Reachability Analysis Using Polygonal

Projections
Mark R. Greenstreet Tan Mitchell
Department of Computer Science Scientific Computing and

Computational Mathematics

University of British Columbia Stanford University
Vancouver, BC V6T 174 Stanford, CA 94305-9025
Canada USA
mrg@cs.ubc.ca mitchell@sccm.stanford.edu

Abstract. Coho is a reachability analysis tool for systems modeled by non-linear,
ordinary differential equations. Coho represents high-dimensional objects using pro-
jections onto planes corresponding to pairs of variables. This representation is com-
pact and allows efficient algorithms from computational geometry to be exploited
while also capturing dependencies in the behaviour of related variables. Reachabil-
ity is performed by integration where methods from linear programming and linear
systems theory are used to bound trajectories emanating from each face of the
object. This paper has two contributions: first, we describe the implementation of
Coho and, second, we present analysis results obtained by using Coho on several
simple models.

1 Overview

Reachability analysis is the basis for many verification tasks. This paper
addresses reachability for systems modeled by ordinary differential equations
(ODEs). In this context, the state of the system is a point in R¢, where d
is the dimension (i.e. number of variables) of the system. Given two regions,
A C B C RY, the reachability problem is to show that all trajectories that
start in A remain in B, either during some time interval, [0,?cpn4], or for all
time.

To verify a safety property, one must show that all trajectories are con-
tained in a region satisfying the property. Examples of safety properties in-
clude: aircraft are adequately separated [TPS97], an arbiter circuit never
asserts grants to both of its clients simultaneously [MG96], and the level of
water in a tank is in a specified interval[ACHt95]. To verify these proper-
ties, one can determine a region that contains all possible trajectories of the
system. If this region is contained in the region that satisfies the desired
property, then the safety property holds for the system. This paper presents
a method for constructing a region that contains all possible trajectories of
a system.

In this paper we describe a technique for reachability analysis of systems
modeled by ODEs. Such systems present two challenges. First, closed form
solutions exist only for special cases (e.g. linear models and a few others).

Mathematicians have proven enough negative results for closed form solutions
that it is clear that little progress can be made by strictly analytical means.
Thus, we must use approximation techniques (such as numerical integration)
to analyze real systems. With care, these techniques can be designed in a
way that ensures the approximations always lead to an over estimation of
the reachable space. Thus, our verification is sound—incorrect designs will
never be falsely verified, but we may fail to verify a correct system because
of our approximations.

The second challenge is that we are interested in systems with moderately
high dimensionality. The circuit models that motivate our work typically
have five to twenty variables. Algorithms to represent and manipulate general
d-dimensional polyhedra typically have time and space complexities with
exponents of d or d/2 [PS85]. Thus, we will consider a restricted class of
high-dimensional objects that can be efficiently represented and manipulated.

Projections

= N L/ 2

2 Reachable
Space
sy

Fig. 1. A three dimensional “projectahedron”

In [GM98] we presented the theory for an approach to reachability analysis
where high dimensional objects are represented by their projections onto
two dimensional subspaces with each projection corresponding to a pair of
variables. For example, figure 1 shows how a three-dimensional object (the
“anvil”) can be represented by its projection onto the zy, yz, and zz planes.
The high dimensional object is the largest set of points that satisfies the
constraints of each projection. We call objects that are represented by this
technique “projectahedra.”

Projectahedra offer several advantages. Because they are based on two-
dimensional polygons, they can be efficiently manipulated using well-known
algorithms from computational geometry [PS85]. Ignoring degeneracies, faces
of the object represented by a projectahedron correspond to edges of its

projection polygons. Our reachability analysis requires flows from each face to
be considered, and the projectahedron representation allows many operations
on faces to be carried out as simple operations on polygon edges.

We do not require the projection polygons to be convex; thus, non-convex,
high-dimensional objects can be represented by projectahedra. As is shown
in section 4, the reachable regions arising from ODE models are often highly
non-convex. However, even non-convex projections cannot represent all possi-
ble high-dimensional polyhedra. For example, projectahedra cannot represent
objects with indentations on their faces (i.e. a cube where some or all of the
faces have hemispherical concavities). Instead, such objects will be mapped
to projectahedra where their indentations are filled-in. Since we are only ver-
ifying safety properties, the resulting over approximation of the reachable
space does not compromise the soundness of our analysis.

