
Integrating ProjectionsMark R. Greenstreet Ian MitchellDepartment of Computer Science Scienti�c Computing andComputational MathematicsUniversity of British Columbia Stanford UniversityVancouver, BC V6T 1Z4 Stanford, CA 94305-9025Canada USAmrg@cs.ubc.ca mitchell@sccm.stanford.eduAbstract This paper describes three techniques for reachability analy-sis for systems modeled by ordinary di�erential equations (ODEs). First,linear models with regions modeled by convex polyhedra are considered,and an exact algorithm is presented. Next, non-convex polyhedra are con-sidered, and techniques are presented for representing a polyhedron by itsprojection onto two-dimensional subspaces. This approach yields a compactrepresentation, and allows e�cient algorithms from computational geome-try to be employed. Within this context, an approximation technique forreducing non-linear ODE models to linear nonhomogeneous models is pre-sented. This reduction provides a sound basis for applying methods forlinear systems analysis to non-linear systems.1 IntroductionWe are interested in verifying that circuits, as modeled by systems of non-linear ordinary di�erential equations (ODE's), correctly implement discretespeci�cations. Challenging veri�cation problems arise when VLSI designersuse methods such as precharged logic, single-phase clocking, and sense-ampbased techniques that depend on the analog properties of the circuits toobtain better performance. In current practice, design validation relies heavilyon simulation tools such as SPICE [Nag75]. However, even the best modelis only approximate, and each simulation run can only consider a particularset of functions as inputs to the circuit and a particular set of values formodel parameters. To obtain a reasonable level of con�dence in a design, alarge number simulations must be run. This process can be extremely timeconsuming; yet, in the end, simulation can not prove the correctness of adesign.Recently, we have been exploring an alternative approach to the problemof circuit-level design veri�cation, based on ideas from dynamical systems the-ory. Correctness criteria for a circuit can be formulated in a logic which hasmeaning in both continuous and discrete domains. Rather than consideringindividual simulation runs, correctness criteria become topological propertiesin the continuous domain that must hold for an invariant set that contains allpossible trajectories of the ODE model. To establish these invariants, we con-struct regions such that all trajectories on the boundaries 
ow inward [GM97].For simple models these regions can be constructed manually, but for models



arising in real circuits more automated methods are required. In [Gre96], weshowed how these invariant sets can be constructed by reachability analysisusing numerical integration.An important advantage of our approach is that our analysis is basedon ODE models similar to those that are used for industrial circuit simu-lation. Thus, our results are comparable with those obtained by traditionalsimulations|by speaking the same language as circuit designers, we encour-age interaction with the eventual users of our techniques. Furthermore, con-siderable e�ort continues to be invested in developing accurate models forcurrent fabrication processes. By using ODE models as the basis of our work,we can exploit these advances directly.Two contributions are made by this paper. First, we describe an e�-cient way of representing non-convex high dimensional polyhedra using two-dimensional projections. This representation is by no means universal; how-ever, it has shown promising results for a small number of circuits that wehave analysed. Second, we show an integration based approach for computingreachability between regions represented using projections. Although we use
oating point arithmetic in our implementation to obtain acceptable perfor-mance; in principle, the same techniques could be implemented with rationalarithmetic and conservative rounding to create a strictly conservative imple-mentation of the algorithm. The theoretic aspects of these contributions arecontained in section 3. Preceding that section is a description of our models.2 ModelsIn this section we show how to construct ODE models for our analysis. Sec-tion 2.1 describes the construction of models for MOS circuits. These cir-cuits require inputs, and we typically wish to verify a circuit for all legalinputs. Readers familiar with circuit modeling may wish to skip directly tosection 2.2, which describes Brockett's annulus construction and shows howit can be used to model inputs to our circuits.2.1 Circuit ModelsWe model MOS circuits as a collection of voltage controlled current sourcesand (linear) capacitors. A voltage controlled current source de�nes a relation-ship between the voltages on its terminals and the currents 
