm/ACL2 [10] or the tightly in- 2.2 Syntactic Embedding of the HDL
tegrated decision procedures of PVS [35] where complicated
chains of inference can be performed without specific direc+ormal verification requires a description of the design as a
tion from the user. We are not arguing against the benefitformula in the appropriate logic. If it is not practical to-de
of more powerful theorem provers; we simply note that thescribe the design directly in logic [19], e.g. because oklac
integration of new decision procedures can be more difficultof tool support for simulation, synthesis etc, an embedding
when working with sophisticated theorem proving heursstic the HDL in the logic has to be devised. Such embeddings are
(see [9)]). commonly divided into two classes: deep and shallow [8]. In
Informal reasoning is commonplace in many verification a deep embeddindpoth the (abstract) syntax of the HDL as
efforts. For example, model-checking is typically applied well as its semantic interpretation are defined within tlggdo
an abstraction of the design that was produced informally byin terms of an abstract data type and a semantic function, re-
a verification expert [23,40]. Although the absence of exror spectively. This provides a very rigorous embedding and al-
in the abstraction does not guarantee the correctness of tHews meta-reasoning about the HDL semantics. However, the
actual design, errors found in the abstraction can revealer effort for producing such an embedding can be substantial,
in the actual design. Many theorem-prover based verifinatio although it may be possible to amortize this effort over many
model functional units at the register transfer level; thteeg designs.
and transistor-level models of the design are validateg onl In ashallow embeddinip contrast, the semantic interpre-
through simulation and informal reviews [47]. tation of the HDL occurs outside the logic. Shallow embed-
We make two uses of informal rules. First, an informal dings can be easier to implement than deep embeddings be-
rule can provide an algorithmic encoding of domain knowl- cause the translation process is informal with a corresipgnd

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 5

loss of rigor. Because program structures are not repredent
in the logic, theorems that refer to the syntactic strucafre ‘
the HDL description can be neither stated nor proven [8]. object logic library of
We propose a third variant, syntactic embeddingrhe syntaxftypes | inference rules |~ | Gecision
syntax of the HDL becomes part of the syntax of the logic : FOEECLIES
(see section 3.4 for the embedding of ST). As in a shallow generic core (proof states, theorems)
embedding, the semantic interpretation is informal. Havev
the procedures that perform this interpretation are encaps Fig. 1. Proof Checker Architecture
lated as domain-specific inference rules. This provideghaer
integration with the prover than could be achieved with a
shallow embedding. In particular, decision procedures caran arbitrary expression (supplied by the user) is equivaten
consider the syntactic structure of the program being egtifi wp(P, Q).
However, as with shallow embeddings, no meta-reasoning Of course, one could perform two computations of the de-
about the semantics of the specification language is pessibl rived obligation: one outside of the trusted core to deree t
We have found that a syntactic embedding simplifies theresult for the user, and the other in the core to verify theltes
implementation of semi-formal or informal inference rules Such an approach has obvious disadvantages with respect to
Such rules are often based on syntactic analysis of the urefficiency and software maintenance. These problems would
derlying program. These rules are easier to implement, an@de particularly severe in a framework such as ours where ease
hopefully less prone to implementation errors, because thef adding and extending domain-specific inference rules and
abstract syntax of the program is immediately available indecision procedures is important. Our “inference procesiur
the syntactic embedding. provide a simple mechanism for avoiding these problems.

tactics, proof management

2.3 Merging of Decision Procedures and Inference Rules 3 Prototype Implementation

Traditional mechanized theorem provers generally use onl) o]
decision procedures in the classic sense of an algorithtn tha/¥e have implemented a proof-of-concept verification envi-

decides the validity of a formula. Such decision proceduregonment for our approach. Figure 1 shows the main archi-
are used to discharge proof obligations in a single autamatit€ctural components of our tool. The system’s core provides
step, i.e. they operate on the leaves of a proof tree. Prepést INfrastructure for managing proof states and theorem @éhjec
interior to the proof tree, however, are generally justifisd The implementation of this core is generic in nature, ire., i

matching them with an inference rule schema, and possiblyiePendent of a particular object logic. Generic components
checking side conditions or provisos. are depicted as shaded boxes in figure 1.

We remove the restriction of decision procedures to leaf | N object-logic-specific components of the checker in-
obligations and allow inference rules to use arbitrary algo ¢lude data-structures representing the abstract syntiypes

rithms to decide the soundness of a proof step. Theoratjcall Of the logic, and the proof rules of the logic. The latter make
lifting this restriction has no significance: such an “ifiece US€ Of alibrary of commonly used decision procedures.

procedure” can be replaced by the corresponding leaf de- A 90al and proof tactic package provide an interface be-
cision procedures, and inferences using propositionatlog tween the user and the core as well as the object logic. Proofs

However, there are significant practical advantages tojpur a &€ represented as functions in the implementation Iartg_;uag
proach. In many cases, it is convenient to let the inferenc@f our tool, Standard ML (SML) of New Jersey [4], which

rule compute the derived obligations rather than requitieg /SO acts as the user interface for proof development.
user to provide them. While an existing generic theorem proving environment

Consider using a proof rule which implements tese- (such Isabelle [37]) may have been a viable option for use

mantics for ST. Suppose we want to prove that a predicate i&S the core of our system, we have chosen to design and im-
an invariant of a program and arrive at the obligation plement our own infrastructure. This decision was based on

the observation that implementing both our approach of syn-
n <10 tactically embedding the object logic as well as an intafac
= wp(<<n < 10—n :=n+ 1>>,n < 10) for domain-specific decision procedures into an existing en
vironment is a non-trivial exercise; we felt that making oée
The proof rule can rewrite this obligation to the equivalenta core that is designed with our specific needs in mind was
obligation the preferable option.
n <10

= (n<10=n+1<10) 3.1 Generic Core

by computing the expression farp (P, Q) based on the se-
mantic rules fowp. Note that computing the expression for Similar to theorem proving environments such as HOL, PVS
wp(P, Q) is much more straightforward than verifying that or Isabelle [20,36,37], a (backwards-style) proof in owgdr

6 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigreamework for Hardware Verification

signature JUDGEMENT = sig
(* abstract type for judgements *)
type form
(* the well-formedness predicate *)
val wellFormed : form -> bool

(* abstract type for the environment in which a judgement
is to be interpreted (e.g. symbol tables) *)

type environment

val setEnvironment : environment -> unit

* ... ™

end

sighature PROOF_STATE = sig
structure Judgement : JUDGEMENT
(* a judgement with an identifier attached ¥*)
type namedForm = string * Judgement.form

(* abstract types for proof states and theorems *)
type proofState
type theorem

(* Proof rule functions *)

type proofRuleFn = {obls : namedForm list, newObls : Judgeme nt.form list,
auxinfo : exn, importedThms : theorem list,
bookKp : Judgement.bookkeepinglinfo}
-> {newObls : namedForm list, bookKp : Judgement.bookkeepi nginfo}

(* a proof rule is a proofruleFn with a name *)
type proofRule = {name:string, rule:proofRuleFn}

(* create a goal state from a claim. Only proof rules and theor ems
imported here can be used in the proof *)
val goalState : {claim : namedForm, env : Judgement.environ ment,
theorems : theorem list, rules . proofRule list}

-> proofState

(* datatype used to select obligations by index or identifie r %)

datatype obligationSpec = Idx of int | Nm of string

(* apply the proof rule named to the obligations selected *)

val applyProofRule : (string * proofState * obligationSpec list *
Judgement.form list * exn) -> proofState

(* a proof is a function from proof states to proof states *)

type proof = proofState -> proofState

(* stating a theorem associates a proof with a claim *)

val stateTheorem : {name : string, proof : proof, pstate : pro ofState }
-> theorem

* .. %

end

Fig. 2. SML signatures for generic core

checker is represented as a sequence of proof states. A protdéns into zero or more (simpler) obligations. The avaiabl
state consists of the claim, the pending obligations, antkso proof rules are registered with the claim state and cannot be
bookkeeping information. The claim and obligations argjud maodified afterwards; in a sense, they become hypotheses of
ments which can be, for instance, a sequent (in a sequent cahe theorem. This permits user-defined domain-specificfproo
culus), or a formula (in a natural deduction style calculus) rules to be introduced without modification of the core.

A proof begins with an initial proof state in which the list of A proof state with no pending obligations corresponds to
pending obligations consists only of the claim. Rules ofinf a proven claim, i.e. sgheorem To allow for theorems to be
ence are implemented as functions from proof state to proofised in later proofs without having to check, and therefore
state, and are used to transform one or more pending obligaxecute, their proof before each use, we provide theorem ob-

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 7

jects. A theorem object associates a claim with a proof, i.e.is a higher order function that, given a pair of tactics, metu

a function that takes the claim proof state and returns afprooa new tactic. The tactic returned is a function that apphes t

state with no pending obligations. Theorems can only be usefrst tactic to its proof state argument, and if this failguras

in a proof if they were imported into the initial proof statle ~ the result of applying the second tactic. Failure of appyin

provide facilities that analyze the dependency betweeorthe a tactic is communicated through SML exceptions. Similarly

rems, ensure the absence of circularity, check all pro@fs th repeatTAC repeatedly applies a tactic to a proofstate, until

a theorem depends on, and generate reports. this tactic fails. Tacticals for other commonly used conipos
All of the above components are parameterized in thetions of proof steps are provided as well.

syntax of the logic and a well-formedness predicate forproo As is apparent from figure 3actic s apply to entire

obligations. Figure 2 shows the SML signatures correspondproof states, i.e. the tactic may act on all pending oblayesi

ing to the representation of judgements, proof states ad th However, many proof rules apply to a single obligation only,

orems (for the sake of presentation, some details have beeapecified by aPS.obligationSpec . Such a proof step

omitted). SML signatures act as interface specificatioms fois represented astactickle , and a corresponding set of

SML structures (the SML notion of a module). higher order functions for compositions tafctickle s 'is
Signature]JUDGEMENprovides an abstract interface be- available.

tween the domain-specific aspects of the proof infrastruc- To facilitate the interactive development of proofs, we

ture and its generic core. This abstract view consists of grovide a simple goal package, which maintains a current

type form for judgements, the predicat®ellFormed , proof state to which rules can be applied, and allows proof
and a typeenvironment . The environment mechanism al- steps to be undone.

lows the imperative-style implementation of entities,fsas The implementations of both the tactic and goal package
global symbol tables, that are not conveniently expressed iare generic, and realized as SML functors that take a steictu
a functional style, as attributes of an object of tyjpem . matching signaturBROOF_STATEs an argument.

The core maintains this environment and guarantees that
setEnvironment is invoked before any operation on a
form is performed.
The generic implementation of proof states and theorems
isrealized as a SML functor that returns a structure thath@st This library comprises core routines of several commonly
signaturdPROOF_STATE&Nd takes a structure that matches used decision procedures. The library is independent of-a pa
JUDGEMEN@&s argument: ticular object logic; instantiating a decision procedure &
functor FProofState (structure F : JUDGEMENT) logic requires writing a small amount of|_nterface code.
- PROOF STATE = _To support Boqlean tau'FoIogy chec_klng as well as sym-
- bolic model checking, the library provides an abstract data
struct (*....*) end . . . i
type for boolean expressions in a canonical representation
The SML type system ensures that only types specified infhe underlying implementation of this data type is a stdte-o
signature?ROOF_STATRre exported. The tygeoofState the-art Binary Decision Diagram (BDD) [12] package [46]
is exported as an abstract type, which ensures that the onpat was integrated into the SML/NJ runtime system. The
way to create an object of this type is using one of the func-interface provides full access to the control aspects of the
tions in signaturePROOF_STATHhat returns such an ob- BDD package, such as variable reordering strategies, cache
ject. FunctiongoalState is the only function that creates sizes etc. Based on the BDD package, we have implemented
afreshproofState . No function alters the list of imported a package for symbolic manipulation of bit-vectors andharit
theorems andproofRules of a proofState . Func- metic operations thereon.
tion applyProofRule is the only one that modifies the Components for arithmetic decision procedures include
list of pending obligations; it does so by looking up (in the a package for arbitrary precision integer and rationaharit
proof state) thgroofRuleFn indicated by the first argu- metic, polynomials, and a decision procedure for linedahari
ment, applying it to the specified obligations, and replgcin metic based on an implementation of the simplex linear pro-
these obligations with the returned new ones. Additional ar gramming algorithm on arbitrary precision rational nungber

3.2 Library of Common Decision Procedures

guments are available for rule-specific auxiliary inforioat Based on these library components, we have implemented
(such as instantiations with a quantifier rule) and pemsiste a decision procedure that discharges arbitrary tautobagim-
bookkeeping information. posed of linear inequalities with boolean connectives.dde