Given an object represented by a projectahedron, we must determine
how this object evolves according to the ODE model for the system. As
this problem cannot be solved analytically for general models, we pursue a
numerical approach. We require the ODE model to have bounded derivatives.
This means that trajectories are continuous, and it is sufficient to consider the
set of points reachable from points on the boundary of the projectahedron.
Our algorithm approximates the non-linear model with a linear model and an
error bound. By constructing a separate approximation for each face at each
time step, the error bounds can be fairly tight. The face is then transformed
by the linear approximation and moved outward by the worst-case error. This
approach allows general models to be used. Currently, linearization is done
manually, and model generation requires significant effort.

This paper makes two contributions to the verification of systems with
ODE models. Section 3 describes Coho, our implementation of the techniques
mentioned above. For brevity, we focus on the top-level structure of the im-
plementation and describe a few of the “surprises” we encountered. Then
section 4 presents several examples where we have used Coho. We start with
the linear two- and three-dimensional models presented in [DM98]. We then
analyze two systems with non-linear models: a Van der Pol oscillator, and a
three-dimensional “play-doh™"” example, where the region is compressed in
one dimension while being stretched and folded along another.

2 Computing Reachability

Coho is based on the techniques for reachability presented in [GM98]. This
section presents a brief summary of this approach. Consider a general, ODE
model:

z = f(z) (1)

where & € R% Given Ag C R? such that ¢ € Ao, we are interested in an-
swering reachability questions such as: Given t € Rt find A; C R? such that

z(t) € A;. For general ODE models, closed form solutions are not possible.
Therefore, we do not hope to compute the smallest reachable set. Instead, we
want to compute a conservative projectahedron for A;. Our reachability com-
putation is an iterative, integration algorithm. We describe a single time-step
of this algorithm below.

Each edge of a projection polygon corresponds to a d — 1 dimensional
face of the projectahedron. At each step, we compute a conservative estimate
of the convex hull of this face, and then determine a new convex region
that contains any point reachable from this hull at the end of the time step.
We then project this hull back onto the basis for the projection polygon
corresponding to the face. This computation is performed for each edge of
the projection polygon to compute a bounding projection polygon at the end
of the time step. By updating each projection polygon in this manner, we
obtain a projectahedron that contains all points reachable at the end of the
time step.

To compute a conservative approximation of the convex hull of a face,
we intersect the constraints for the polygon edge with the constraints for the
convex hulls of each of the projection polygons. To compute the set of points
that are reachable from this hull, we approximate the model from equation 1
with the differential inclusion:

r€EH=r2cAv+b+U (2)

where H is the conservative approximation of the convex hull for the face,
A € RYx R?is a matrix, b € R is a vector, and U € (R x R)?is a hypercube
(i.e., the Cartesian product of d intervals). For the examples presented in this
paper, we compute A, b, and U by performing a power-series expansion about
a point near the center of H. Because H is convex, it can be represented by
a linear program, and we can use linear optimization techniques to obtain
fairly accurate approximations for f.
We now consider the inhomogeneous linear system

= Azr+ b+ u(t) (3)

where u is any function such that u(¢) € U. By chosing a worst-case u, we
obtain a conservative approximation of the reachable region. In our imple-
mentation, we approximate u with a linear bounds. This produces a linear
program for the approximation of the points reachable from the face, and
we obtain a projection of the face back to the coordinates of the projection
polygon from this linear program.

3 Implementation

At the top-level, Coho is divided into one component that performs numeric
computations and another that performs geometric operations. As shown in

Numeric Geometric
phase Projectagon phase

. (many polygons per projection) Polygon union
,:Advan]f:e time Reduce degree
oveface
Projectagon Compute hull

(one polygon and hull per projection)

Fig. 2. Top-level of Coho

figure 2, at each time step the numeric component inputs a projectahedron,
updates each face, and outputs a new projectahedron. In this process, each
edge of each projection polygon is transformed to a polygon that contains the
projection of the corresponding face at the end of the time step. The geomet-
ric component merges the polygons associated with a single projection, and
computes an approximation with fewer vertices. The geometric component
outputs the resulting polygon and its convex hull. This completes a single
step of the integration. Details of the algorithm are presented in [GM98].

