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Abstract— This paper presents a smooth dynamical system
that implements a toggle flip-flop. The flip-flop is described
as a system of smooth, non-linear ODE’s. We identify a
period-2, invariant set of this system, and show that this
corresponds to the discrete state transitions of a discrete
model. We show that this behaviour is robust for a large
class of inputs and that these toggle elements can be com-
posed to implement a binary counter of any number of bits.

I. INTRODUCTION

High performance digital designs often require verify-
ing that a circuit as modeled by differential equations
(e.g. SPICE) implements a desired discrete operation. This
paper presents a simple dynamical system that implements
the behaviour of a toggle flip-flop. We use concepts from
dynamical systems theory to show that the ordinary dif-
ferential equation (ODE) model implements a discrete tog-
gle. The simple model that we present is mathematically
tractable and independent of any particular fabrication
technology. In [1], [2] similar methods were employed to
verify the CMOS toggle from [3].

Our toggle is modeled by a system of non-linear differen-
tial equations. The input to the toggle alternates between
high and low values, and we use the Brockett’s annulus
construction [4] to specify ranges for the high and low val-
ues of the signal as well as ranges for the rise and fall times.
We show that for all such inputs, there i1s an invariant set
with period twice that of the input signal that contains all
possible trajectories. Thus, the output alternates between
high and low values at half of the rate of the input.

In [4], Brockett presented smooth dynamical systems
that count and perform various other arithmetic and logi-
cal operations. Brockett’s counter represented the value of
the count by a variable whose value is proportional to the
count and therefore increases without bound. Our binary
counter construction more closely resembles the operation
of real digital circuits. Our toggle element has bounded
inputs and outputs, and we show that the output of our
toggle element satisfies the constraints for the input. Thus,
our toggle elements can be coupled in a chain to implement
a binary ripple counter. In dynamical systems terminology,
our system scales: by analysing a simple toggle element, we
can verify properties of a system of much higher dimension.
As in Brockett’s examples, our ODE model for the toggle
is infinitely differentiable.
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II. THE ToGGLE ELEMENT

We use a simple model where values near +1 represent
a logical true and values near —1 represent a logical false.

Our toggle is described by the ODE:

(14+0)(z—2)+ (1= 0)(—y — =)
(14+0)(x—y)+ (1 -0)(y —v°)

x =
' 1
where 6 is the input (i.e. “clock”) of the toggle and z and
y are the outputs. Toggle behaviour requires that = and y
change at half the rate of 8. As shown below, z changes
on falling edges on 6 and y changes on rising edges. This
gives rise to the desired toggle behaviour.

First, consider the case when § = +1. The model sim-
plifies to
2(x — %)
2z —y)

The system has stable equilibria at (z,y) = (1,1) and
(z,y) = (=1,—1), and a saddle point at (z,y) = (0,0).
The y-axis i1s the separator between the basins of attrac-
tion for the two stable equilibria. Likewise, when 8 = —1
the system has stable equilibria at (z,y) = (1,—1) and
(z,y) = (=1, 1) with basins of attraction separated by the
z-axis, and there is a saddle point at (z,y) = (0,0).

This attractor structure gives rise to the toggle behaviour
of the system. Consider an instant when § = 1 and
(z,y) is near (1,1). If § then transitions to —1, the point
(z,y) = (1, 1) is in the basin of attraction of (—1, 1) and will
asymptotically approach that point. Similar arguments for
further transitions of  suggest that trajectories traverse
the cycle depicted in figure 1. The points marked with &
and © are the attractors when § = +1 and # = —1 respec-
tively, and the saddle point is marked with ®. The trajec-
tory drawn shows the period-2 attractor when 6 = sin(t).
Figure 2 shows the same trajectory plotted as functions
of time. The requirement that the output of the toggle
must change at half the rate of the input is reflected by the
period-2 attractor of the continuous system.

Because we are interested in smooth models, we must
consider the behaviour of the toggle when 6 is between +1
and —1. The equilibrium points for the toggle can be deter-
mined by solving the polynomial equations for z = y = 0.
As shown in figure 3, the stable attractors move from (1, 1)
and (—1, —1) to the origin as # decreases from +1 to 1/1/5.
Likewise, as  continues to decrease from —1/\/5 to —1, the
stable attractors move away from the origin out to (1,—1)

and (—1,1). There are Hopf-bifurcations at = +1//5.
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Fig. 1. Phase portrait of the toggle

Fig. 2. Time waveforms of the toggle

For —1/v/5 < 6 < 1/4/5 all trajectories spiral toward
the origin. This can be seen by considering a “linearized”
version of the system:

i o=
j o=

(1+0)z+(1-0)(-y—=2) 3)
(1+60)(z—y)+(1 -0y

Solutions to the linearized system are ellipses with axes
along y = (/5 + 1)/2 and y = —z(+/5 — 1)/2. The flows
of the original system are always inward with respect to
these ellipses as shown in figure 4. This can be established
formally by showing that the derivative of the radius in the
elliptical coordinate system is always negative.