As indicated above, proofs in our system are SML func-cision procedure is based on rewriting the negation of a for-
tions from proof states to proof states. We provide a librarymula into sums-of-products and refuting each product terth [
of higher-order functions on proof rules (analogous toitact If the original formula was a Boolean combination of linear
cals in e.g. HOL or Isabelle) which facilitate the constioict ~ inequalities, each of the products thus obtained defines the
of proofs from basic proof rules (which correspond to HOL constraints of a linear program; refuting a product term is
tactics). Figure 3 shows a listing of the SML signature of thethen equivalent to showing that the linear program has no
tactics interface. Typtactic is the type of functions from solution. So far, we have not felt the need to implement a
proof state to proof state. Functi@seTAC , for example, decision procedure for combinations of theories and/or un-

8 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigreamework for Hardware Verification

signature TACTIC = sig
structure PS : PROOF_STATE

(* a tactic is a proof step *)

type tactic = PS.proofState -> PS.proofState

(* elseTAC is the tactic that applies the first tactic, and if
this fails the second one *)

val elseTAC : (tactic * tactic) -> tactic

(* repeatTAC is the tactic that repeatedly applies the given
tactic until it fails *)

val repeatTAC : tactic -> tactic

¢* %)

(* tactics apply to entire proof states, tactickles to singl e
obligations, but are otherwise analogous *)
type tactickle = PS.obligationSpec -> tactic
val elseTac : tactickle
val repeatTac : (tactickle * tactickle) -> tactickle
* ... ™
end

Fig. 3. SML signature for tactic interface

interpreted functions (e.g. [33,45]) as our simple procedu datatype whose variables are (Boolean-typed) formulas of
were sufficient for the divider proof. the object logic. Furthermore, such a BDD can appear as a
All decision procedures include counterexample facgitie (Boolean-type) subexpression of a formula of our logic.§hu
for non-valid formulas. For example, if a boolean formula a BDD can appear anywhere in place of a Boolean formula,
composed of linear inequalities is not a tautology, then theand vice versa. Note that many Boolean formulas do not have
decision procedure will exhibit a valuation of the variable a compact BDD representation. For example, the formulas
for which the formula is not satisfied. With the decision pro- that relate a dividend and divisor to their quotient and re-
cedure we are using for linear arithmetic, a counterexample mainder have sizes that are exponential in the number of bits
obtained as a byproduct of the proof attempt: Recall that thef their operands. Having a choice of representation allows
decision procedure proves a formula by rewriting its nega-us to exploit the efficiency of BDDs where applicable; sub-
tion into a disjunction of conjunctions of linear constitain expressions that do have a compact BDD can be represented
and showing that each such set of constraints is unsatisfiablas such, while the top-level structure of the expression re-
Unsatisfiability is shown by attempting to find a solution to mains explicitly represented.
a linear program with a corresponding set of constraints. If ~ This mixed representation is useful for example in con-
a solution is indeed found, this solution is a counterexampl junction with a proof rule that rewrites Boolean-valued-sub
for the original formula. expressions involving bit-vectors into an equivalent jrett
Likewise, if the model checker rejects a safety property,on individual bits by expanding bit-vector operations into
it will provide a trace that starts in a state satisfying thie i their corresponding bitwise logical/arithmetic operatoln
tial state predicate, and ends in a state that violates fegysa general, later proof steps would reason about this predi-
property. The model checker is based on reachable state setite using a BDD-based decision procedure for propositiona
computation [13]; counterexamples are constructed by-picklogic, which requires the predicate to be transformed imto a
ing states from the sets of states defined by the iterations afquivalent BDD.
the reachable state set computation. Each transition of the Instead of constructing a (potentially large) formula for
trace is labeled with the transition of the model that effect the predicate which is later rewritten into a BDD, in our fiem
it. Counterexamples such as these allow the human verifier tavork the proof rule can directly and efficiently construat th
quickly identify errors in the design or in the intended froo BDD, and replace the original subformula of the obligation
so that the appropriate corrections can be made. with this BDD.

3.3 Embedding of BDDs in Object Logic 3.4 Object Logic for Synchronized Transitions

Our BDD library provides facilities that allow the syntacti We have instantiated the generic core with a logic suitable
embedding of an object logic to be defined such that Boolarfor reasoning about ST programs. The proof system is a se-
subexpressions can be represented by a BDD that is embeduent calculus for explicitly typed first-order logic thatex-

ded into the expression itself. We have implemented an-intertended with all types, constants and operators of ST, includ

face layer on top of the basic BDDs that provides a BDDing transition-valued expressions.

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 9

The abstract syntax of the logic is represented in the usuar his last obligation can be discharged using the decision pr
manner [38] as a SML datatype with constructors correspondeedure for linear inequalities with boolean connectives.
ing to literals, identifiers and operators. Type-checkiffpo As explained in the previous section, proof rules are in-
mulas is carried out by a function that recursively travei@e voked by supplying the name of the proof rule to the func-
formula and annotates each well-typed formula with its fype tion applyProofRule of signaturePROOF_STATH-or
and raises an exception for ill-typed subformulas. Once-comeach proof rule, we provide a wrapper function returning a
puted, the type of each subformula is cached for efficiencytactic ortactickle , given auxiliary arguments if appli-
Since the logic is explicitly typed (i.e. all identifiers me® cable. For example, proof ruByTheorem , which inserts a
be declared with their type), type-checking is efficienty¢ d theorem identified by its name into the list of antecedenés of
cidable. sequent, is encapsulated as a wrapper function with sigmatu
The well-formedness predicate for this logic states tHat al
formulas that of a sequent must be well-typed and of Boolean
type. These wrapper functions are necessary for interaction with
For the prototype implementation, we have avoided thethe tactics package. For instance, the proof that carrietheu
effort of writing a parser for the language, and instead useéroof steps described above can be succinctly written as
SML’_s parser by deplaring, at the SML top-level, a construc- (invariantByWp
tor with the appropr_|ate f|X|ty for eqch ST operator. ST seurc thenTac linArith)
modules are transliterated into this form by a translatat th _)))
shares its front-end with a compiler that compiles ST into _ Here.invariantByWp s a compound tactickle that ap-
executable code for simulation. An additional benefit o§ thi Plies the first two steps, whileArith is a wrapper func-
choice is that the well-tested existing front-end proviges ~ tion that directly invokes the proof rule that implements ou
dependent syntax and type checking of the ST programs. decision procedure for I|_near arlthmetlc. Given two tdfies
Assertions on ST programs, such as invariants, safety prop-a8nd B, (AthenTacB) is the tactickle that applies first
erties and refinement, are formulated in terms of predicategnd thenB, and fails if either of the two steps fails.
on transition-valued expressions. We provide proof rdesh Further proof rules include the usual rules for sequent ma-
as thewp-based rule for invariants, that allow such obliga- NiPulations, rewrites, simplification and lifting tfexpressions,
tions to be reduced to obligations that are purely withinrdier- quantmer_ man|p.ullat|ons, and arithmetic S|mpll_f|cat|oﬂie:
free logic with boolean connectives, arithmelfeexpressions, 9€ther with decision procedures for propositional calsulu
and arrays and records under store and select. The latter #d linear arithmetic, these are frequently sufficient & di
achieved by rules which rewrite operations on individulsce charge obligations arising from assertions about ST progra
of an array (or components of a record) into operations on théVore specialized proof rules will be explained briefly in the
entire array (record) as a single variable. For instancesan context of the divider verification presented in the remamd
signment of the paper.

A5 :=b
would be written as 4 The Self-Timed Divider: Overview
A := store(A,5,b),
Wherestore(A, 5,b) denotes the arrayl with the cell atin- We evaluated the proof checker by verifying Williams' self-

val byTheorem : string -> tactickle

dex 5 updated with valule timed divider [50], which implements the radix-2 SRT algo-
As an example, consider a proof state that includes th&ithm [14]. We reconstructed the design from the descri#io
pending obligation: in [50] and [51]. A variation of this design is incorporated i

HasInvariant(<Ki>0—i=i—1> the HAL SPARC_ CPU. . I .
| i< N —ii= i+ 1> The verification of the divider while implementing the

0<i<N) proof-of-concept tool in parallel took two people aboutrfou
- months. Finding appropriate invariants turned out to be sur

This obligation states that the two transitions maintaia th prisingly easy, usually only requiring a small number of-ite

given invariant. An application of the proof rule féfasin-

ations.
variantrewrites this obligation as This section presents an overview of the divider design.
(0<i<N)= Sections 4.1, 4.2, 4.3 are tutorial in nature describingyear
wp(Ki>0—i=i—1> save addition, SRT division, and precharged logic respelgti
| <i <N —i= i+ 1>, Section 4.4 describes the particular divider from [50].

0<i<N)
An application of the proof rule fowp, which implements 4.1 Carry-Save Arithmetic
the semantics given in section 1.3, yields:
(0<i<N)=> Figure 4 shows three common ways to implement two’s com-

(((i>0)=(0<i—1<N)) plement addition (see [14]). In all three cases, the adders r
AN({(i<N)=(0<i+1<N)) ceive as inputs two worda,andb of n bits each, Each adder

10

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

a[n-1] b[n-1] al2] b[2] a[1] b[1] a[0] b[0]
Ripple a b a b a b a b
Adder c_out =—c_out c_inf<— *+* =—|c_out c_inf<=—{c_out c_inf[<—{c_out c_inf[<— c_in
2z 2z > >
>[n-1] >[2] =[] >[0]
a[n-1] b[n-1] al2] b[2] a[1] b[1] a[0] b[0]
Carry a b a b a b a b
z c_in . 2z c_in z c_in z c_in
Look—Ahead ab a®b l7 ab a®b Jj ab a®b Jj ab a®b
Adder 5 [n-1] s[2] s[2] >[2]
Carry Look—Ahead Tree
aln-1] b[n-1] c_in[n-1] a[2] b[2] c_in[2] a[1] b[1] c_in[1] a[0] b[0] c_in[0]
Carry Save a b a b a b a b J
Adder c_out - . c_out e c_out e c_out en
¢ outln-11 Z[n-1] c outl2l Z[2] ¢ outl1l Z[1] ¢ outiol ZI0]

Fig. 4. Three Com

outputs am-bit sum word Y. Each adder consists afone-
bit adders, where th&" one-bit adder computes the sum o
input bitsa[:] andb[/] and outputs bit’[¢] . The differ-
ences between the three designs lay in the ways that car
are handled.

The simplest adder is a carry-ripple. Each one-bit adder
receives its carry-input from the previous stage (or the en-

vironment for adder for the least significant bit). This ipl
mentation resembles the traditional “paper-and-pencifhod:
before computing the sum and carry atibthe carry from bit
i — 1 is required. In the worst-casé,n) time is required to

mon Adder Designs

non-redundant

decimal binary carry—save
f 12 00001100 00 00 00 00 10 10 00 00
+13 + 00001101 +0 0 0 001 1 0 1
ries 25 00011001 00 00 00 01 01 00 00 10
+14 + 00001110 +0 0 0 0 I 1 1 0
39 00100111 00 00 00 11 00 10 10 10
+15 + 00001111 +0 0 0 001 1 1 1
54 00110110 00 00 01 00 11 O1 01 00
+16 + 00010000 +0 0 01 0 0 0 O
70 01000110 00 00 01 11 00 10 10 00

Fig. 5. Carry-Save Addition

compute am-bit sum. As described in section 4.2, the SRT

division algorithm require®)(n) additions Thus, SRT divi-
sion using carry-ripple adders requi@én?) time for worst-
case data value.

Carry look-ahead adders can computerahit sum in

Basically, the carry-save design takes advantage of the fac
that addition is associative and commutative. Thereftre, t

carries can be added to the partial sums in any order to pro-
duce the same final result. Figure 5 shows ripple carry and

O(nlogn) time. While there are many variations on the de- carry-save addition when computitg+ 13 + 14 4 15 + 16.
sign, all use some kind of tree structure to determine theThe outputs of the carry-save adders are represented vath tw
carry-input values for each stage. While carry look-ahgad a bits per binary digit. The left bit in a pair for digitrepresents

proaches are very useful for general-purpose arithmetis,un

X[4]; the right bit represents_out[i-1] . The advantage of

carry-save adders provide higher performance from a simple carry-save addition is that each addition can be computed in
smaller circuit for application where a large number consec O(1) time. As the SRT division algorithm requiré¥n) ad-

such an application.

ditions, SRT division using carry-save adders requi’¢s)
time.