3.1 Matlab and Java

The current version of Coho implements the numeric component in Mat-
lab [The92] and the geometric component in Java [AG96]. This approach
builds on the strengths of both environments. Matlab provides comprehen-
sive, optimized and well-tested implementations of linear programming, ma-
trix exponentiation, and other matrix operations—greatly simplifying the
implementation of the integrator. Furthermore, the interactive interface and
plotting capabilities facilitated the analysis and visualization of the systems
described in this paper.

Although Matlab currently provides a few simple geometric operations, its
capabilities are not sufficient for our purposes. Thus, we implemented a com-
putational geometry package in Java. With its type safety, garbage collection,
and object oriented abstractions, Java is much better suited for implement-
ing non-numeric algorithms than Matlab’s scripting language. These features
also gave Java a clear advantage over C or C++: the geometry package was
developed without the use of or need for a debugger; our experience suggests
that this would not have been possible in C or C++.

The geometric operations were encapsulated as a filter, taking one type
of projectahedron and returning a different format of a similar projectahe-
dron (see figure 2). This filter is a Matlab script that writes its parameter
projectahedron to a file, invokes the Java program as a shell command, and
reads the result from a second file.

We were initially concerned that the time to start the Java Virtual Ma-
chine (JVM) would be prohibitive. In practice, starting the JVM each time

step takes about as long as the numeric computations for the time step.
The time spent performing geometric operations is small by comparison. We
believe that the cost of the numeric operations is dominated by the time
spent solving the large number of linear optimization problems that occur
in our formulation. An implementation optimized for our application would
almost certainly result in much improved performance. Likewise, with some
programming effort we could change the interface between Matlab and Java
so that the JVM would be started only once. For the examples described in
this paper, the total elapsed time was a few seconds per time step running
on a 250 MHz UltraSparc 2 workstation with Matlab 5.1 and JDK 1.2-beta4.

3.2 Numerical computation

The numeric phase of a time step begins by loading a polygon and its con-
vex hull for each projection of the system. The convex hulls are then bloated
outward slightly for safety. Each projection’s bloated convex hull can be trans-
lated into a set of linear inequalities in the projection’s two coordinates. The
combination of all the projections’ linear inequalities describes a convex re-
gion containing the projectahedron.

At this point, the movement of each edge of each projection’s polygon can
be computed independently. Each edge represents a face of the projectahe-
dron, and the objective is to compute the furthest outward that points on the
face could move during a time step. For each face, the following computations
occur.

Restriction: The convex region computed from the convex hulls is further
restricted to a box around the edge in the coordinates of the edge by four
more linear inequalities. In the full dimensional space this is equivalent
to constructing a slab around the face being examined.

Linearize Model: A user supplied function computes a linearization of the
system derivatives which is valid over the slab. This model includes linear
and constant terms, and must give bounds on the error introduced by the
linearization within the slab. The user function has access to the slab’s
description in terms of the collection of linear inequalities computed in
the previous step. Typically, linear programs are run to find bounds on
each variable within the slab, from which the linearization and errors
computed.

Advance Time: The linear model is used to move the slab forward in
time—currently by matrix exponential, although future versions may use
better integration routines.

Map Extent: The slab’s end of step shape will still be described by a
collection of linear inequalities after time i1s advanced. Building a polygon
from these inequalities requires mapping out the region they contain. The
mapping is accomplished by running a series of linear programs on the
time advanced set of inequalities. Note that the slab may rotate during
the time step, so its projection may not be a simple rectangle.

Add Errors: So far, the slab’s movement is entirely controlled by the lin-
earized model. To treat the error, we add a constant derivative offset
within the error bounds throughout the time step, in such a way as to
bloat the slab’s projection outward as much as possible.