owing into thoseterminals. By convention, current is the 
ow of \positive charges," and a 
owof electrons into the device is represented by a negative current. Consider thedevice depicted below:



Ua b cia ib icVb;a� + Vc;b� +The device U is connected to three nodes, a, b, and c. The voltage Va denotesthe voltage at node a, and likewise for Vb and Vc. We write Vba to denoteVb � Va and likewise for Vcb. The current ia denotes the current 
owing intodevice U through node a. If U is a voltage controlled current source, then iais a function of the voltages Va, Vb and Vc. We write ia = Ua(Va; Vb; Vc).More generally, let �V denote the vector of node voltages in the circuit,and let �{U denote the vector of currents 
owing into U through each node ofthe circuit. We write �{U = IU ( �V ) (1)For example, an n-channel MOSFET can be modeled as a three terminal,voltage controlled current source. The three terminals are the gate, g, thesource, s, and the drain, d. A simple model (see [GD85], equations 2.85 -2.87) isig(Vg ; Vs; Vd) = 0id(Vg ; Vs; Vd) = 0; if Vds � 0 & Vgs < Vt= G(Vgs � Vt)2; if Vds � 0 & Vds > Vgs � Vt � 0= GVds(2(Vgs � Vt)� Vds); if Vds � 0 and Vgs � Vt � Vds � 0= �id(Vg ; Vd; Vs); if Vds < 0is(Vg ; Vs; Vd) = �id (2)where Vt is the \threshold voltage" of the transistor, and G is the transcon-ductance. These two constants are determined by the size and shape of thetransistor and by properties of the fabrication process.A capacitor de�nes a relationship between the time derivatives of thevoltages on the terminals and the currents 
owing into these terminals. Fora capacitor of �xed capacitance C connected to nodes a and b,ib = �ia = C dVbdt � C dVadtMore generally, a capacitor U de�nes a matrix valued function CU such that�{U = CU ( �V )d �Vdt (3)For the models arising from MOS circuits, this matrix corresponds to a net-work of voltage dependent, two-terminal capacitors. Physically, there mustbe some capacitance between every pair of nodes; in practice, many of thesecapacitances are small and neglected when constructing a circuit model. Anyrealistic model will associate at least one capacitor with each node; for suchmodels, CU( �V ) is real-symmetric and positive de�nite.



Given models for each device in the circuit, we construct an ODE modelfor the whole system using Kircho�'s current law. As depicted in �gure 1,Kircho�'s current law states that the sum of the currents 
owing into eachnode of the circuit must be zero. Likewise, the sum of the currents 
owing intoeach device must be zero. Both of these constraints are direct consequencesof charge conservation.U1U2 U3U4 U5 U6a bc d ef ia;1 ib;1ia;2 ib;3ic;2 id;2 id;3ic;4 ie;3if;4 ie;6if;5 id;5 id;6 Kircho�'s Current Law:8x 2 fa : : : fg: 6Xm=1 ix;m = 08m 2 f1 : : : 6g: fXx=a ix;m = 0Fig. 1. Kircho�'s LawsFrom Kircho�'s current law, we havePU2C CU( �V )d �Vdt +PU2I IU ( �V ) = 0where C denotes the set of capacitor devices, and I denotes the set of currentsource devices. Solving for d�V =dt yieldsd �Vdt = � �PU2C CU( �V )��1 �PU2I IU ( �V )� (4)which is an ODE model for the circuit.The device models above are simplistic, allowing a shorter presentationand making the analysis in the remainder of this paper tractable. While thesemodels capture many of the key features of MOS circuit operation, we notethat the transistor model of equation 2 neglects the body e�ect and shortchannel e�ects. Similarly, when modeling capacitors we make the simplifyingassumption that CU is a constant; in real MOS designs, CU depends sub-stantially on �V . Kircho�'s current law is itself an approximation of Maxwell'sequations, and so ignores \displacement currents." Typically, designers usemore accurate models than those presented for transistors and capacitors|here we have chosen to avoid complexity while retaining the key features ofrealistic circuit models.2.2 Input SignalsThe problem of verifying an entire chip at the ODE level appears to be hope-lessly intractable. Instead, we focus on the problem of verifying small circuits



and showing that the outputs of one circuit satisfy the constraints that weassume for inputs to other circuits. Such a method requires a mechanism forspecifying the expected inputs and the allowed outputs of each small circuit.