In a carry-save adder, each one-bit adder receivesits carry The complication introduced by carry-save addition is that

input from the adder for the previous bit of theeviousadder.

it is a redundant representation: each binary digit of aevalu

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 11

q binary decimal is less thark41, the integer part of the quotient is zero. Sub-
01011“0 ””””””””””” 0.734... tracting0 = 241 from 177 yields 177, which is the first partial
0.1 11110001) 10110001 241)177 remainder for the calculation. Létdenote the divisor; de-
: ‘% 1‘72 note the current partial remainder, ahdenote the radix of
‘ 1011000107 *10 354072 the algorithm (for binary calculations, the= 2). The com-
1 - 11110001 -241 putation of the quotient proceeds by repeatedly applyieg th
Hooer2+10 A)*2 following three steps:
0 ﬁ 2_21 1. Multiply the partial remainder by the radipg:= b * r.
| 1110001007 *10 152072 2. Select the next quotient bit:= |p/d].
L) — 11110001 —241 3. Compute the next partial remainder= p — ¢ * d.
| TTOT00TT— 21T 4y _ o _ N
Ll _1}(1)}(1)8(1)(1)(1) _‘2“2& For radix-2 division, step 1 can be implemented by shifting
: mﬁ ‘0 W> ” the bits (_)fr one p0§|t|0n to the left; st_ep 2isa comparison of
| 101101010 362 pandd (i.,e.q =0if p < dandg = 1if p > d); step3isa
L - % - f‘z*i subtraction. When carry-save arithmetic is used, the compa
111100107 *10 2un) ¥2 son in step 2 of the long division algorithm becomes difficult
1] - 11110001 - 241 Performing an exact comparison basically requires prapaga
: 107 #10 ;)*z ing all “pending carries” in the carry-save word to produce a
0 -0 | -0 non-redundant value, which would nullify the advantages of
! 10 2 the carry-save approach.

The SRT algorithm implements division efficiently using
carry-save arithmetic. SRT employs a redundant representa
tion of the quotient — for the radix-2 algorithm, a quotient
digit can be—1, 0, or 1. Each iteration of the SRT algorithm

lisimilar to an iteration of the long division computation:
the partial remainder is multiplied by the radix and compare

Fig. 6. Radix-2 Long Division

is represented by two bits. Accordingly, the same number ca
be represented with several different encodings. For el@amp " | L . L]
every four-bit value has sixteen representations; thesixt with the divisor; a quotient digit is selected; and the preidu

four-bit representations of the integer 5 are shown below: of the quotient digit and the divisor is subtracted from the
00010001 00010010 00001101 00001110 scaled partial remainder to produce a new remainder. The re-

00100001 00100010 01111101 01111110 dundancy in the quotient digits allows the comparison of the
11010001 11010010 11001101 11001110 divisor and the partial remainder to be approximate, which
11100001 11100010 10111101 10111110 in turn allows carry-save arithmetic to be used. As long as

The traditional, non-redundant, value can be extractedigf the magnitude of the partial remainder remains less than or

ing two words, one for the partial sum, and one for the carries€du@l tod, there is a sequence of quotient digits that drives
The sixteen encodings of 5 shown above correspond to: the partial remainder to zero. With the radix-2 SRT algorith
one quotient bit is computed per iteration; accordinglyhé

O0+165 1+64 24163 3+16 2 vl . e

44461 54160 6+16 15 741614 guotient is requied to the same precision as the operands, SR

8+1613 941612 10+16 11 11446 10 division performgD(n) additions to compute a quotient given
12+1659 13+16 8 144167 15414 6 n bit operands.

where +4 denotes addition modulo 16. Likewise, a non- A charming feature of the radix-2 SRT algorithm is that
redundant result for the example from figure 5, is obtained byvalid quotient digits can be selected by only considerirgg th
computingd0110110 + 00010000 which yields01000110, four most-significant binary digits of the partial remainde
the value computed by the ripple adder. For SRT divisios, thi €ven when the partial remainder is represented in the carry-

final add can be Computed by either a ripp|e-carry ora Carrysave Style. We will describe the particular implementation
lookahead adder and preserve @) time requirement. that we verified. Our verification shows the correctnessef th

mantissa calculation of the divider. The operands to the di-
vider are normalized floating point numb&r§herefore, we
assume that the divisor and dividend mantissas are in the in-
terval [0.5,1). A critical invariant of the divider (verified in
To motivate the SRT algorithm, first consider the traditipna section 6.1) igr| < d < 1. Figure 7 shows the valid choices
“long-division” algorithm with binary arguments. Figure 6 of the quotient digit such that this invariant is maintained
shows binary, long division for computing’7 + 241. The The divider uses a two’s complement, carry-save repre-
left column (labeled “g”) shows the quotient bits as they aresentation of the partial remainders. The most significérihbi
calculated, the column labeled “binary” shows the calcula . . _ _
tions in binary notation, and the column labeled “decimal” 1 |EEE floating point [25] allows for “denormalized number3ypical

T . . . implementations of this standard include additional maidmas for handling
S_hOWS the same Ca|CU|at|(_)nS in decimal notation. The algogenormalized divisors with a loss of performance. In thisgrawe assume
rithm starts with a comparison @77 and241. Becausd 77 that the divisor is normalized.

4.2 The SRT Division Algorithm

12 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

" CRA sum r q
100 A 0000 [0.00, 4+0.50) +1
' Quotient digit 0001 [+0.25, +0.75) +1
0.75 1 must be 1. 0010 [+0.50, +1.00) +1
050l 0011 [+0.75, +1.00) +1
' s 1011 (—1.00, —0.75) —1
025 1 “Z-_ Quotient digit 1100 (-1.00, —0.50) —1
: can be 0 or 1. 1101 [-0.75, —0.25) —1
0.00 - 1110 [—0.50, 0.00) -1
o 1111 [—0.25, +0.25) 0
—0.25 4+ .| Quotient digit - . . .
- canbe 0 or —1. Table 1.Quotient bit selection for the radix-2 SRT divider
-0.50 -
-0.75 + Quotient digit
. must be —1. sum. For example, if the CRA sum is 0000, then the partial
-1.00 F——t— d remainder must be in the interviil, 0.5). As shown in fig-
0.00 025 0.50 0.75 1.00

ure 7, a quotient digit of-1 is allowed whenever the partial
remainder is non-negative, justifying this entry in tabldfl
the CRA sum isl011, then the 2's complement value of the
CRA sum is—1.25. In this case, the invariafit| < 1 estab-
our implementation has weight2. If a non-redundant rep- lishes the lower bound far. This means that themaustbe
resentation were used for the partial remainder, then ihis b pending carries in the neglected part of the partial remeind
would be unnecessary. With carry-save addition, this bghe word; in other words, the neglected part has a value of at leas
disambiguate the value of the partial remainder as we axplail/4. If the CRA sumisl 111, the sign of the partial remainder
below. depends on the the pending carries from the neglected part of
Assume that the partial remainder, hasn digits with the partial remainder word. In this case, we note that the mag
n > 4. The rational number value of can be estimated hitude of the partial remainder is at mdgtl. From figure 7,
by using a four-bit, carry-ripple adder to compute the non-& quotient digit of 0 is allowed for any such partial remainde
redundant, two's complement value for the top four digits of This is the value chosen in the table. The explanations for th
r. This ignores the remaining—4 digits. Because two’s com- other entries in table 1 are similar to those stated abover€erh
plement notation is used, this neglected term must be pesiti are no entries for sums fron 00 through1011; the invariant
or zero. The most-significant digit of the partial remainder|r| < 1 precludes the occurence of such values.
has weight—2. Therefore, the fourth most significant digit Figure 8 shows the calculations of the SRT algorithm when
has weightl /4. The neglected term is the sum of two words, computingézg‘;g — this corresponds to the long division ex-
each of which has a value of less thani. Therefore, the ample from figure 6 with the divisor and dividend scaled to
neglected term has a value in the interigaD.5). bein[0,0.5). The calculations employ 10-bit, two’'s comple-
This redundancy allows quotient bits to be selected with-ment to represent the divisor, the dividend, and the partial
out first propagating all carries in the partial remaindds ca remainders. The (redundant) quotient is
culation. Instead, the top few bits of the partial remairater 0).(+1)(-1)(+1)(0)(0)(O)(-1)(O)(*+1)(-1)(-1)(-1).
calculated, deferring carry propagation from lower bitsilun To obtain the traditional (non-redundant) quotient, we-sub
subsequent iteration. Based on the top few bits of the partract the -1's word from the 1's word, i.e.:
tial remainder, a small range that contains all possibleasl
of the partial remainder can be determined. The redundant
representation allows a quotient digit to be selected that i
valid for any value of the partial remainder in this range- Af
ter the complete quotient has been computed, the traditiona
non-redundant representation can be obtained by perfgrmin
a single subtraction operation. For floating point appitcs, 4.3 Precharged Logic
the mantissa of the divisor can be assumed to be normalized,;
therefore it lies in the intervdD.5, 1). For the radix-2 algo- Our verification starts with a proof of correctness for thdixa
rithm, quotient digits can be selected based on the valueeoft 2 SRT algorithm described above and then progresses through
partial remainder without considering the value of thestivi a sequence of five refinement proofs to produce a verifica-
Table 1 shows the quotient selection used in the dividettion of at timed transistor-level model. To prepare for thes
presented in this paper. The column labeled “CRA sum” givegdetailed models, we now describe the general style of logic
the output of the four bit carry-ripple adder described &ov circuits used in the divider.
The column labeled gives bounds on the value value of the We start with a one paragraph review of switch mod-
partial remainder given the value of CRA sum, and the col-els for transistors (see, e.g. [49] for a more complete ex-
umn labeled; gives the quotient digit for this value of CRA position). Figure 9 shows an n-channel MOSFET transistor

Fig. 7. Allowable quotient digit values for radix-2 SRT division

0.101000001000,
—0.010000100111,
0.0101111000012

= 0.73486328125;¢

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 13

q ' CRAsum | binary i decimal
: : ©). +DHEDHEDONO)O)(=DO)HDED D (1) : 0.734...
00001 111111000100 00 10 00 10 10 00 00 00 10 L 241)177
! ! +1 1.0 0 0 0 1 1 1 1 ! =241
-1 1110 10 10 10 00 10 10 10 10 11 00 . 3 - 64\,
! ! 10 10 00 10 10 10 10 11 00@ 10 ~128 "2
; ; +0 0 0 0 0 0 0 0 0 0 3 +241
+1 0001 10 10 11 01 0L 00 11 00 00 10 N ! 1131 %
1 1 10 11 01 01 00 11 00 00 10 00 210 | 202
! ! +1 1 .0 0 0 0 1 1 1 1 ! - 241
0 1111 0l 10 10 10 O1 00 10 I1 00 10 *10 3 1590
! ! 10 10 10 01 00 10 11 00 10 00 ! -30
1 1 +0 0 0 0 0.0 0 0 0 0 3 + 0
0! 1111 10 10 10 10 00 11 00 00 10 00 £10 ! =30 V1)
| | 10 10 10 00 11 00 00 10 00 3 ~60
! ! +0 0 0 0 0 0 0 0 0 0 !
0! 1111 10 10 10 01 00 00 00 10 00 00 N 3 -60 .
| | 10 10 01 00 00 00 10 00 00 00210 | 12072
; | +0 0 0 00 0 00 00 ; + 0
-1 1110 10 10 10 00 00 00 10 00 00 00 . ! -120+,
| | 10 10 00 00 00 10 00 00 00 002*10 240072
! ! +0 0 1 1 1 1 0 O 0 1 ! + 241
0! 1111 10 10 10 10 11 00 00 00 00 10 . | [
| | 10 10 10 11 00 00 00 00 10@10 ! 2)*2
; ; +0 0 0 0 0 0 0 0 0 0 3 + 0
+1! 0000 10 10 11 00 00 00 00 00 10 00 N ! 2%
| | 10 11 00 00 00 00 00 10 00 002*1° | 4072
: : +1. 1.0 0 0 0 1 1 1 1 ! - 241
11 1100 01 10 00 00 00 00 11 00 10 10 s10 | 2374y
! ! 10 00 00 00 00 11 00 10 10 00 ! -474
1 1 +0 0 1 1 1 1 0 0 0 1 3 +241
-1 1011 10 00 10 10 11 10 00 10 10 10 S0 233y
‘ ‘ 00 10 10 11 10 00 10 10 10 00 3 -466
| ! +0 0 1 1 1 1 0 0 0 1 ! +241
-1 1100 00 11 01 11 00 10 01 01 10 01 3 -225
Fig. 8. SRT Division Example
and a p-channel MOSFET transistor along with their switch d d d d d d
level models. Each transistor has three terminals: the, gate -0 ‘ —1 3 -0 -0 ‘
- - g 0N g=t1gd g0 g0
the source, and the drain, labelgds, andd respectively |
in the figure. The source and drain are interchangeable; two s s s S s s

different names exist for historical reasons. In a simple mo n—channel MOSFET p—channel MOSFET

del, the transistor operates as a switch controlled by the vo

age on the gate. For an n-channel transistor, a connection is

made between the source and the drain when the gate is at a

high voltage, and no connection is made when the gate is at a

low voltage P-channel devices operate with a reversed sense The second phase is tegaluatephase. In this phase, the

of the drain: when the drain is high, no connection is madeprecharge-bar nodeb, is set-high, and the logic inputs are

when the drain is low, a connection is made. allowed to change to high. If the combination of high inputs

establishes a connection from noxldo ground, then node

The divider that we verified makes extensive uspretharged goes low, which causes nogeto be driven high. If the

logic. Figure 10 shows a generic precharged logic gate and ®gic functionis not satisfied, then the small feedbackiitere

specific example, an AND-OR gate. Precharged gates operatgaintains the high level on nodeand nodey remains low.