Each edge of each projection’s polygon therefore produces an “edge poly-
gon” at the end of the time step; this polygon contains the projection of all
points that could be reached from the corresponding face within the time
step. The union of all such polygons, and the region contained within that
union, is the projection of an over approximation of the projectahedron at
the end of the time step. Since the next time step must start with a single
polygon for each projection, the geometric filter i1s called at this point to
simplify the projectahedron ’s description.

3.3 Geometric computation

The input to the geometric phase is a list of edge polygons for each projection:
the union of these polygons contains the boundary of the new projection. The
resulting polygon may have many more edges than the polygon at the begin-
ning of the time step. To avoid unbounded growth in the number of polygon
edges, we conservatively reduce the vertex count. Finally, as projectahedra
evolve, degeneracies may occur in the projection polygons: edges may become
very short, or vertex angles may become highly acute or highly obtuse. In
fact, these degenaracies occur frequently when the projectahedron becomes
very narrow along one or more axes, which is typical when approaching an
attractor or similar phase space feature.

The five steps of the geometric phase are described below. The constant
€ 1s used to test for potential numerical degeneracies—the current implemen-
tation uses ¢ = 10712,

Short edge removal: If the length of an edge is less than e times the
distance from the origin of the endpoint furthest from the origin, then
one of the vertices i1s deleted. If only one vertex remains at the end of
this step, it is replaced by a square with edges of length 2e. If exactly two
vertices remain, the segment is replaced with a bounding rectangle whose
major axis is parallel to the segment and that encloses the segment by e.

Special case for highly acute vertices: Each edge polygons is convex.
If a vertex of one of these polygons is highly acute (angle less than ¢
radians), then the edge polygon must be very thin. Such polygons are
replaced by a bounding rectangle whose major axis is parallel to the
bisector of the angle and that encloses the original edge polygon by e.

Polygon merge: For each projection, the edge polygons are merged to
produce the boundary of the new projection polygon.

Topological simplification: Having computed the boundary in the previ-
ous step, we now find the left most vertex, which must be on the outer

boundary. An edge tour starting at this vertex gives the outer boundary
of the projection’s new polygon. This operation “fills-in” the interior of
the projection polygon.

Fig. 3. Vertex count reduction

Vertex count reduction: Typically, the polygon produced by the preced-
ing steps of the geometric phase will have many more vertices than the
projection polygon had at the beginning of the time step. To prevent
an explosion in the number of vertices, we must compute a conservative
approximation of the polygon that has a reasonable vertex count.

We say that a vertex is convex (resp. concave) if the polygon is locally
convex (resp. concave) at that vertex. Consider a pair of adjacent convex
vertices (such as the two rightmost vertices of the zy projection in the
top half of figure 3). Let e; be the edge joining these two vertices and
eg and ey be the other two edges incident on these vertices. If ey and ey
intersect on the outside of €1, then the two vertices can be replaced by
this intersection. The resulting polygon contains all points in the original
polygon; thus, this simplification is safe. Likewise, any concave vertex can
be safely eliminated (as in deletion of vy from the zz polygon in figure 3).
The selection of vertices to remove is done in a greedy manner. All op-
erations increase the size of the polygon, and each has a cost which is a
weighted sum of the increase in the area of the projection polygon and the
increase in area of its hull. Currently, the two weights are equal. Vertices
are deleted until the total cost reaches a preset fraction of the original

polygon area. In the examples below, we used a threshold of 2%—the
resulting polygons typically had less than fifteen vertices.

The removal of concave vertices can create short edges or highly obtuse
vertices (angles within € of 7). Such degeneracies are eliminated when
they occur by deleting appropriate vertices.

3.4 Surprises

Of course, not all went as expected when we first used Coho. Originally,
we only used the area of the polygon in computing the cost of deleting a
vertex. However, projection polygons are approximated by their convex hulls
in many places in our algorithm; thus, an approximation that enlarges the
convex hull 1s in some sense more costly than one that does not. We found
that by including the area of the convex hull in our cost function, we obtained
tighter bounds with our reachability analysis.