Toggle operation requires that 6 be a suitable function of
time. The analysis for fixed values of # provides an intuitive
model for a toggle with changing #. When @ is close to +1,
trajectories will approach either (1, 1) or (=1, —1). When
is close to —1, trajectories will approach (1, —1) or (-1, 1).
If the transitions between high and low values of # are fast
enough, then the system will exhibit toggle behaviour.

For example if § = sin(wt), then correct operation de-
pends on the value of w. As shown in figure 1, when
w = 1, trajectories visit the neighbourhoods of (1,1),
(-1,1), (—=1,-1), and (1, —1), but in counter-clockwise or-
der. Using AUTO [5] to generate a bifurcation diagram, we
observed a bifurcation between w = 0.241 and w = 0.242.
With w = 0.241, the “spiral” portion of each trajectory is
long enough that trajectories visit the four neighbourhoods
described above in clockwise order. There is another bifur-
cation between w = 3.876 and w = 3.877. With w > 3.877,
there is a single fixed-point attractor at the origin.
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Fig. 4. Flow when 6 = 0.2

III. BROCKETT’S ANNULUS

In the previous section, inputs of the toggle were con-
stant or sinusoidal. Of course, the signals occurring in
a real chip are much more complicated and can only be
approximated using such simple functions. To verify the
operation of the toggle for realistic inputs we need a way
to characterise entire classes of possible input functions.

We describe signals using Brockett’s annulus construc-
tion [4] as shown in figure 5. For a signal, ¢, the annulus
gives a relation that must hold between ¢ and its time
derivative, ¢. When ¢ is in region 1 of the annulus, its
value is constrained to lie between ¢y and ¢;,. These give
the minimum and maximum values for a logically low sig-
nal. Because the sign of ¢ is unconstrained in region 1,
¢ can remain low arbitrarily long. When the signal leaves
region 1, it must increase and enter region 2. In region 2,
the signal monotonically increases until it reaches region 3.
The minimum rise time corresponds to a trajectory that
follows the outer boundary of the ring, and the maximum
rise time corresponds to a trajectory along the inner bound-
ary. Region 3 corresponds to a logically high signal, and
region 4 describes a monotonically falling signal.

We add two non-geometric requirements to Brockett’s
constraints. First, Brockett’s construction allows a signal
to spend an arbitrarily small amount of time in the high or
low regions of the ring. Signals that “ricochet” off the high
or low region are unrepresentative of the signals that occur
in real circuits. Accordingly, we add explicit constraints for
minimum high and low times. Second, we require that any
valid signal has no last transition. This eliminates some
tedious, special cases in the analysis.
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Fig. 5. Brockett’s annulus

A Brockett annulus describes an infinite class of signals.
In the next section, we present a particular annulus and
show that our toggle operates correctly for any input sat-
isfying the constraints of this annulus. We show that the
output of the toggle satisfies the same annulus constraints
as we require of the inputs. Thus, an output of one tog-
gle can be used as an input to another. This justifies our
construction for a binary counter.

IV. VERIFICATION

To verify the toggle, we present a Brockett annulus and
show that for any input in this annulus, the toggle has an
invariant set with twice the period of this input. We then
show that the z and y outputs of the toggle satisfy the
constraints of the same Brockett annulus.

The derivative functions we consider are infinitely differ-
entiable; therefore, a trajectory is uniquely determined by
its initial point [6]. A set of points is an invariant set if
every trajectory that starts in the set remains in the set
forever. By analogy with the period of an attractor in a
non-autonomous system [7], we say that an invariant set, 7,
has period p with respect to some signal, ¢, if there exists
a constant ¢ such that:

1. The intersection of I with the ¢ = ¢ hyperplane con-

sists of 2p distinct regions.

2. There exists an ordering of these

regions, My, ..., Ms,_1 such that each trajectory in
I visits these regions cyclically in this order.
The ¢ = ¢ hyperplane separates the invariant set into 2p
distinct subsets. These subsets correspond to the discrete
states of a digital interpretation of the system.

To verify the toggle, we specify a Brockett annulus, B,
and show that there exists a period-2 invariant set such that
the outputs of the toggle satisfy B. Because the invariant
set is period-2, the system functions as a toggle. Because
the outputs of the toggle satisfy the constraints required
of the input, the toggles may be connected in a chain to
form a binary counter. This provides the framework for
verification.

The toggle from section IT does not satisfy these condi-
tions, and a slight modification was necessary. The problem
is that during any transition of 6, the output that is sup-
posed to retain its logical value during the transition will
dip slightly towards the origin. The dip is large enough to

preclude using the same Brockett annulus for # and z or
y. The solution is to map the input function to one with
shorter rise and fall times. In particular, we verified the
system:

tanh(4¢)
(14 0)(z—2°) + (1 = 0)(—y — =)
= (1+0)=—-y)+(1-0)(y—v*)

Where ¢ is the input to the toggle and z and y are the
outputs. The mapping f = tanh(4¢) can be thought of as a
simplistic model for a saturating amplifier with a maximum
gain of four.