using a cycle of three phases. The first phase ipteeharge At the end of the evaluate phase, the output of the gate is the

phase. In this phase, the logic inputs (agb, c, ...) arelow, value of the function for the current inputs.

and the “precharge bar” (i.e. negated precharge) sigtmal, For example, the pull-down network of the AND-OR gate

is asserted by settingb low. This creates a connection be- makes a connection from to ground if the input is high

tween nodex and the power supply (labelddin the figure). and if either thé or ¢ inputis high. Thus, this gate computes

The pull-up transistor is made large enough that it can overthe function

power the n-channel transistors in the pull-down netwoxk an aA(bveoe).

the small inverter whose output is connected tdhus, node The third phase is thigold phase. In this phase, the inputs

x is driven high. Once is high, nodey is driven low. Atthe return to low values, and the precharge-bar nptie remains

end of the precharge phase, the outpupf the gate is low. high. In this phase, the pull-down network does not make a

Fig. 9. Switch models for transistors

14 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

A generic, precharged A precharged, a(i-1)
logic gate AND-OR gate g (1)
1 1
-d
pb E X pb
~ L, .
% Y r(i)
a— r(i-1)
a— b % F c Fig. 12.A Divider Stage
b —| n—channel
pull-down 0
C 7] network
N precharge control

Fig. 10.Precharged logic gates

y.empty Dual-Rail Code 0 % 2
pb# xT pb# xF / q() S:I)
y.T y.F
. . L [Herubint
b.TH[Jf-c.T Fo.¥ 6 H | valid © i
-c.F

Fig. 13.Divider Architecture
Fig. 11. A dual-rail AND-OR gate

.] carry-ripple addeiCRA, converts the top four bits of the par-
connection from node to ground, and the pull-up transistor ja| remainder to the standard, non-redundant representat

does not make a connection fromto power. In this phase, The quotient-select-logi€SL, uses this sum to determine
the small feedback inverter maintains nodat the value that {he next quotient digit.

it had at the end of the evaluate phase. Throughout the hold ¢ depicted in figure 13, the entire design consists of

phase, the_output of the gate is the value of the function frompee of the above stages, arranged in a ring [51]. As men-
the preceding evaluate phase. _ tioned in section 4.3, the iteration is controlled by embedd

~ The divider that we verified is self-timed. Rather than us-completion information in the data signals. Most values are
ing a clock signal to control the sequencing in the SRT it-encoded using dual-rail codes. Quotient bits are encoded us
erations, control circuitry detects when stages compladi t ing a three-wire, “one-hot” scheme [30]. At most one wire
operations and enables subsequent operations accordiagly may be high at any time; the four values of the code are
enable completion detection, most signals are encoded USirbmpty, 1,0, and+1.

adual-rail code[43]. If y is a boolean valued variable, then The divider design includes two performance optimiza-
nodey.T is driven high during an evaluate phase if the func-jons that exploit timing details of the circuits. First, mge

tion fory evaluates to true, andF is driven high if the can precharge faster than its predecessor can evaluate. The
function fory evaluates to_false. During the precharge phaseg|iows stagé+1 to precharge in parallel with the evaluation
bothy.T andy.F are driven low. Therefore, the comple- pnase of stage. If no timing assumptions were made, these
tion of precharge is indicated when botiT andy.F are gperations would have to be performed sequentially. Second
low, and the completion of evaluation is indicated whenaith - the partial remainder word becomes valid during an evaluate
y.-T andy.F are high. Figure 11 shows a dual-rail AND-OR yhase pefore the quotient digit, relies on the quotientt digi

gate with completion detection. of a stage being the last output to change during the evalua-
tion phase. This allows the computation of stagk to start
4.4 The Divider Chip as soon as the quotient digit from stagés output, without

any additional hardware to check the completion statuseof th

Figure 12 shows the hardware that implements a single stepartial remainder.
of the SRT division algorithm. Stagereceives the partial re-
mainder and a quotient digit from stagé on buses(i-1)
andq(i-1) respectively. The quotient digig(i-1) , is
used to select whether, 0, or-d will be added in the carry-
save addelCSA, to the previous partial remaindefi-1) Our overall goal is to verify that the transistor-level irapl
whered is the divisor (see section 4.2). Thakift module is mentation of William’s divider correctly computes divisio
simply a relabeling of wires that shifts the output of thegar There are two major challenges to be faced: First, we have
save adder one bit to the left to effect a multiply by two. Theto show that the algorithm that this design is based on is

5 \Verification Strategy

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 15

functionally correct. Second, we need to demonstratelfeatt assume thatl is a function. Let), andT be the initial state
implementation adheres to this algorithm. In particulaist predicate and set of transitions fBrand@),, T’ the same for
requires showing that the timing-critical control of thdfse P’.
timed design works as intended. Let s} be a state of’. We say that the transitions &

Since the division algorithm is of an iterative nature, we are matched by the transitions Bf at states! iff for every
employed an invariant-based argument to establish its corstates,, that is reachable by performing a single transition of
rectness. However, it is not practical to directly formaldte P, there is a transition oP that effects a move fromi(s])
necessary invariants at the level of detail for which wefyeri to A(s}). Stuttering actions (wherg(s}) = A(s})) are ex-
the divider: a timed, transistor level model. In particutarch ~ empted. We writenatch qns, a(T7, T)(s') to denote that the
an invariant would be too tedious for manual formulation; it transitions ofP’ are matched by those f at states’, with
is unreasor_lable tp expec_:t staf[e-space—expIoratlon-lbmxslsd matchyans 4(T', T)(s') =
to automatically find an invariant that supports the propert Y , P

T - . V<G —-M>ecT G =
of correct division; and the heuristics of sophisticategoth (Ao M')(s') = A(s))
rem provers would almost certainly get lost in the myriad of
; . L : VIG-M>eT.

details of the model without finding the desired proof. (G o A)(s)

Having concluded that we cannot hope to directly ver- A (Ao M')(s) = (M o A)(s))
ify the correctness of the detailed model, we pursued an ap-
proach that relies heavily on refinement to manage the comwhere M and M’ denote multi-assignments of prografh
plexity of the proof. Our goal is to prove a safety-property and P’ respectively. Note that a given transitigne 7’ does
of the design; this permits the use of refinement to ‘inherit’ not necessarily have to be matched witkiagle transition
correctness properties that are shown for an abstractitveof ¢ € T'. Instead, the matching can be subject to the particular
design down to the implementation level [15]. We have de-states’ of P’; for instance}’ may be matched withy, if P’
vised a hierarchy of refinements that relates an abstrgat; al is in states} and withts if P’ is in states). In the theorem
rithmic descriptions of SRT division on rational numbers to prover, such case-splitting is straightforward.
the transistor-level implementation of the design. These a Both P’ and P may have associated protocqgispto and
several intermediate descriptions in the hierarchy; these proto’. A protocol is a relation on the states of a program,
been chosen to allow each successive refinement step to focesy.,
on one particular aspect of the overall correctness propert proto C.S xS

_The t_ran5|stor-l_evel |mplementat|on_conta|ns thousandswe use protocols to model assumptions about the environ-
of tlmedS|gnaI§. This makes bpth deducUye and state-explqrarlij]%rﬁ-t of a model: a transition from state to s, is admitted
base‘?' reasoning about the tlmed.behawor of the design i T (s1,s2) € proto. In the context of the divider verification,
practical. Instead, we employ a refinement argument between

h . level imol . dth hiah we use protocols to constrain the passage of time in timed
the transistor-level implementation and the next higher mo 04 |c (see section 6.5).

del in our refinement hierarchy. This argument requires us We definematchror. 4 in a similar fashion to indicate

to show that certain timing properties hold for the tramsist atching of protocol actions, again exempting stuttericg a
level model. These can be shown by simple graph—traverqu

i S 7 ons:
methods given that certain side conditions hold. In our fram

work, the graph-traversal algorithm is incorporated asraalo- matChprloto,A(/PmtO/v proto)(sy) =
specific decision procedure, and the side conditions become Vsy € 5. o))
proof obligations that we discharge using deductive, refine proto’(sy, s5) = proto(A(s}), A(s3))

ment based arguments. By combining domain-specific de- Vv A(sh) = Alsz)

cision procedures with general purpose deductive theorem| actions of P’ are matched by at states’ if both transition

proving, we can verify a design that would not be possiblegctions and protocol actions are matched:
or practical to verify by either approach alone.

In the following, we first introduce theorems that provide Qpi=,p(s") = matchyans A(T',T)(s)
the foundation for refinement-based reasoning about ST pro- A matchproto, a(proto’, proto)(s’)
grams. We then give an overview of the refinement hierarchy\oting thatQp/ <, p(s') is a predicate over states Bf, we
used to show correctness of the divider, and finally providesay thatP’ is a refinement o> under abstraction mapping

more detailed descriptions of each proof step. Aif Q) = Qoo AandQp<,p(s') is a safety property
of P’. We write P’< 4 P to denote this. Because refinement
5.1 Refinement between ST Programs is a safety property, refinement for Synchronized Transitio

programs can be defined using eyssemantics presented in
Intuitively, programP’ is a refinement ofP if every state section 1.3. As shown below, verification of refinement can
transition that”’ can make corresponds to a movagbfMore often be reduced to a simple problem of tautology checking.
formally, let S’ be the state space &f, S be the state space Note that any interpretation of refinement as a ‘correct-
of P, and A be a mapping fromt’ to S. The mappingA ness property’ in the sense of stating th&tis correct be-
is referred to as aabstraction mappingfor simplicity, we cause it is shown to be a refinement of the specificatton

16 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

is subject to the abstraction mapping faithfully capturiing
intention of the person who defined it. In particular, an ab-
straction mapping may in fact be defined such that it performs
part of the computation that the implementation is expettted
do. Furthermore, our notion of refinement does not consider
liveness properties; an implementation that does nothang ¢
always be shown to be a refinement of a given specification
(since it will never perform an action that violates the spec
ification). In either case, such an abstraction mapping &voul
clearly not capture the verifier's intention.

Avoiding such pitfalls requires careful construction of ab
straction mappings. In our refinement proofs, we have when-
ever possible used abstraction mappings that are composed
from mappings between state variables of the implementa-
tion and the specification which are easily seen to corre$pon
to what was intended. For example, one such mapping is a
function that maps a vector of Boolean variables represgnti
an integer in two’s complement notation into its specifimadi
level interpretation as a signed integer.

The next two theorems formalize two useful relationships
between refinement and safety properties. The first theorem
states that safety properties of a more abstract program are
inherited by refinements of the program.

Theorem 1. Given programs® andP’, an abstraction func-
tion A such thatP’< 4 P, and a predicat&) such that) is a
safety property of”. ThenQ o A is a safety property of”’.

This theorem is easily proven by induction over trace®0of
The second theorem describes how safety properti€s of
can be used to show th&t' is a refinement. This often re-
duces the problem of showing refinement to one of automatic
tautology checking.

synchr

rational

onous/

refinement

synchr

integer

onous/

refinement

synchr

bit—vector

onous/

refinement

speed-independent/
bit-vector

refinement

tim

bit—vector

ed/

refinement

timed transistor—
level/dual-ralil

Functional correctness

Absence of
overflow

Correctness of

l<— deterministic

quotient-selection

Correctness of
speed-independent
control

Correctness of
timed control

Correctness of
transitor-level netlist
and stage signal timing

Fig. 14.Refinement Hierarchy

In other words, we use an invariant Bfto establish thaP’

refinesP and thereforeé®’ inherits the safety properties &%

Theorem 2. Given programsP and P’ with initial state
predicates), andQy, an abstraction functionl, and a pred-
icate® such thaty is a safety property aP. If Q; = Qoo A

and(Q o A) = Qp/<,p,thenP’ < 4 P.