A second surprise was the difficulty caused by infeasible vertices. Recall
that at the beginning of each time step, each edge of each projection polygon
corresponds to a face of the projectahedron. The numerical phase of the
algorithm computes a convex bound for this face, moves it forward in time,
and project it back to the basis plane to produce an edge polygon. The
edge polygons for adjacent edges should overlap, and this is guaranteed if the
vertex where the edges met was feasible at the beginning of the time step. We
discovered that the over approximations used in our algorithm can produce
infeasible vertices. However, the extent of the over estimate is not necessarily
the same for all projections. This can produce sets of edge polygons that fail
to form a closed boundary.

For example, consider the projectahedron as depicted in figure 3. Assume
that both polygons have an extent of [0, 1] in 2 before the vertex reduction
step. The vertex elimination operation in the geometric component replaces
the two rightmost vertices of the zy projection with a single vertex. This gives
the zy projection polygon an z extent of [0, 1.1]. Vertex elimination for the zz
polygon eliminates a single vertex along the concave section of the boundary,
leaving the extent of the polygon unchanged. After vertex elimination, the
rightmost vertex of the zy polygon is infeasible (because no point with that
z value lies in the zz polygon).

Infeasible vertices led to incomplete boundaries in some of our earlier
trials. Our solution is to detect infeasible vertices (using linear programming)
and to treat a sequence of adjacent edges as a single piece of the boundary,
extending the sequence until both endpoints are feasible. This procedure
guarantees that the numeric component will produce a complete boundary
that contains the true boundary at each time step. In the example above,
edges ef and e4 would be treated as a single triangle instead of two separate
edges in the next numeric phase of the analysis.

4 Examples

This section presents our initial experience applying Coho to examples from
the literature as well as some of our own design.

4.1 Dang and Maler’s linear examples

Node Sink

T = —5x = -2z — 3y

y=—2y y=3r—2y
#(0) € [0.2,0.5] #(0) € [0.1,0.3]
y(0) € [0.2,0.4] y(0) € [0.1,0.3]

Fig. 4. Two-dimensional, linear models

In [DM98], Dang and Maler analyzed five systems with linear models
and two with non-linear models. Here, we use Coho to analyze the linear
systems that they presented. Dang and Maler analyzed four two-dimensional
models from [HS74]. Figure 4 show the models and Coho’s analysis for two
of those examples, the node and sink. We also ran Coho on their center and
saddle examples with similar results. When our analysis is compared with
the “face-lifting” technique of Dang and Maler, Coho appears to be much
more accurate. This can be seen in the node example where the boundaries
of our polygons approach the origin without touching the axes, as should be
the case for that model. With face-lifting, a much larger area is computed
for the node, and it has extensive contact with the axes. Our sink analysis
is likewise more accurate, clearly showing distinct cycles of the spiral where
face-lifting merges them together.

The greater accuracy of Coho arises from several factors. First, Coho’s
”approximate” linearizations of the models are exact (to within the accuracy
of double precision floating point arithmetic) for these linear examples; the

error bound for these models is zero. Second, face-lifting quantizes the reach-
able region on a relatively coarse fixed grid, while Coho can place polygon
vertices at any location representable in double precision. On the other hand,
the fixed quantization of face-lifting may make it more amenable for use with
symbolic techniques such as timed automata. This does not appear practical
for Coho’s polygonal projections.

projection: x vs. y projection: z vs. y

-01
<0025 -002 -0015 -001 -0005 O 0005 001 0015 002 0025
x

&= -2z 2(0) € [~0.025,0.025]
y=x—2y y(0) € [-0.1,0.1]
i=y—2z z(0) € [0.05,0.07]

Fig. 5. Dang and Maler’s 3-dimensional Model

Figure 5 shows Dang and Maler’s 3-dimensional example. We have not yet
implemented reconstruction of 3-dimensional objects from their projections,
so the figure just shows the two projections. The figure in [DM98] does not
provide enough detail to support a comparison of accuracy. However, our
figure clearly shows how Coho automatically increases the number of vertices
in the projection polygons to maintain the requested accuracy. The evolution
from rectangle to elliptical “blobs” shows how Coho adjusts the orientation
of edges according to its linearization of the ODE model.