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Fig. 2. Brockett's AnnulusFigure 2 depicts the annulus proposed by Brockett [Bro89] that we use tospecify the levels and transitions of signals. When a variable is in region 1, itsvalue is constrained but its derivative may be either positive or negative. Wewill consider this a logically low signal. When the variable leaves region 1, itmust enter region 2. Because the derivative of the variable is strictly positivein this region, it makes a monotonic transition rising to region 3. Regions 3and 4 are analogous to regions 1 and 2, and correspond to logically high andmonotonically falling signals respectively. Because transitions through regions2 and 4 are monotonic, traversals of these regions are distinct events. Theproperties of the annulus provide a topological basis for discrete behaviours.Many common signal parameters are represented by the geometry of anannulus. The horizontal radii of the annulus de�ne the maximum and mini-mum high and low levels of the signal (i.e. V0l, V0h, V1l, and V1h in �gure 2).The maximum and minimum rise time for the signal correspond to trajecto-ries along the upper-inner and upper-outer boundaries of the annulus respec-tively. Likewise, the lower-inner and lower-outer boundaries of the annulusspecify the maximum and minimum fall times.3 Reachability AnalysisIn this section we present our theoretic results. After looking at the con-nection between veri�cation and reachability, we examine three increasinglydi�cult reachability analyses: linear models with convex polyhedra, linearmodels with non-convex polyhedra, and �nally nonlinear models with non-convex polyhedra.



3.1 Veri�cation as ReachabilityMany circuit veri�cation problems can be formulated as reachability analysisproblems. For example, consider a circuit that implements a simple statemachine. An ODE model provides a mapping between the continuous circuitstate (node voltages) and the time derivative of that state. Thus, given a pointin the continuous space, the value and derivative of each signal is known.Using a Brockett annulus, each signal can be interpreted discretely as beinglow, rising, high, or falling. The continuous model implements the discretespeci�cation if every reachable point in the continuous model corresponds toa state or transition of the discrete speci�cation.First consider the veri�cation of bounded pre�xes of trajectories. For acircuit with d nodes, the continuous state space is Rd. We assume that thederivative function for the model is autonomous (i.e. independent of time) and�nitely piecewise continuous (therefore locally bounded). Given a boundedregion Q � Rd, Q0 � Q, and tf 2 R+, we want to show that all trajectoriesthat start in Q0 at time 0 will remain in Q for all times up to tf . Our approachto this problem is to construct a sequence of time steps t0 < t1 < : : : < tksuch that t0 = 0 and tk = tf . For i = 1 : : :k, we construct a region Qisuch that any trajectory that starts in Qi�1 at time ti�1 will be in Qi attime ti. We then construct a second set of regions Q00; : : :Q0k�1 such that anytrajectory that starts in Qi at time ti will remain in Q0i up to and includingtime ti+1. If [k�1i=0Q0i � Q, then all trajectories that start in Q0 at time 0 willremain in Q for all times up to tf as can be readily shown by the constructionof Q0i.Now consider in�nite trajectories. Let Q, Qi, Q0i, and ti be constructedas above, D = [k�1i=0 : : :Q0i, and Q+ = [k�1i=0 : : :Qi. If Qk � Q+, then anytrajectory that starts in Q0 remains inD forever. To see this, let x : R+! Rdbe a trajectory with x(0) 2 Q0. Let �min = minki=1 tk � tk�1. There exists asequence of times, �m, such that for all m � 0, x(�m) 2 Q+ and �m � m�min .The proof is completed by induction on m. For m = 0, �m = 0. For m > 0,let j 2 f0 : : :k � 1g such that x(�m�1) 2 Qj. Let�m = �m�1 + (tj+1 � tj) � �m�1 + �min � m � �minThen, x(�m) 2 Qj+1 � Q+.In general, it is not feasible to represent exactly the reachable regionsof systems modeled by ODEs. Most non-linear ODEs, including those thatarise when modelingVLSI circuits, do not have closed form solutions. Becauseproof of safety properties is our objective, over estimation of the reachablespace is conservative|false negatives are possible, but not false positives.Consequently, we use \containing approximations", within which lie the truereachable state spaces.As described above, the next few sections examine three di�erent cases ofreachability analysis. First, we consider the special case of linear ODE's wherethe initial region is a convex polyhedron|we show that the Qi sequence can



be computed exactly, and the Q0i sequence can be computed with arbitraryaccuracy. In general, convexity is not preserved by non-linear models, and wedevelop our treatment of non-linear models in two steps. First, section 3.3presents a conservative approximation technique for the particular class ofnon-convex polyhedra that can be represented by their projections onto two-dimensional subspaces; however, linear models are retained. In section 3.4 weshow how these projection polyhedra can be used with non-linear models.3.2 Linear models and convex polyhedraThis section presents the special case where the ODE model is linear, andQ0 is convex. An ODE model is linear if it can be written in the form_x = Ax (5)where x : R+ ! Rd is a trajectory and A 2 Rd�d is a matrix (note that thisde�nition of \linear" is more general than the one used in much of the hybridsystems literature). We assume that A has a full-rank set of eigenvectors. Ifnot, a small perturbation of A will produce such a matrix, and the techniquespresented in section 3.4 can be applied. With this assumption, the solutionof equation 5 is [HS74] x(t) = etAx(0) (6)For any �xed value of t, etA is a linear operator that can be represented bya matrix, and etA is invertible.A d-dimensional convex polyhedron with m faces can be represented bylinear program of the form Mx � B (7)where M 2 Rm�d is a matrix and B 2 Rm is a vector (see [PS82]). We write(M;B) to denote the linear program of equation 7, and write x 2 (M;B) todenote that x satis�es this linear program.Polyhedra can be bloated. If (M;B) is a linear program, and u is a realnumber, then, bloat((M;B); u) is the polyhedron obtained by moving eachface ofM outward by u. Let � 2 Rd be a vector such that that its jth elementis given by �i(j) = ukMjk2, where kMjk2 denotes the L2 norm of row j ofM . Then, bloat((M;B); u) = (M;B ��) (8)Convexity is preserved by linear operators. In particular, let the linearprogram (M0; B0) describe the convex region Q0, let t1 2 R+, and let Abe the matrix representation of a linear ODE model. A point x is reachablefromQ0 at time t1 if and only if x 2 (M0e�tA; B), which follows directly from



equations 6 and 7. Thus, we can construct Q1 : : :Qk such that for i = 1 : : :k,any trajectory that starts in Qi�1 at time ti�1 will be in Qi at time ti. Inparticular, Qi = (M0e�tiA; B) (9)These Qi are exact._x0 = �x1_x1 = x0 x1 x0Q0Q1 Q00 t1 = 0:64Fig. 3. A simple linear systemAlthough the Qi's (the reachable regions at each time step) are convex, thesame does not necessarily hold for the Q0i's (the regions reachable during alltimes between steps). For example, consider the system depicted in �gure 3.Trajectories are counter-clockwise circles centered at the origin. Although Q0and Q1 are both convex, the minimal region for Q00 is the region swept outby moving Q0 through an arc of t1 radians (the shaded region in �gure 3).Region Q00 is not convex.Rather than trying to solve for Q00 exactly, we will �nd an approximation.Note that _x = Ax is locally bounded; therefore it is bounded in Q. De�nethe scalar k _xkmax = maxx2Q kAxk2. A trajectory that starts in region Qi attime ti remains within a