A simple induction argument over tracesi®fshows that
Qp<,p(s') is a safety property of" and establishes the

claim. el ..

where vy, ..

By carefully designing a refinement hierarchy, we can dra-
matically simplify the task of finding the invariants needed
for verification.

In our implementation, the abstraction mappihig given
in the form of a list of equationsv; = e, ..
., v are variables of the specificatiaR, and
., e}, are expressions on the variables®f The rule

LU = €}),

Based on these theorems, we have implemented progfonstructs expressions f6@ o A) andQp.<, p by analyz-
rules for refinement between ST programs. For instance, thing the syntactic structure o’ and P, and appropriately
rule corresponding to theorem 2 reduces an obligation of th&ombining subexpressions of the programs. ExpressioRs cor

form
IsRefinement(Qy, P, proto’, Qo, P, proto, A)
to the obligation

Qo= Qoo A
A(QoA) = Qp<,p
A HasSafetyProperty(Qo, P, proto, Q)

Note that
(Qo = Qoo A)A((QoA)= Qpi<,p)

is a simple predicate over statesif The only invariant that
we must find is the one required for

HasSafetyProperty(Qo, P, proto, Q)

responding to function composition are computed using sub-
stitution; this is possible since both multi-assignmemd a
the abstraction mapping are represented as suitable dmadtti
vectors.

5.2 Refinement Hierarchy for the Divider

Figure 14 depicts the hierarchy of models that we used to
verify the divider. Each model is named based on a charac-
terization of the type of control and the data represematio
used. For instance, the synchronous/bit-vector modelmas s
chronous control and uses a bit-vector representatiorhéor t
divisor and partial remainder. For each level of abstractio

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 17

the figure indicates the aspect of overall correctness ligat t Figure 15 depicts the ST code of the quotient selection
corresponding refinement step focuses on. logic of our top-level, synchronous divider model. The togi
The first two refinement steps are data refinements. Ouis modeled as three ST transitions which are enclosed in a
top-level model has a single stage which computes a quotiertell. A cell is a ST construct that permits the encapsulation
digit and the next partial remainder in each step. The divi-and re-use of ST code. Cells are instantiated much like rsacro
sor, dividend, and remainder have rational values. In tisé fir instantiating a cell has the effect of creating a copy of the-t
refinement step, we replace the rational values with integesitions in the cell, with the cell’s formal parameters regld
values, and the next refinement step replaces these integdry the actual parameters of the instantiation.
with bit-vectors. FunctionnextRem computes the remainder of the next
The next two models elaborate upon the self-timed handiteration as
shaking protocols used in the design. The speed-independen
model has three divider stages and implements a handshak-
ing protocol that does not depend on the timing delays of
the components. In the timed, word-level model, bounds aré\S described in section 4.2, radix-2 SRT allows quotient dig
given on the ratio of precharge time to evaluation time; ghes its to have the value -1, 0 or 1. If the current remaingeis
bounds are exploited for an optimization of the handshakingl'eater or equal to 0, 1 is a valid quotient digit choice. # th
protocol. remainder is negative, -1 is a valid choice for the next quo-
The lowest-level model corresponds directly to our tran-tient digit. If 2[R;| < divisor, the quotient digit can also be
sistor-level implementation of the divider chip. Variablie - In our highest-level description of the divider this owgr
this model are represented using dual-rail code. In thedtigh Ping choice for the digit is represented by three transition
level models, the remainder word was computed as a singl&ombined with the asynchronous combinator (see fig. 15).
atomic action. Here, each signal is set independently. Furlf more that one transition is enabled, a non-deterministic
thermore, the status of the quotient bit is used to determin&hoice takes place. For example, if the current remainder is
the status of the entire output of the stage. This optimozati equal to—0.2x D, then either the first or the second transition
leads to a smaller, faster implementation, but it also intro May be chosen for the next step. By using non-determinism,

duces timing dependencies that we must verify. we avoid cluttering this description with implementaticg d
tails, and at the same time modularize and simplify the mroof

Deterministic quotient digit selection is introduced ie $yn-
6 Verifying a Self-Timed Divider: The Proofs chronous, bit-vector model. N
The complete program includes additional, synchro-

]) . nously composed transitions that instantiate the cell
This section presents each of the refinement proofs for th&rTpivide . store the computed quotient digits in a vec-
divider in detail. We aIso_present the safety and refmgmenfor, and handle the loading of operands and the generation of
properties that are estat_Jllshed_for each model along with thcompletion signals. This logic also ensures that the pragra
proofs for these properties. This shows how we can model @yternal behavior appears synchronous despite the use of th
significant design at many different levels of abstractamg asynchronous combinator, which is employed solely to ex-
how proofs can be carried out using a combination of 9geNepress the internal non-determinism.

ric deductive arguments and domain specific decision proce- The following two properties are invariants of the syn-

nextRemF(rem, quot,divisor)
=2 .rem — quot - divisor

dures. _ _ _ ~ chronous divider model:
We present the proofs in a top-down fashion. This choice
is both historical and pedagogical. The top-down order re- |Ri| <D (1)
flects the order in which we developed the proofs. Further- izl _ _
more, just as the proofs at the higher levels of the hierar- 20 — DZQJ'TJ = R;2", (2)
chy provide invariants needed by the lower level proofs, the j=0
descriptions of the higher level proofs provide a context inyhereRr, is the remainder determined in iteratigmndyo, . . . , ¢i—1

which to understand the lower level ones. A consequence ojre the quotient digits computed so far. From these two in-
this presentation is that some of the most novel featuresrof 0 yariants and the initial condition that the divisbrand div-

approach, such as reasoning about timed, switch-level moddend ¢ are normalized to satisff < D < 1and
els, are presented later in this section. 0 < C < D, we can prove that

61 F . ic ¢ the Svnch Rafi | DuringComputation =
.1 Functional Correctness of the Synchronous/Rational e —Zé;é qu,j‘ < 9-G-D) 3)

Model

is a safety property of ST prograsntDivider . During-
The top-level model in our refinement hierarchy is an ST pro-Computationis a predicate stating that the divider is prop-
gram that performs SRT division on rational numbers. Weerly initialized and currently computing a quotient. Thés r
begin our verification by proving that this program indeed sult demonstrates that the computed quotient asymptigtical
correctly divides. approaches the true quotietif D.

18 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

IMPLEMENTATION MODULE srtDivider;
STATIC

¢* ¥

SRTDivide : SRTDivideC = (* CELL(quot: sInt2; rem: Rational
STATIC divisor: Rational; *)
BEGIN
<< nextRem(rem,quot,divisor) <= 0.0
-> rem, quot := nextRem(rem,quot,divisor), -1 >>
|| << (-divisor <= 2.0*nextRem(rem,quot,divisor)) AND
(2.0*nextRem(rem,quot,divisor) <= divisor)
-> rem, quot := nextRem(rem,quot,divisor), 0 >>
|| << 0.0 <= nextRem(rem,quot,divisor)
-> rem, quot := nextRem(rem,quot,divisor), 1 >>
END;

¢* ¥
END.

Fig. 15. Quotient Selection in Functional Model

Proving invariants (1) and (2) requires a few additional 6.2 Synchronous/Integer Model
book-keeping invariants that e.g. state that the quotigit d
always is one of-1, 0, 1. Together, these invariants are eas- In the top layers of refinement, we focus on transforming the
ily proved by case-split over the value of the quotient qligit data-path of the circuit from one expressed in terms of ratio

rewriting with axioms about summation and powers-of-two, nal numbers to an implementation in terms of bit-vectors of
and application of the decision procedure for linear arith-length M.

metic. Using the these invariants, the safety property€3) i In preparation for the refinement to bit-vectors, we first
proved in a similar fashion. introduce an intermediate modeiitintDivider . This
. . H H H - M—
As an example, figure 16 depicts the complete proof forModel operates on (signed) integersin the rang" !, ... 2~ —

invariant (1). TacticcaseQuot is a user-defined tactic that 1}» instead of rational numbers. Correspondingly, all opera-
performs a case-split over the possible valuations for the q tions on rational numbers are replaced by operations oredign

tient digit, and is defined as follows: integers, modul@2™). . _
For instance, irsrtintDivider , the ST expression

2.0 * rem - divisor is correspondingly written as

val caseQuot = plusMod2N(M, rem,
caseSplit "quot" minusMod2N(M, rem, divisor))
(map (fn ¢ => (Not init %=> c)) In this expressionplusMod2N is a function that is de-
[(quot %= (## ("1))), fined to have the exact same semantics as (signed) addition
(quot %= (## 0)), on M-bit, two’s complement, bit-vectors. This property will
(quot %= (## 1))]) greatly simplify the next-lower refinement step.

The abstraction mapping betwesnintDivider and
srtDivider divides therem, divisor anddividend

=> 0p= i icati
The operator86=> %= and##, denote implication, test for variables ofrtintDivider by 21, and directly maps

equality, and construction of a constant in the object logic

The distinct symbols allow the user to use both the built-inaII othervanab_le_s to thewcounte_rpar'srtDNlder (vari-
ML operators and the operators in the object logic when con-ables ofsrtintDivider are primed).
structing a proof. TacticaseSplit is the core tactic for rem — o(=M)pqn/
case splits, and is specialized into the case-split ovetiepto divisor <« 20-M)givisor’
digit using SML-level partial evaluation. dividend <« 20-M)3ividend’
The proof in figure 16 is written using the goal package; Amipin - quot « dividend’
this allows steps of this proof to be cut-and-pasted into an
interactive proof session. FunctidfACis part of the goal- count — count/
package and applies a given tactic to the current proof.state
FunctionmapTac applies a given tactickle to selected obli- In order to prove refinement, it is necessary to show that
gations of a proof state. For instance, the last proof step apthere are no overflows in the modutd* arithmetic performed
plies the arithmetic decision procedure to all obligatidghas by srtintDivider . However, this property is implied by

discharging all pending obligations. the invariants osrtDivider that were already used in the

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 19

(* proof for clminvAbsrem_lt_divisor *)
fun prfinvAbsrem_lIt_divisor ps = (
setGoal ps; setObl (Idx 0); (* set up goal package *)

tac setuplnv; (* apply the invariant-by-WP rule *)
tac caseQuot; (* case-split over quotient digit *)

(* split by transition and move guard to assumptions *)
TAC (mapTac (tryTac conjSplitAll) (Nms "_.case_quot"));
TAC (mapTac (tryTac impReduction) (Nms "_.case_quot"));

(* use the guard to simplify the case assumptions, and substi tute them
throughout the obligation, then simplify *)
TAC (mapTac (tryMapSeqg unCond (sANms "case_quot"))
(Nms "_.case_quot"));
TAC (mapTac (egRewrite (SANms "case_quot", sAll))
(Nms "_.case_quot"));
TAC (mapTac (simplfsAll thenTac liftifsAll thenTac
simpIntAll thenTac simpRatAll)
(Nms "_.case_quot"));

(* split obligations by invariant clause *)
TAC (mapTac (tryTac conjSplitAll) (Nms "_.case_quot"));

(* discharge obligations *)
TAC (mapTac linArith All);

getGoal())
Fig. 16.Proof for invariant (1)

functional correctness proof, plus an additional invariain the carry and save parts of the remainder are resolved by a
srtDivider which constrains the range of the current re- carry-ripple adder and fed to the quotient selection lotjie;
mainder, given that the current quotient has a particulaeva carry of the bottom bits does not need to be resolved.
Thus, applying theorem 2, we can prove refinement by show- Figure 17 shows the transitions of the quotient selection
ing that these invariants (after being subjected to theabst logic. CRASumBIt is a function that computes the value of
tion mappingA m:piv) together imply the refinement predi- bitb € {0,..., 3} of the output of the carry-ripple adder, de-
CaterrtIntDividerjAsrtDividerz- pending on the current remainder and previous quotient. digi
The proof that this implication indeed holds proceeds byDepending on these bits, the next quotientis setto 1, 0 or -1,
case-split over the value of the quotient digit, then reepim in two-bit signed integer representation.

non-trivial amount of rewriting with lemmas about the mawtul The abstraction mapping between the synchronous/bit-
2N operations, powers of two, etc., and then uses the decisiogector model and the synchronous/integer model is written
procedure for linear arithmetic to discharge obligations. in terms of a functiorbitVec2sIntN which interprets a

The amount of rewriting required made this proof one of vector of booleans as a signed integer in 2's complement rep-
the least automated of the entire verification; a certaimeieg resentation. This function is used to map the (M-bit) divi-

of automation was achieved using proof tactics that automatsor and (2-bit) quotient of the synchronous/bit-vector eiod

ically apply a set of lemmas as rewrite-rules. into the corresponding integer-subrange variables ofyhe s
chronous/integer model. Furthermore, the mapping forghe r
6.3 Synchronous/Bit-Vector Model mainder uses the signed mod®@d-arithmetic functions to

consolidate the carry and save portions of the remainder at
.) the bit-vector level into the remainder at the integer level
In the next refinement step, we further refine the data-path to) .
) . - In order to prove refinement between the two models, it
use a bit-vector representation for the divisor and cunrent . . .
i] : . needs to be shown that for each quotient digit choice of the
mainder: In the synchronous/bit-vector model, the rematind | . . .
bit-vector model, an equivalent choice can be made by the

is maintained in carry-save representation. Furtherntbee, . . ; .
next quotient digit is computed deterministically basedhan h|gher-le_ve| model. More premsely, this requires th_atqhe- .
tient choice made by the bit-vector model falls within a cegi

top four bits of the carry-save adder. Only the top four bits o that allows the integer model to make a consistent choice.