Two non-linear models were presented in [DM98]. At the present time,
we must manually derive code to linearize a non-linear model and compute
the error bounds. This derivation is the most tedious and error-prone aspect
of using Coho, and we are looking into ways to automate it. However, this,
and the very recent completion of Coho, are the reasons that we have not
yet analyzed Dang and Maler’s non-linear examples. Instead, we present two
examples of our own design that exhibit behaviors that are qualitatively
different than those of linear models.

3

T=—-y+zr—2x
- y=c+y—y’
2(0) € [1.0,1.2] U[-1.2,—1.0]
y(0) € [~0.05,0.05]

Fig. 6. Van der Pol’s oscillator

4.2 Van der Pol’s oscillator

Our first non-linear example is a Van der Pol oscillator adopted from [HS74].
Our model is symmetric in ¢ and y; the equations and a cycle of the oscillator
are shown in figure 6. This system also shows how invariants can be verified
using reachability analysis: to establish an invariant set, it is sufficient to
choose a region @y and integrate for one period of the oscillator to produce
Q1. If Q1 is contained in Qg, then the region traced out during the integration
is an invariant set.

During our first attempts at this example, the reachable region quickly
became very long and skinny, stretching along the trajectory of the oscilla-
tion. This stretching occurs because the non-linear terms in the ODE stabilize
the amplitude but not the phase of trajectories. Recall that Coho uses er-
ror bounds from a model’s linear approximation to bloat edges outward—a
conservative strategy to maintain the soundness of our analysis. While over
estimation of the reachable region’s amplitude is damped by the non-linear
terms of the oscillator, over estimation of the region’s phase tends to accu-
mulate, and the region gets longer and longer.

On the straight segments of the oscillator’s trajectory, this stretching
causes little harm. However, as the oscillator makes a sharp turn at the cor-
ners, the over estimated phase can spill into large over estimates of amplitude.
If the amplitude isn’t damped before the next corner, the region grows with-
out bound.

To prevent this explosion in region size, we divide a complete oscillation
into two portions. The starting region lies on the positive z-axis, and we
track this region through half a cycle until it has completely crossed the neg-
ative z-axis. We manually identify the segment of the negative z-axis where
any portion of the region crossed, and restart from this segment. This sec-
ond region is tracked around to its crossing of the positive z-axis. Figure 6
clearly shows that all trajectories starting in the original region cross through
the second starting region, and all trajectories from the second starting re-

gion cross through the original starting region. Thus, we have identified an
invariant set.

This technique can be extended to allow verification of a hybrid system
whose dynamics depend on a current discrete “mode”. As the region being
tracked crosses a boundary between two modes, we can record the portion
of the boundary touched by the region. Once we have finished tracking the
region in the old mode—most likely because it has moved completely into
the new mode—the analysis is restarted using the new mode’s continuous
dynamics. The initial conditions for this restart are those portions of the
boundary crossed by the region in the old mode. In the computation of the
Van der Pol oscillator’s invariant set, for example, different ODEs could have
been used for the top and bottom halves of the state space, simulating a
system with one mode for positive y and another for negative y. It should
be noted that this strategy would have problems dealing with a region which
straddled or jittered along the boundary between two modes.

4.3 Squishing “Play-Doh”

projection: x vs. y projection: x vs. z

-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1
x X

& =—0.0lz z(0) € [-1,1]
y=z-y y(0) € [-1,1]
=122 -1-y) z(0) € [-0.1,0.1]

Fig. 7. Play-Doh

Our example of a three dimensional non-linear system corresponds to
squishing a lump of modeling clay. Consider a region shaped roughly like an
octagonal hockey puck (or tuna can, for those unfamiliar with the Canadian
obsession). Orient the puck so that its projection in the z-y plane is the
octagon, and in the z-z plane a rectangle. The playdoh system takes this puck
and squishes (in the y direction) toward the y = z line, while bending the puck
in its narrow dimension (the z direction) into a “V” shape. A small shrinking

factor is applied in the z direction to offset Coho’s over approximations.
The resulting region is a thick, bent V lying at a 45 degree angle. While the
squishing process is linear, bending 1s accomplished by a quadratic non-linear
derivative function.