distance (ti+1� ti)k _xkmax of Qi until time ti+1. LetQ0i = bloat((M0e�tiA; B); k _xkmax) (10)For any trajectory x such that x(ti) 2 Qi and for any time t 2 [ti; ti + 1],x(t) 2 Q0i as required.Although the Q0i are containing approximations, each one is computedfrom an exact Qi|the errors of making a conservative approximation donot accumulate between time steps. To achieve accurate estimates of thereachable space, the time steps should be relatively small so that there islittle of Q0i outside of Qi [Qi+1. For example, this approach would computea large overestimate of Q00 for the time step depicted in �gure 3.A straightforward approach to veri�cation is to construct a sequence ofQi and Q0i as described above, and verify that each Q0i is contained in Q.If all containments are established, then the veri�cation is complete. Other-wise, choose i such that Q0i is not contained in Q. A counterexample to theveri�cation is established if either of the exact solutions Qi or Qi+1 is notcontained in Q. If neither of the exact solutions provide a counterexample,



divide the step from Qi to Qi+1 into two smaller steps and repeat the veri�-cation. This process terminates when containment of all the Q0i's is veri�ed,a counter-example is found, or the time step is smaller than is meaningfulfor the chosen model. In the latter case, the property cannot be veri�ed withthe given model. Typical variation in MOS circuit parameters can �20% ormore, although closely matched circuits (e.g. sense-ampli�ers, see [Bak90])can be designed that are balanced to within a few parts per thousand.3.3 Linear models and non-convex polyhedraAlthough systems with linear ODE models can be analysed quite accuratelyusing the techniques described in the previous section, such systems do nothave a rich enough phase space structure for interesting digital computation.In a linear system, the asymptotic behaviour of trajectories is either conver-gence towards the origin, divergence to in�nity, or an orbit centered at theorigin. In order to examine more interesting systems, we need techniques toanalyse non-linear models. In general, these models do not preserve the con-vexity of polyhedra; therefore, we begin by describing the class of non-convexpolyhedra that we use in our analysis.RepresentationWe represent high dimensional polyhedra by their projections onto two di-mensional subspaces, where these projections are not required to be convex.Conversely, a full dimensional polyhedron can be obtained from its projec-tions by back-projecting each into a prism in Rd and computing the inter-section of those prisms (see �gure 4). More formally, let fu1; u2; : : :udg bean orthogonal basis for Rd. If P is a polygon, we write (uX(P ); uY (P )) todenote the basis of P . We write ConvexHull (P ) to denote the convex hull(see [PS85]) of P , and it is understood that X(ConvexHull (P )) = X(P )and Y (ConvexHull (P )) = Y (P ). We write prism(P ) to denote the inverseprojection of P back into the full dimensional space:prism(P ) = f(x1; : : :xd) 2 Rdj(xX(P ); xY (P )) 2 Pg (11)Let P be a collection of polygons. The object represented by P is Q(P) whereQ(P) = \P=Pprism(p) (12)We note that faces of Q(P) correspond to edges of the projection polygons.If P is a projection polygon, and e is and edge of P , we write X(e) and Y (e)to denote X(P ) and Y (P ) respectively. Likewise, we de�ne prism(e) to beprism(e) = f(x1; : : :xd) 2 Rdj(xX(e); xY (e)) 2 eg (13)