2 \We also need to show that the invariants involved are in fafettg prop- NOt? that for a given current remainder and qUOtiem digit,
erties, which is trivial. the integer model may have more than one choice for the next

20 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

QSL : QSLC = (* CELL(outquotient: Word2; sum, carry: WordN;
quotient: Word2; divisor: WordN); *)
TYPE bFn = FUNCTION(b:INTEGER): BOOLEAN;
STATIC
cra : bFn = BEGIN
CRASumBit(carry, sum, divisor, quotient, b)

END;
BEGIN
<< outquotient(0) := (NOT cra(2))
OR (cra(2) AND (NOT (cra(1) AND cra(0)))) >>
* << outquotient(l) = (cra(2) AND (NOT (cra(l) AND cra(0))))
OR ((NOT cra(2)) AND cra(3) AND cra(l) AND cra(0)) >>
END;
Fig. 17.Quotient Selection in Bit-Vector Model
quotient digit; all that is required for the implementatisrio tac caseQuot;
choose a quotient digit that is consistent withe of these
choices. (* re-write with quotient digit & simplify *)
Similar to the previous refinement step, the refinement ~ TAC (mapTac .))
predicate is implied by safety properties inherited frora th ((splitAnt (sANm “case_guot"))

thenTac (eqRewrite
(sANms "case_quot", sAll))
thenTac simplfsAll)
(Nms "_.case_quot"));

synchronous/integer model, which were in turn inheritedr
the top-level specification. This allows us again to prove re
finement without directly establishing invariants of theaslyronous/bit-
vector model. The inherited properties establish conssai

on the possible combinations of values of the divider, arre (* discharge the cases *)
partial remainder and current quotient digit at each iterat TAC (mapTac dischBV All);
One such property states that if the current quotient iiel t
the remainder cannot be positive. This is straightforward t
observe, and prove, at the functional level; figure 15 show

that the transition that sets the quotient to -1 is enablégdibn ial inder. Using th i | ted b
the next remainder is non-positive. Directly formulatingla lal remainder. Lsing the counter-examples generated by ou
decision procedures, we identified the cause. As previously

roving this property at the level of detail provided by the .~ X
Eit-vec?or-levpel n?odgl would have been mufh more ted%ous. indicated, we reconstructed our models from published de-

The proof that the inherited safety properties imply thescnp'uons [50,51]. Based on our interpretation of theseses,

refinement predicate requires reasoning about bit-veoters We_ortﬁglrsall)t; des(ljgned :Ee d|\g$er W'th.a ?uogznt-sslent|
terpreted as signed integers, and operations thereon. A hidOgIC atis based on a three-bit carty-ripple adder. Ha@mev

degree of automation for this proof step is achieved by using d_omg S(t) causes ?n mcorref;:t qufo:;}ent ch0|c_e L:ndii;_ertaln
BDD-based rewrite rule for bit-vector arithmetic. This pfo cireumstance involving overtiow ot In€ carry=rippie acolt

rule ‘interprets’ the functiomitVec2sIntN as well as the ?/VetrFOQ|f|ed ;he de_:gdn_to usei.a fo:ghvt\)/'t in the ?huotlertl)tl S?'
modulo2® operations such gdusMod2N and rewrites ex- ectlogic as described In section 4.2, We were then able to

pressions written in terms of these functions into an equivap.row.a refmement fqr -the moq|f|ed desgn. Later on, commu-
lent boolean expression, represented as a BDD. nication with the original designer confirmed that our aliti

Using this decision procedure, the refinement proof is Ver)llmplernentatlon was mc_:omplete. Al_though we did notfind an
concise. After case splitting over the value of the quotiente!Tor in the actual design, our verification effort reveated
digit, each of these cases is automatically discharged ey thPlace where the published documentation for the design was

When we first attempted this proof, we discovered quo-
éient selections that could lead to a violation on the claafse
the word-level invariant that bounds the magnitude of thre pa

following proof tactic: unclear.
val dischBV = rewriteBVAIl
thenTac liftifsAll 6.4 Speed-Independent/Bit-Vector Model
thenTac rewriteBVAII
thenTac predCalcDisch; In the following two refinement steps, we focus on the control

This tactic first applies the bit-vector rewrite procedure, logic of the design, while the data-path remains unchanged
then lifts If expressions, applies the rewrite procedur@rag (i.e., the next two levels use exactly the same representati
and then uses the BDD-based decision procedure for propand computation for the current remainder and quotient digi
sitional logic to show that the resulting obligation is a-tau as the synchronous/bit-vector model).
tology. Using this tactic, the complete proof can be written | the first of the two refinement steps, the synchronous/bit-
as vector model is refined into the speed-independent/bitevec

(* split cases over quotient digit *) model. Instead of computing a new remainder and quotient

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 21

Process: ProcessCell = (* CELL(STATIC stage: INTEGER; pb, q : ABool; sum,carry: AWordN;
cpaSum: AWordN; quotient: AWordN; divisor: WordN); *)
STATIC
prev: INTEGER = (stage+2) MOD 3;
next: INTEGER = (stage+l) MOD 3;
me: INTEGER = stage;
BEGIN
(* if successor stage has finished eval and is holding the out put,
we can start precharging *)
<< pb(next) AND q(next) AND pb(me) -> pb(me) := FALSE >>
* ClearStage(me, sum, carry, cpaSum, quotient)

(* if we're done precharging, we can drop the done signal *)
I << NOT pb(me) AND g(me) -> g(me) := FALSE >>

(* enable evaluation, if the successor has started precharg ing *)
| << NOT pb(next) AND NOT pb(me) -> pb(me) := TRUE >>

(* when successor has finished precharging, we can output th e next quotient *)
I << pb(me) AND (NOT g(next)) AND NOT g(me) -> g(me) := TRUE >>
* Divide(me, prev, sum, carry, cpaSum, quotient, divisor)
END;

Fig. 18.Control Logic of Speed-Independent/Bit-Vector Model

digit in every iteration, this model mimics the flow of con- pletion signalspb(:) andq(i), respectively. For instance, if
trol and data of the implementation: There are three ‘stagespb(i) = true andq(i) = false, then stage is in evaluation
which cycle through states corresponding to the prechargenode.

evaluate and hold phases of the implementation stages. When Figure 19 illustrates the flow of control as governed by
a stage is precharging, all of its outputs and internal $ggna the speed-independent protocol. The upper line of three cha
are forced to empty values. When a stage is evaluating, iaicters in each state label gives the value (high or low) of
computes new valid (i.e. non-empty) values for its outputspb(0) , pb(1) , andpb(2) . The lower line gives the state
based on the values of its inputs. When a stage is holding, itef the outputs of stages 0, 1, and 2 (empty or valid).

outputs retain the values from the preceding evaluate phase The actual computation of the next quotient is performed
a holding stage provides stable inputs to its successorrwhicby ST cell Divide ; it is identical to the computation per-
is evaluating. formed by the data-path of the synchronous/bit-vector pro-

Because the stages of the divider are connected in a ringram (in fact, both programs impdbivide from the same
one might expect to find cyclic dependencies on data values> T source module). CeClearStage mimics the effect of
A fundamental safety property of the divider design is that a Pre-charging a stage by forcing all outputs to a known value
all times, at least one stage is in the precharge state. Becau(in this case all zeros). This substantially simplifies tbe-c
the signals of this stage are forced to empty values regardle Struction of an abstraction mapping during the last refimgme
of the values of the inputs, the precharge stage provides a c§tep to the transistor-level implementation.

in the data-value dependency graph. This breaking of cyclic ~ Intuitively, the abstraction mapping from the speed-
dependencies greatly simplifies analysis of the divider. independent model to the synchronous one needs to track the

| circular flow of data through the ring formed by the three

At this level of the refinement hierarchy, we model al ; . : ;
communication in the control logic and the data path as beStages, and pick the values of the quotient and partial remal

ing speed-independent. This means that the computation thger out of the stag_e that currently hOId.S valid valugs on its
is eventually performed is independent of the delays of thePutputs. The mapping is constructed using two predicates,
components. Speed independence is a safety property [29]:
there must never be two transitions simultaneously enabled
such that one can modify the value of a variable read by the
other. By using a speed-independent model at this level of
the hierarchy, we establish important invariants withdet t pregicateholdModeP holds for a stage that is in hold
complications that arise when reasoning about timed modelsyoge. However, the speed-independent protocol allows a
Figure 18 shows the ST cell that implements the controlstate where two successive stages both sdtisigModeP .

of the speed-independent/bit-vector model. This cell is in In this case, the first stage is enabled to begin precharging
stantiated once for each of the three stages. The conttel staand may destroy its outputs at any time. Therefore, predi-
of a stagei is determined by the ‘precharge-bar’ and com- cateholdsDataP which characterizes the stage that holds

holdModeP(i) = pb(i) A q(i)
holdsDataP(i) = holdModeP(i)
A "holdModeP((i + 1) mod3)

22 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

stage O evaluate: stage 1 evaluate: stage 2 evaluate: pb(zw Pb<0>¢ pb(l)J/
a()f a() a@y

stage 2
pre—
charge

q2)|

stage 0
pre—

stage 1
pre—
charge

q(b)}

charge

q(0)}

stage 1
evaluate

q(h}

stage 0
evaluate

q(0)}

Fig. 20.A Timed Implementation

Fig. 19. Speed-Independent Protocol

bounds on delays (i.e. time may not progress beyond the max-

))]) imum delay for a pending action).

the current quotient and partial remainder requires thesela Atechnical issue that must be addressed is that of “Zendness

“holdModeP((i + 1)mod3)._ ThIS ensures _that_ the values are (see [3)). In particular, from any reachable state, the rode

taken from the stage that is indeed holding its outputs whiley, st admit an execution where time advances without bound.

its successor is evaluating. _ _ For models such as those presented in this paper, this pyoper
The abstraction mapping itself is then written as a casexan pe established syntactically: (1) the model has a fiatte s

statement which maps the out_puts of_ the stage that satisfigs possible upper bounds for time; (2) when any bound is ac-
holdsDataP to the corresponding variables of the synchro- e there is an enabled transition that can be performed to

nous model. . . _ remove the bound; (3) there is a constant; 0 such that
Proving refinement entails showing that the speed-indegefe, any upper bound becomes active, it is for a time at least

control protocol works correctly, and that the stage id&ti . ime units in the future. Currently, we have been satisfied
by holdsDataP is mdt_egd the one_that hoI_ds the correct val- yitn verifying these properties by inspection of the pragra
ues for the quotient digit and partial remainder of the auire |, hrinciple, these tests could be automated, but we have not
iteration of the SRT algorithm. Note that the expressioas th geen 3 need to do so.

actually compute these values are identical in both program In the timed/bit-vector model, the variablgis(i) andq (i)
Therefore, discharging obligations that state the eqen@ 516 records with two components. The first component,

of the computations performed by both programs is trivial. pqds the actual value, while the secondnaintains the time
Correct operation of the speed-independent control is €s5¢ \which the variable was last updated.

tablished by way of an invariant that enumerates reachable The clauseNOT q(next) of the guard for the evaluate
control states as depicted in figure 19. Since there are @nly 1action that asserts that the successor stage is done gyechar
such states, the invariant was easily formulated. Proviag t ing is replaced by a clause that states that the succesger sta
this invariant as well as the refinement predicate are safetystarted precharging sufficiently far in the past. Thus, #s¢ |
properties was then done completely automatically usieg th transition in figure 18 is replaced by

BDD-based decision procedure for propositional logic. << pb(me).v

AND (tau >= pb(me).t + MinEvalTime)

6.5 Timed/Bit-Vector Model AND NOT g(me).v
-> g(me).v, q(me).t := TRUE, tau >>
* Divide(me, prev, sum, carry, cpasum,

In the speed-independent model, the precharge contra logi quotient, divisor)

performs an explicit check to ensure that stage has fin-
ished precharging before staigesets its outputs. This corre- MinEvalTime is a constant that provides a lower bound
sponds to the claugeOT q(next) in the guard of the last 0N the time a stage takes to compute a new quotient.
transition in figure 18. In the timed model, the control logic ~ Inaddition, an upper bound on the time taken to precharge
only tests the completion of evaluation, and timing boundsa stage is asserted by a protocol

are used to ensure that 'Fhe precharging in stafje com- - Pre{pb(me).v} A Pre{q(me).v}

pletes before the evaluation in staigeThis corresponds to .