Although encountering many infeasible vertices and requiring many ver-
tices introduced during numeric phases to be removed, Coho manages to
track the two projections without an explosion in vertex count. Note, how-
ever, that the regions do not stay symmetric; a result caused by degeneracy
handling code in the geometric phase.

5 Conclusions

This paper has presented Coho, a reachability analysis tool for systems mod-
eled by ordinary differential equations. Coho uses projectahedra, an efficient
method for representing high-dimensional objects as their projections onto
two-dimensional subspaces. Non-linear models are handled by creating local
linearizations for each face of the projectahedron. Each linear approximation
includes an error bound which ensures the soundness of the analysis. We
described the implementation of Coho, and have presented several example
analyses, including linear and non-linear systems in two and three dimensions.

Implementation of Coho was completed recently; clearly, more examples
will be needed to thoroughly validate our approach. The initial results pre-
sented in this paper are encouraging. The reachable state space estimates
computed by Coho are more accurate than published results by other meth-
ods. The increased accuracy can be attributed to Coho’s use of exact methods
for analyzing linear systems combined with a flexible representation of reach-
able space that does not require vertices to lie on fixed grid-points.

Our set of examples has at least one obvious limitation—in all cases, sys-
tem derivatives are completely determined by current state. In many real sys-
tems, input and modeling uncertainties lead to models where only constraints
on the derivatives, but not exact values, can be determined. In [Gre96], we de-
scribed several such models based on Brockett’s annulus construction [Bro89].
We intend to try Coho on similar models. The examples in this paper were
based on two and three dimensional systems. Coho was designed with mod-
els of up to twenty variables in mind. We are eager to try Coho on higher
dimensional models.

References

[ACH'95] R. Alur, C. Courcoubetis, N. Halbwachs, et al. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

[AG96] Kenneth Arnold and James Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[Bro&9]

[DMOg]

[GMOs]

[Gre96]

[HS74]

[MG96]

[PS85]

[The92]

[TPS97]

R. W. Brockett. Smooth dynamical systems which realize arithmetical
and logical operations. In Hendrik Nijmeijer and Johannes M. Schu-
macher, editors, Three Decades of Mathematical Systems Theory: A Col-
lection of Surveys at the Occasion of the 50th Birthday of J. C. Willems,
volume 135 of Lecture Notes in Control and Information Sciences, pages
19-30. Springer, 1989.

Thao Dang and Oded Maler. Reachability analysis via face lifting. In
Thomas A. Henzinger and Shankar Sastry, editors, Proceding of the First
International Workshop on Hybrid Systems: Computation and Control,
pages 96—109, Berkeley, California, April 1998.

Mark R. Greenstreet and lan Mitchell. Integrating projections. In
Thomas A. Henzinger and Shankar Sastry, editors, Proceding of the First
International Workshop on Hybrid Systems: Computation and Control,
pages 159-174, Berkeley, California, April 1998.

Mark R. Greenstreet. Verifying safety properties of differential equations.
In Proceedings of the 1996 Conference on Computer Aided Verification,
pages 277-287, New Brunswick, NJ, July 1996.

Morris W. Hirsch and Stephen Smale. Differential Fquations, Dynamical
Systems, and Linear Algebra. Academic Press, San Diego, CA, 1974.
lan Mitchell and Mark Greenstreet. Proving Newtonian arbiters cor-
rect, almost surely. In Proceedings of the Third Workshop on Designing
Correct Circuits, Bastad, Sweden, September 1996.

Franco P. Preparata and Michael 1. Shamos. Computational Geometry:
An Introduction. Texts and Monographs in Computer Science. Springer,
1985.

The Mathworks Inc., Natick, Mass. Matlab: High-Performance
Numeric Computation and Visualization Software, 1992.
http://wuw.matlab. com.

Claire Tomlin, George Pappas, and Shankar Sastry. Conflict resolution
for air traffic management: A case study in multi-agent hybrid systems.
Technical Report UCB/ERL M97/33, Electronics Research Laboratory,
University of California, Berkeley, 1997. to appear in IEEE Transactions
on Automatic Control.