We verified the toggle modeled by equation 4 using a
Brockett annulus whose boundaries are ellipses centered
on the origin and with axes parallel to the ¢ and ¢ axes.
The inner annulus has a ¢ radius of 0.6, and a ¢ radius
of 0.5. The outer annulus has a ¢ radius of 1.1, and a ¢
radius of 10.0. The minimum dwell times in the high and
low regions are both 2 time units. We will call an input
function valid if it satisfies these constraints.

The properties of the toggle can be verified starting
with a bounding box for the initial region and computing
bounding boxes as ¢ completes two cycles to determine the
bounding box at the end of two cycles. If the final bound-
ing box is contained in the initial box, then the union of
the boxes forms an invariant set. As this approach overes-
timates the reachable space, it 1s conservative: it can fail to
verify a correct system, but it will not falsely verify an in-
correct SyStem~ Let ¢mina ¢max, Lmin; Tmax; Ymin, and Ymax
define a bounding box in the obvious way. We note that z
is negative monotonic in y; for fixed z and y, # is linear in
f and therefore monotonicin ¢. To compute Z i, , the time
derivative of the left edge of the box, we compute the mini-
mum of & according to equation 4 at (@min, Tmin, Ymax) and
(#max; Tmin, Ymax). The computations of Zmax, Ymin, and
Ymax are similar. We obtain bounding boxes for the system
of equation 4 by integrating the equations for the deriva-
tives of the bounds of the bounding box using a fourth
order Runga-Kutta integrator [8].

To verify the existence of an invariant set, we chose an
initial region with ¢ in the logically low region of the Brock-
ett annulus, 0.85 <z < 1.02, and —1.02 < y < —0.9. Let
Qo denote this set of points. Using the methods described
above, it is straightforward to show that for Qg, Zmin > 0,
Zmax < 0, Ymin > 0, and Ymax < 0. Thus, for any valid
input function, trajectories will remain in @y as long as
¢ remains in the logically low region. When ¢ is in the
rising region of the annulus, we exploit the monotonicity
of ¢ and integrate the bounding box equations with re-
spect to ¢. For any valid input function, we have upper
and lower bounds for ¢ as a function of ¢. These al-
low us to convert time derivatives of the bounds of the
bounding box to derivatives with respect to ¢. Integrat-
ing in this fashion, we obtain zni, > 0.86, zmax < 1.02,
Ymin > —0.80, and ymax < 0.97 when ¢ enters the logical
high region. Any valid input function must remain in the
logically high region for at least two time units. Integrating
the bounds with respect to time for these two time units

(4)



Fig. 6. An invariant set for the toggle

yields zmin > 0.99, Zmax < 1, Ymin > 0.96, Ymax < 1. Let
Qf denote the set of points with z and y in these intervals
and ¢ in the logical high region. For all valid input func-
tions, any trajectory starting in Qg leads to a point in @y
by the time that ¢ leaves the logical high region. Further-
more, all such trajectories are contained in the union of the
bounding boxes determined by the integrations described
above. Let I be the set of points in this union of bounding
boxes.

The analysis is completed by noting the symmetry of
the toggle. The nextphase function rotates a set of points
90 degrees counter-clockwise and in negates the value of
¢; the allphases computes the union of nextphase over four
consecutive clock phases:

nextphase(Q)) =
allphases(Q)

{296 —vr)eQ}
Uiz nextphasek(Q)

Note that Qf C nextphase(Qo). Let I = allphases(ly). By
construction, trajectories starting in )y remain in I for-
ever. Thus, I is an invariant set. Also, note that for any

set @, nextphase4(Q) = @ which yields

allphases(Q)) = U,?:(Jnextphasek(Q) (6)

The set Iy is determined by numerical integration; after
which, equation 6 provides a simple way to determine I.
The rest of the verification is achieved by inspecting the set
I. As shown in figure 6, I intersects the ¢ = 0 plane in four
distinct regions, and all trajectories cycle through those
regions in the same order. Thus, 7 is period-2 with respect
to ¢. By computing bounds on z and g for the bounding
box obtained at each step of the integration, we can verify
that x and y also satisfy the Brockett constraints. If a
bounding box is particularly long in one dimension, we first
slice it into thinner slabs and check each slab separately.
Figure 7 shows z that and # (and by symmetry, y and y)
satisfy the Brockett constraints: the ellipses of the original
annulus are drawn, and the bounding region for (z, z) is
shaded. Finally, inspection of I shows that the minimum
dwell times are at least 4.1 time units, thus, the outputs
of the toggle satisfy all of the constraints required of the
inputs.
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Fig. 7. Toggle output satisfies Brockett annulus

V. CONCLUSIONS

We have presented a simple dynamical system that im-
plements the discrete behaviour of a toggle flip-flop. The
attractor structure of the model was explored. The model
is infinitely differentiable; thus, the toggle demonstrates
how a common digital behaviour can be obtained from
a completely smooth continuous system. Signal specifica-
tions and the mappings from continuous to discrete inter-
pretations were based on Brockett’s annulus construction.
Because the toggle’s outputs satisfy the constraints for the
inputs, toggle elements can be coupled in a chain to form a
binary counter. Our analysis for the simple toggle applies
to these counters with phase-spaces of arbitrarily high di-
mension.
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