- - R ;) . = Post{tau} < Post{pb(me).t} + MaxPrechargeTime
Williams’ first optimization in the design of the chip, as-dis
cussed in section 4.4. Figure 20 depicts the correspondinBecall that a protocol is a predicate that defines a relation
state transition diagram. from states to states which poses a constraint on allowtsl sta

We use the approach of [3] to model time: a real-valuedtransitions. ThePre and Post attributes of the state variables
variabletau is added to the program to model the currentare used to distinguish between variables in the pre- and the
time, transition guards are strengthened to express loseerds post-state of the environment action.
on delays, and an action for advancing time is defined in The above protocol states that whenever the second tran-
the form of an environment protocol so as to observe uppesition of figure 18 (whose execution marks the end of the

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 23

precharge phase of a stage) is enabled, time has not pro- Recall the AND-OR gate from figure 11 in section 4.3.
gressed more thaklaxPrechargeTime time units since This circuit can be modeled in ST by the five transitions be-
precharging has begun. In other words, precharging nevdow:
takes longer thaMaxPrechargeTime

The abstraction mapping from the timed/bit-vector mo- I
del to the speed-independent/bit-vector one is simple: The
.v.components of the timed variables are mapped to their
counterparts in the higher-level modly and thet com- I
ponents are dropped, and all other variables are mapped di- I
rectly.

To prove refinement between the two models, it is nec-
essary to show that whenever the evaluate transition of the I
timed model is enabled, so is the corresponding transition o
the synchronous model. This corresponds to showing that foT his example illustrated the design of a particular logaya
each stagene eration. Other operations are implemented in a similar man-
ner by substituting appropriate pull-down networks for the
ones used here. Networks of logical elements are modeled as
the asynchronous combination of the corresponding transi-

< —pb — y.T := FALSE >
< pb A @T A (b.T V c.F))
— y.T := TRUE
>>
< —pb — y.F ;= FALSE >
< pb A (@aF Vv (b.F A cT))
— y.F := TRUE
>>
< y.empty := NOT (y.T or y.F) >>

pb(me).v A tau > pb(me).t + MinEvalTime A "q(me).v
= "q(next).v

is a safety property of the timed model. tions. . . .
Using the assumption A key feature of this approach is that the topologies of the
pull-down networks for signalg.T andy.F are encoded in
MaxPrechargeTime < MinEvalTime the guards for the transitions that set these signalROE

)) _ Because the syntactic structure of the program for the ST mo-
we can establish and prove an invariant that supports theaboye| is available in the object logic, it is straightforwacdim-

safety property, as well as the refinement predicate, arél thuy e ment inference rules that operate on syntactic enceding
prove refinement. This invariant enumerates the reachable ¢ g, as this encoding of the transistor-level netlist.

trol states shown in figure 20. Since there are only 9 such 14 egtaplish that the transistor-level model implements
states, the invariant was easily formulated. The proofs fogye timed/bit-vector model, two issues have to be addressed
both the invariant and for refinement are again straightforrist the dual-rail encoded signals of the transistoellevo-
ward; the obligations are first splitinto a separate oblé@& e must be mapped to the bit-vectors of the timed divider,
for each transition, which are then automatically discBerg 4nq it needs to be shown that the computation performed by
by the decision procedure for linear inequalities with lBaol ¢ ransistor-level model is consistent with the one edrri

connectives. _ _ out by the bit-vector models. Second, in the transistoellev
In principle, we could have integrated a timed automatamqqe| only the quotient digit output is used to determine if a
tool such as Kronos [53], Uppaal [28], or ATACS [5], into 0ur gaqe has finished evaluation. It therefore needs to be shown

tool. Although our goal is to make such integration as €asynat the quotient digit of a stage becomes valid only after
as possible, it would still have required some effort, mainl 51 gther outputs of a stage are valid. This corresponds to

to define the judgements of these tools in the object logiqyjjiams’ second optimization as mentioned in section 4.4.
(roughlywp semantics) for ST. On the other hand, the timed

system for this proof has a very small number of states, an
the required invariant was nearly obvious. This shows one o

the strengths of our refinement approach: invariants are OfThe first issue is addressed by defining an appropriate ab-
ten identified and verified at a high level of abstraction veher straction mapping between the dual-rail encoded signals of

they are free from tedious, “oookkeeping” clutter. The n€C-ye jmplementation and the corresponding binary variables
essary bopkkeepmg _ofter_1 becomes implicit in the abstracyy yhe pit.vector level. There are two aspects to this abstra
tion mappings requiring little or no user effort. Of course, i, mapping: First, we need to map the four-valued dudl-rai

if we found ourselves frequently constructing timing irvar .oqas to binary values. We use the mapping characterized by
ants, then the effort to integrate a timed automata tool imothe following table:

our framework could be justified.

.6.1 Abstraction Mapping

.FyT)y
6.6 Transistor-Level Implementation (falsefalse)| false

(falsetrue)| true
The actual implementation of the divider has been designed (true ,falsg| false
in self-timed precharged logic using dual-rail encodecdat (true ,true)| true

values as described in section 4.3. We used ST to model logic
elements implemented in precharged logic; the following ex This mapping mapséy.F,y.T) to y.F. Note that the tuple
ample illustrates our modeling approach. (true, true) is an illegal dual-rail value and as such its map-

24 C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

ping is irrelevant. Furthermore, an empty dual-rail value is speed-independent/
mapped tdalse Since the outputs of a bit-vector-model stage ‘ abstract dual-ral
are set to all-false-vectors by céllearStage during its R }reﬁnemem
‘precharge’ transition (see figure 18), the result of pregha timed/

ing a transistor-level stage will be consistent under this a b ! abstract dual-rail

)
straction mapping. e

The second aspect of the abstraction mapping relates to timed transistor
the asynchronous update of the individual output signals of
a stage at the transistor level: During the evaluation phase Fig. 21.Side Hierarchy

some dual-rail outputs of a stage may already carry valid val
ues, while others are still empty. In the bit-vector impleme

tation however, all the outputs of a stage are updated in 0n@sing a complicated algorithm for timing analysis, we used a
atomic action. Thus, the abstraction mapping must be congimple algorithm augmented by the deductive capabilities o
structed in a way that ensures that a stage’s outputs are onfye theorem prover as directed by the user. Details are pre-
observed when they are meaningful, i.e. when the stage hagnted in [34]. The timing analysis procedure is only aplic
finished evaluating. This can be accomplished by defining thgyje under certain assumptions, both of static (e.g., théshet
abstraction mapping such that a stage’s outputs are mappefyst be acyclic) and dynamic nature (e.g., the netlist'stsp
under the dual-rail-to-binary mapping only when the stagemyst be stable and valid during evaluation).

satisfies the predicateoldModeP , and are mapped false We encapsulated this timing analysis procedure as a proof

otherwise. rule which introduces the established timing bounds in the
form of a safety property. At the same time this rule syntac-

6.6.2 Timing Analysis tically verifies the static assumptions and introducesgabli

tions corresponding to the dynamic assumptions, agairein th

Th(_e implemen.tation does not include completion detectiorym of safety properties. Furthermore, the rule extraiuts t
logic to determine when all of a stage’s outputs have assumeg, cionality of the netlist in the form of Boolean exprasss

a valid dual-rail value. Instead, correct operation restth@ (represented as BDDs) for each output of the netlist as a func
assumption that the output mg_nals fo_r the partlal_remamdetion of its primary inputs. This provides seamless integrat
are always set before the quotient digit output. This assumpyt timing analysis and functional extraction into the deiiliec
tion is based on the observation that the circuitry for the-qu . ofinement argument.

tientdigit (a carry-ripple adder and the quotient-setattogic) In the verification of the divider, we analyze the transi-

is sufficiently many levels ‘deeper’ than the logic for the re (5 for the datapath of a single stage. The user specifies th
mainder (a carry-save adder). _ _ transitions for one stage, and the netlist is extractedasynt
Proving refinement between the timed/bit-vector modelijcq|ly from the ST source code. The required static condi-
and the transistor-level implementation requires showiag tjons are verified automatically from the netlist. Then, éow
this is indeed the case, and furthermore that the impleyny ypper bounds on the signal arrival times for the stage’s
mentation satisfies the timing bounMsnEvalTime and o1uts are derived, and the required dynamic conditioas ar
MaxPrechargeTime on evaluation and precharge time jnyoquced as new proof obligations. We describe the verifi-

stipulated by the timed/bit-vector model. _ cation of these conditions in the next section.
Using either state-space exploration or deductive reason-

ing to establish such timing bounds as safety propertidseof t 6.6.3 Side Hierarch
transistor-level model is impractical. Instead, we make us y

of the observation that the circuitry of each stage forms anrpe safety properties established by the above proof rele ar
acyclic netlist and is as such subject to well-understood ti g ficient to discharge the refinement predicate between the

ing analysis techniques. _ timed/bit-vector and the transistor-level models. It réma
We implemented a timing analysis procedure that extract§g nrove that the assumptions of the timing analysis rule are

a netlist from an ST program written in the style introduced gayisfied. However, the safety properties inherited from th
above, and traverses this netlist to establish bounds on thg,aq/pit-vector model are not strong enough to discharge
arrival times of signals at the netlist's outputs, giverhalr ;s gpligation, because these properties rest on the aorre
t|mes atthe mput_s..The algorithm implements the 5|mpllg-tec transitioning between empty and valid dual-rail valuegyin
nique of .determlmng the shortest and Iongest. paths in the,ation which is not present at the bit-vector level.
acyclic signal-dependency graph by a depth first traversal. 14 ayoid proving these safety properties directly at the
This is by no means the most sophisticated possible approaghpjementation level (which would face similar challenges
possible for timing verification. The simplicity of this &g 55 proving the refinement predicate directly), we introduce
rithm made it easy to implement, unlikely to contain any 3 gige hierarchy of models that were designed specifically to
bugs, and is adequate for verifying the divider. Rather tharn, o\ the inheritance of said safety properties from them.

31t is a corollary of the safety-properties that we establish the This side hierarchy, shown n figure 21, consists of
transistor-level model that invalid dual-rail codes caweneccur. two models, referred to as timed/abstract and speed-

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification 25

independent/abstract. Both models have the same timed araf the transistor-level implementation through a serieseef
speed-independent control transitions as the correspgndi finement proofs. Safety-properties proven at the highest,le
timed/bit-vector and speed-independent/bit-vector rneode in particular correct division, are propagated down thercha
However, instead of the bit-vector data-path, these modelsf refinements and are thus established for the implementa-
contain an abstraction of the transistor-level data-plith. tion. The proof obligations arising from the safety propert
stead of actually computing a remainder and quotient digitand refinement proofs varied widely in nature, from arith-
this abstraction consists of only the dual-rail encodeguotst metic obligations at the algorithmic level to timing proper

of a stage, which are non-deterministically set to an ahjtr ties at the transistor level. Although there have been many
valid value during evaluation. The motivation for thisabhst ~ published verifications of dividers, we believe that our kvor
tion is straightforward: the actual datapath computesdin, is distinguished by spanning the complete design hierarchy
an operation that cannot be represented with BDDs and feaDomain-specific proof rules such as the timing-verification
sible amounts of memory. The non-deterministic abstractio procedure played a crucial role in achieving this.

represents a datapath that observes the same self-timed pro

tocols as the actual divider, but for which the actual fumeti A key advantage of our refinement based approachiis that

alwe can use safety properties that have been proven at higher
i o evels of abstraction when proving correctness at loweslev
computeanyfunction. The BDD for a completely unspecified A P 9 . ; .