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SpaceFig. 4. A three dimensional polyhedron and its projectionsIf e is an edge of a projection polygon, we write face(e;P) to denote thecorresponding edge of e:face(e;P) = Q(P) \ prism(e) (14)We write face(e) when P is apparent from context.There are several advantages to this representation. First, it correspondsto an engineer's intuitive notion of how a circuit works. Typically, each signalis \controlled" by a small number of other signals. Pairing each node witheach of its controlling nodes naturally captures the causal behaviour of thecircuit. Because most circuits have limited fan-in and fan-out, the number ofsuch pairs, and hence the number of polygons, is proportional to the numberof nodes in the circuit.From the perspective of a numerical analyst, the engineer's intuitionmeans that a full dimension polyhedral representation of the reachable re-gion may provide unneeded freedom in its ability to represent constraintsbetween every possible combination of variables. In the same way that manymatrices encountered in practice contain interaction between only limitedsets of variables, in many ODE systems each variable only directly in
uencesa small number of others. Dense storage and manipulation of sparse ma-trices is wasteful; similarly, representing the reachable state space as a fulldimensional polyhedron may be exponentially extravagant.Finally, there are algorithmic advantages to using projections. The exis-tence of a sound method for computing the evolution of bounding polyhedrarepresented in this manner is key to veri�cation. In addition, all geomet-ric operations take place in two dimensions where there are many results



and algorithms available from computational geometry [PS85]. Lastly, it isrelatively easy to compute the convex hull of a polygon, thus producing acontaining approximation of that polygon in the form of a linear program.Of course, there are many polyhedra that cannot be exactly representedby this approach. First, indentations on the surface of an object can notbe represented; likewise, many perforated objects and knot-like objects canonly be approximated. We require that the projections are orthogonal; there-fore, edges formed by the intersection of projections must be at right-angles.Further experimentation is needed to determine the signi�cance of these lim-itations when analysing circuits modeled by ODEs.ReachabilityLet Q(P0) be a polyhedron, and let _x = Ax be a linear model for a system.Given a monotonically increasing sequence of times, t1 : : : tk, we will constructa sequence of polyhedra Q(P1) : : :Q(Pk) such that trajectories that start inQ(P0) at time t = 0 are contained in Q(Pi) at time t = ti. Our approachis based on three observations, which we justify below. First, it is su�cientto consider trajectories emanating from the faces of Q(P0), as these willde�ne the faces of the polyhedron at later times. Second, for each edge e ofa projection polygon, it is straightforward to construct a convex containingapproximation for face(e). Third, the method described in section 3.2 can beused to determine reachability from this convex approximation.Because Ax is locally bounded, trajectories are continuous and cannotcross. Therefore, trajectories starting on a face of the polyhedron providebounds for trajectories starting in the interior.To construct a convex approximation for face(e) letZ(P) = \P2Pprism(ConvexHull (P )) (15)It is straightforward to show that ConvexHull (Q(P)) � Z(P), andConvexHull(face(e;P)) � ConvexHull (Q(P)) \ prism(e). Therefore,ConvexHull(face(e;P)) � Z(P) \ prism(e) (16)Given P, a linear program for Z(P) can be constructed by computing theconvex hull for each polygon in P and taking the conjunction of their con-straints. Each polygon is two dimensional, allowing e�cient (i.e. O(n logn))algorithms to be used. Once Z(P) is calculated, it is easily extended to pro-duce Z(P)\prism(e) for each edge. This provides our convex approximationof face(e;P).The method described above allows us to construct a d� 1 dimensionalconvex approximation for each face of Z(P0). The reachable space from eachface can then be computed by the techniques given in section 3.2. The bound-ary of the region reachable fromZ(P0) is contained in the union of the regionsreachable from the faces.