S a consequence, we could formulate invariants in models

function is very compact, allowing efficient verification. ; . : . :
. where the needed invariants were fairly simple and obvious,
The models in the side-hierarchy contain enough detail tq

allow the formulation of the desired safety propertieshsas WlthOUt a myriad of "bookkeeping clauses thaF often clut-
) ; . . ter invariant based arguments. The proof of refinement then
the outputs of a stage are valid and remain unchanged whil

its predecessor is evaluating’. Basically, the side-h@na ecomes one of f|nd|_ng the appropriate abstraction mapping

L . ; L . after which the remaining proof obligations often amount to
mimics the main hierarchy, using dual-rail signals instead tautologies that can be discharged by decision procedaores f
bit-vectors, and leaving the datapath functions unspekifie

Thus, the speed-independent, abstract dual-rail modé¢hkas boolean fprmulas and I|ne_ar 'T“?q“a"“es- We note that thg
. . . : bookkeeping clauses are implicitly present in the composi-
same sequencing of precharging, evaluating, and holding o

erations that we established for the speed-independent mr%[_on of the abstract invariant with the abstraction funetio

. - he user never has to write or see these clauses.

del, bit-vector model. In fact, the proofs are very similada

we used much of the original proof for this version. Having A goal in using domain-specific rules is to make formal

established key safety properties for the speed-indempgnde verification accessible to a designer who is familiar wit tr

abstract dual-rail model, we propagate them downward uselitional timing verifiers, model checkers, etc. To this end,

ing refinement and use them to establish the required dytried to develop a proof that relies more on designer insight

namic properties of the timed, transistor-level model.sThi than on subtleties of mathematical logic. Although we velie

discharges the side-obligations generated by the timimg ve that we have made significant progress toward this goal, we

ification procedure and allows us to establish that the timedreadily admit that we have not yet achieved it. In particular

transistor-level model is a valid refinement of the timed,, bi a solid understanding of rewriting techniques was needed to

level model. formulate the proof that the integer model implements the
rational model. Likewise, our design of the side-hierarchy
was motivated by an understanding of how bit-vector func-

7 Conclusions tions are represented by BDDs. We see our current work as a
step towards making formal techniques accessible to a wider

We have demonstrated an approach to the verification of hard@nge of designers.

ware designs that combines deductive reasoning with algo-

rithmic decision procedures. Like theorem provers such as

HOL, Isabelle or PVS, our tool employs the notion of proof

states, to which a sequence of inference rules and decisioAcknowledgments

procedures is applied to form a proof. The most important

distinction between our tool and more traditional provers i

that the set of available inference rules and decision proce

dures is not fixed, but may be extended with domain-specifidMe would like to thank Alan Hu for many helpful discus-

rules. This permits reasoning that would be unacceptalsiyco sions on the divider verification. Our thanks to Ted Williams

to formalize rigorously in logic to be introduced into a cor- who explained many details of his design to one of the au-

rectness argument in a controlled manner. thors several years ago. Thanks to Andrew Appel and Lorenz
We have demonstrated the practical applicability of ourHuelsbergen for answering our questions on integrating the

approach by carrying out a top-to-bottom verification of a CUDD package into SML. Michael Gordon provided many

non-trivial hardware design, a self-timed implementatdbn helpful comments on an earlier version of this paper. Fnall

SRT division. Our verification connects a high-level speci- we would like to thank the anonymous referees for their care-

fication of the SRT division algorithm with a formalization ful and constructive feedback.

26
References 18.
n 19.
1. Mark Aagaard and Carl-Johan H. Seger. The formal verifinat

10.

11.

12.

13.

14.

15.

16.

17.

. Andrew W. Appel and David B. MacQueen.

. R.S. Boyer and J.S. Moore.
into heuristic theorem provers: a case study of linear arith 2g.

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-Weigtamework for Hardware Verification

of a pipelined double-precision IEEE floating-point muigp
In Int. Conf. on Computer-Aided Design, ICCAD ;9fages 7—
10, November 1995.

. Martin Abadi and Leslie Lamport. The existence of refieatm

mappings.Theoretical Computer Sciencg&2(2):253-284, May
1991.

. Martin Abadi and Leslie Lamport. An old-fashioned recip 51

for real time. In J.W. de Bakker et al., editoRroceedings of
the REX Workshop, “Real-Time: Theory in Practic8pringer,
1992. LNCS 600.

of New Jersey. Ir8rd Int. Symp. on Prog. Lang. Implement.
and Logic Program.number 528 in Lect. Notes Comput. Sci.,
pages 1-13. Springer-Verlag, August 1991.

. W. Belluomini, C. J. Myers, and H. P. Hofstee. Verification 53

of delayed-reset domino circuits using ATACS. Rroc. Inter-
national Symposium on Advanced Research in Asynchronous
Circuits and Systemgages 3—12, April 1999.

. N. Bjarner, A. Browne, E. Chang, M. Colén, A. Kapur,

Z. Manna, H.B. Sipma, and T.E. Uribe. STeP: Deductive-
algorithmic verification of reactive and real-time systems

Number 1102 in Lect. Notes Comput. Sci., pages 415-418.55

Springer-Verlag, August 1996.

. Manuel Blum and Hal Wasserman. Reflections on the pentiunpg.

division bug.|[EEE Trans. Comput45(4):385-393, April 1996.

. Richard Boulton, Andrew Gordon, Mike Gordon, John Harri-
son, John Herbert, and John Van Tassel. Experience with ems7.

bedding hardware description languages in HOL. In V. Stavri
dou, T.F. Melham, and R.T. Boute, editodst Int. Conf. on
Theorem Provers in Circuit Design, TPCD '92ages 129-156.
North Holland, June 1992.

Integrating decision proaegur

metic. Technical Report ICSA-CMP-44, Institute for Com-
puting Science and Computer Applications, The Universfty o
Texas, Austin, January 1985.

R.S. Boyer and J.S. MoorA.Computational Logic Handbook
Academic Press, Boston, second edition, 1997.

Randal E. Bryant. Graph-based algorithms for booleaction
manipulation.|[EEE Trans. ComputC-35(8):677-691, August
1986.

Randal E. Bryant. Graph-based algorithms for Booleawe-fu
tion manipulation. IEEE Trans. Comput.C-35(8):677—691,
August 1986.

J.R. Burch, E.M. Clarke, et al. Symbolic model checkiog f
sequential circuit verificatiodEEE Trans. Comput. Aided Des.
Integr. Circuits 13(4):401-424, April 1994.

Joseph J.F. Cavanadbigital computer arithmetic : design and
implementationMcGraw-Hill, New York, 1984.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstractionACM Trans. Program. Lang. Syst.
16(5):1512-1542, September 1994.

E.M. Clarke, S.M. German, and X. Zhao. Verifying the SRT
divsion algorithm using theorem proving techniques. Numbe
1102 in Lect. Notes Comput. Sci., pages 111-122. Springer-
Verlag, August 1996.

E.M. Clarke and X. Zhao. Analytica: a theorem prover for
MathematicaThe Journal of Mathemati¢a(1), 1993.

20.

Standard ML 5o

24.

28.

30.
31.
32.

33.

34.

35.

36.

37.

E.W. Dijkstra. A Discipline of Programming Prentice-Hall,
1976.

Michael Gordon. Why higher-order logic is a good formsali
for specifying and verifying hardware. In G. J. Milne and P. A
Subrahmanyam, editorBormal Aspects of VLSI Desigpages
153-177. Elsevier Science Publishers, 1985.

Michael J.C. Gordon. HOL: a proof generating system for
higher-order logic. In Graham Birtwistle and P.A. Subrah-
manyam, editorsyLSI| Specification, Verification and Synthe-
sis pages 74-128. Kluwer Academic Publishers, 1988.
Michael J.C. Gordon. Programming combinations of deduc
tion and bdd-based symbolic calculation.Rroceedings of the
Symposium in Celebration of the Work of Tony Ho&tevem-
ber 1999.

Michael J.C. Gordon. Reachability programming in hal@8
ing bdds. InProceedings of 13th International Conference on
Theorem Proving and Higher Order LogicSpringer, August
2000. LNCS 1869.

Cheryl Harkness and Elizabeth Wolf. Verifying the Sutnmi
bus converter protocols with symbolic model checkifRgtmal
Meth. System Desigr:83—-97, 1994.

Scott Hazelhurst and Carl-Johan H. Seger. A simple theo-
rem prover based on symbolic trajectory evaluation and BDDs
IEEE Trans. Comput. Aided Des. Integr. Circuif}(4):413—
422, April 1995.

Institute of Electrical and Electronic Engineers. |IE&&ndard
for binary floating point arithmetic, 1985. Std. 754-1985.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moor
Computer-Aided Reasoning: An Approadkluwer Academic
Publishers, 2000.

Leslie Lamportwin andsin: Predicate transformers for concur-
rency. ACM Trans. Program. Lang. Sysi.2(3):396-428, July
1990.

Kim G. Larsen, Paul Petterson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technol-
ogy Transfer1:134-152, 1997.

Trevor W.S. Lee, Mark R. Greenstreet, and Carl-JohaerSeg
Automatic verification of asynchronous circuitieEE Design
and Test12(1):24-31, Spring 1994.

R.E. Miller. Switching TheoryWiley, New York, 1965.

J.S. Moore. Personal communication, 1998.

J.S. Moore, T. Lynch, and M. Kaufmann. A mechani-
cally checked proof of the correctness of the kernel of the
amd5k86 floating-point division programlEEE Trans. Com-
put, 47(9):913-926, September 1998.

Greg Nelson and Derek C. Oppen. Simplification by cooper-
ating decision proceduresACM Trans. Program. Lang. Syst.
1(2):245-257, October 1979.

Tarik Ono-Tesfaye, Christoph Kern, and Mark R. Greeeastr
Verifying a self-timed divider. InProc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Sys-
tems IEEE Computer Society Press, April 1998.

S. Owre, J. Rushby, et al. Formal verification for faulétant
architectures: Prolegomena to the design of fiEE Transac-
tions on Software Engineering1(2):107-125, February 1995.
S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. Irllth Int. Conf. Automated Deduction
(CADE '92) number 607 in Lect. Notes Comput. Sci., pages
748-752. Springer-Verlag, 1992.

Lawrence C. Paulsonlsabelle: A Generic Theorem Prover
Number 828 in Lect. Notes Comput. Sci. Springer-Verlag,
Berlin, 1994.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

C. Kern, T. Ono-Tesfaye, M.R. Greenstreet: A Light-WeigtarRework for Hardware Verification

Lawrence C. PaulsoL for the working programmerCam-
bridge University Press, 2nd edition, 1996.

Amir Pnueli and Elad Shahar. A platform for combining uied
tive with algorithmic verification. Number 1102 in Lect. Nt
Comput. Sci., pages 184-195. Springer-Verlag, August 1996
F. Pong, A. Nowatzyk, G. Aybay, and M. Dubois. Verifying
distributed directory-based cache coherence protoc8lsnig

a case study. IRroc. EURO-Par '95 Parallel Processingum-
ber 966 in Lect. Notes Comput. Sci., pages 287—-300. Springer
Verlag, August 1995.

S. Rajan, N. Shankar, and M.K. Srivas. An integration of
model-checking with automated proof checking. 7th Inter-
national Conference on Computer Aided Verificatipages 84—
97, 1995.

H. Ruef3, N. Shankar, and M.K. Shrivas. Modular verifarati
of SRT division. Number 1102 in Lect. Notes Comput. Sci.,
pages 123-134. Springer-Verlag, August 1996.

Charles L. Seitz. System timing. Introduction to VLSI Sys-
tems(Carver Mead and Lynn Conway), chapter 7, pages 218—
262. Addison Wesley, 1979.

Robert E. Shostak. A practical decision procedure fith-ar
metic with function symbols.J. ACM 26(2):351-360, April
1979.

Robert E. Shostak. Deciding combinations of theode8CM
31(1):1-12, January 1984.

Fabio Somenzi. CUDD: CU Decision Diagram Package. URL:
http://bessie.colorado.edu/fabio/CUDD/cuddIntro.html.
Mandayam K. Srivas and Steven P. Miller. Applying formal
verification to the AAMP5 microprocessor: A case study in the
industrial use of formal methodormal Meth. System Design
8(2):153-188, March 1996.

Jegrgen StaunstrupA formal approach to hardware design
Kluwer Academic Publishers, Boston, 1994.

Neil H.E. Weste and K. EshragiaPRrinciples of CMOS VLSI
Design Addison-Wesley, 1993.

T. E. Williams, M. A. Horowitz, R. L. Alverson,and T. S . iYg.

A self-timed chip for division. InStanford Conference on Ad-
vanced Research in VLL§lages 75-96, March 1987.

Ted E. Williams. Self-timed rings and their applicationdi-
vision. Technical Report CSL-TR-91-482, Computer Systems
Lab, Dept. of EE, Stanford, May 1991.

Stephen WolfraniThe Mathematica BookCambridge Univer-
sity Press, 1996.

Sergio Yovine. Kronos: A verification tool for real-tinsgs-
tems. Software Tools for Technology Transfé(1/2), October
1997.

27