In order for the same algorithms to be used for the next time step, wewould like to compute a containing approximation of this boundary as a se-ries of projections|describing the new boundary in the same way that Z(P0)was described. Given a linear program for a face, the projection of that faceonto a plane can be computed by �nding an extremal vertex of the projec-tion, and tracing the rest of the vertices with a series of pivots (see [AF92]).Because there may be an exponentially large number of vertices in this pro-jection, such an approach may be slow. To avoid tracing too many vertices,extremal vertices can be computed for a �xed set of directions, and edges as-sociated with these vertices joined to produce a containing approximation ofthe projection. Regardless of the method chosen to compute the projections,an object that contains everything reachable from Q(P0) can be constructedby �lling in the projection polygons (another straightforward operation).An unattractive feature of this approach is that the reachable polyhedronfor each face must be projected onto all planes used for the original projectionpolygons. Intuitively, this is because with a linear model, we can calculatethe exact image of the convex approximations of the face for arbitrarily largetimes. During such an extended time interval, the polyhedron can rotate, andany face can become an extremal face for any projection.3.4 Non-linear models and non-convex polyhedraWe extend the methods of the previous section to non-linear models in threesteps. First, we will approximate the non-linear model by a linear modeland a correction term. Second, we show how this correction term can bedescribed as an non-determinate function of time, allowing the non-linearODE to be approximated by a �rst order linear di�erential equation with annon-determinate nonhomogeneity. Finally, by bounding the solutions of thenonhomogenous system, we obtain a containing approximation of solutionsto the original non-linear system.Because the method from section 3.3 considers each face separately, wefocus on the problem of �nding the points reachable in time�t from a point inface(e) for some edge e, for a model whose derivative function has an L2 normbounded by k _xkmax. In determining the region reachable from face(e), onlypoints in bloat(face(e); (�t)k _xkmax) need to be considered. The derivation ofthe linear approximation and correction term is handled by the model|inother words, we leave it to the ingenuity of the programmer.When the modelis evaluated, bloat(face(e); (�t)k _xkmax) is available as a linear program, solinear bounds can be readily obtained describing the region in which theapproximation and correction must be valid.As an example, consider the transistor model presented in equation 2with Vt = 0:5. For a particular bloated face, assume 1:2 � Vgs � 1:6 and2:4 � Vts � 3:1. Then, everywhere in this region ids = G(Vgs � Vt)2. Lin-earizing about the mid-point of the region and choosing an additive con-stant to minimize the worst-case absolute value of the error, we get ids =



G(1:8Vgs � 1:69)� �(vgs; vds), where �(vgs; vds) 2 [�0:02; 0:02]. Similar tech-niques apply when the feasible region includes more or other modes of thetransistor's operation.Linear models can also be computed for input signals that are describedusing annuli (recall �gure 2). As for the transistor model, the input signalmodel queries the linear program for the bloated face to determine upper andlower bounds for the value of the signal. For any given value of the signal, theannulus speci�es upper and lower bounds for its time derivatives. From thisdescription, a linear model with an error term can be computed. For suchsignals, the error term can be quite large; especially when the signal can bein the �rst (logical low) or third (logical high) regions of the annulus.The non-linear correction term is a function of the state of a trajectory:_x = Ax+ �(x) (17)The model provides bounds on �(x); thus, we write �(x) 2 E for someE � Rd.For any particular trajectory, the correction term can be understood as afunction of time, and we write _x = Ax+ �(t) (18)By computing the set of points reachable by trajectories for all functions �with �(t) 2 E, we obtain a containing approximation for the original, non-linear system.Equation 18 is a linear, nonhomogeneous, �rst-order di�erential equation.Such equations have a closed form solution [Apo67], namely:x(t) = etAx(0) + etA Z �t0 e�uA�(u)du (19)The etAx(0) term is the solution to the linear approximation and theetA R�t0 e�uA�(u)du term is the perturbation arising due to the non-linearcorrection in the model. A bound on the contribution of this correction termis computed next.We assume that A has a full rank set of eigenvectors. If not, A can beperturbed slightly so as to satisfy this condition, and the perturbation canbe re
ected by slightly enlarging the correction term. Now, A can be di-agonalized [HS74]; thus e�tA = D�1e�tAyD, where D is the diagonalizingmatrix, and Ay is diagonal. The elements of e�tAy (also a diagonal matrix)can be readily bounded for all t 2 [0;�t]. Using standard optimization tech-niques [PS82], a linear program can be constructed that is a containing ap-proximation for the values of etA R�t0 e�uA�(u)du.The previous paragraph provides a mathematically rigorous way to boundthe contribution to trajectories of the non-linear component of the model.We expect that it would be impractical to implement this method due to itsreliance on diagonalizing A|a procedure that is both time-consuming and



numerically sensitive. Instead, we plan to sample e�uA for several values ofu 2 [0;�t] using a numerical approximation such as an integration algorithm.From these samples, approximate bounds on the non-linear contribution canbe found. Just as with the mathematically rigorous approach, these boundscan be expressed as a linear program.Using one of the methods in the previous two paragraphs, a containing ap-proximation in linear program form for etA R�tu=0 e�uA�(u) can be constructed.Section 3.3 built a linear program containing the values of etAface(e). For rea-sons that will be explained shortly, we will instead use a linear program thatcontains the values of etAface0(e), whereface0(e; (�t)k _xkmax)= bloat(Z(P); k _xkmax) \ prism(extend (e; (�t)k _xkmax))extend (e; (�t)k _xkmax)= e with end points extended outward by (�t)k _xkmaxNote that face(e) � face 0(e). A containing approximation for the sum ofetA R�tu=0 e�uA�(u) and etAface0(e) can also be described by a linear program,and we can approximate the boundary of the reachable space at time �t asthe union of these linear programs for each face.The methods described in this section rely on representation of the reach-able space by a collection of two dimensional projections. For example, weuse an approximation of the convex hull of the reachable space which isderived from the convex hulls of the projections. Furthermore, we need toknow the endpoints of each edge when creating the convex approximation ofthe corresponding face. Finding the endpoints is straightforward when theyare de�ned by segment intersections in a plane. Therefore, each integrationstep must end by computing projection polygons for the new reachable spaceobject.The technique described in section 3.3|projecting the convex hull foreach transformed face onto each projection plane|could be applied here aswell. For the methods described in this section, it is only necessary to projecteach transformed face back to the projection plane for its original edge. Let ebe an edge of polygon P and e0 be an adjacent edge of another polygon. Thene and e0 are orthogonal. Also note that all points of face(e0) lie on the inside offace0(e; (�t)k _xkmax). Therefore, all trajectories starting from face(e0) remainon the inside of face 0(e) at the end of the time step. Thus, the projection ofthe boundary of the polyhedron into the plane of P is completely determinedby the projection of the faces arising from edges in P at the beginning of thetime step.4 ConclusionMany veri�cation problems can be formulated as questions of reachability.With a circuit modeled by a system of ordinary di�erential equations, the



reachability problem can be formulated as: \given an initial region Q0 andan ending time tf (possibly +1), �nd a region Q such that all trajectoriesstarting in Q0 at time t = 0 remain in Q at least until time t = tf ."We have addressed this problem for three classes of models and regions.First considering linear models with convex regions, we showed how the regionreachable at a future time can be computed exactly. Furthermore, a contain-ing approximation for points reachable through all times up until that futuretime can be computed with a simple trade-o� between e�ort and accuracy.We note that the HyTech tool [HH95] represents reachable regions as aunion of convex polyhedra, and it is possible that the techniques presentedthere could be applied in this �rst context.Because models with non-linearities do not preserve the convexity of re-gions, it was next necessary to identify an e�cient representation for non-convex polyhedra. For our purposes, projection polyhedra|where an objectis represented by its projection onto two dimensional subspaces|provide sucha representation, allowing us to apply e�cient algorithms from computationalgeometry in two-dimensions to our higher dimensional problems.Finally, we addressed the analysis of non-linear systems, by approximat-ing the non-linear model by a linear term and a non-linear correction. Thecorrection can be kept small by computing separate such models for eachface of the reachable space, and can be approximated by a non-determinant\error" function of bounded magnitude. This construction allowed us to con-vert a non-linear model into a linear nonhomogenous di�erential equation,which can be solved analytically, and such solutions allow us to bound thereachable space.The analysis presented in this paper shows that ideas from computationalgeometry, dynamical systems, formal methods, linear algebra, and numeri-cal computation can all contribute to the veri�cation of systems with ODEmodels. The authors are currently implementing a tool to demonstrate thesetechniques.AcknowledgementsWe appreciate an extended e-mail discussion with Oded Maler and ThaoDang on reachability with continuous models. Jack Snoeyink and DannyChen have guided us about what is and what is not feasible in computationalgeometry.References[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and ver-tex enumeration of arrangements and polyhedra. Discrete ComputationalGeometry, 8:295{313, 1992.[Apo67] Thomas M. Apostle. Calculus, volume 1. John Wiley and Sons, Inc., NewYork, second edition, 1967.
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