Integrating Projections

Mark R. Greenstreet Tan Mitchell

Department of Computer Science Scientific Computing and
Computational Mathematics

University of British Columbia Stanford University

Vancouver, BC V6T 174 Stanford, CA 94305-9025

Canada USA

mrg@cs.ubc.ca mitchell@sccm.stanford.edu

Abstract This paper describes three techniques for reachability analy-
sis for systems modeled by ordinary differential equations (ODEs). First,
linear models with regions modeled by convex polyhedra are considered,
and an exact algorithm is presented. Next, non-convex polyhedra are con-
sidered, and techniques are presented for representing a polyhedron by its
projection onto two-dimensional subspaces. This approach yields a compact
representation, and allows efficient algorithms from computational geome-
try to be employed. Within this context, an approximation technique for
reducing non-linear ODE models to linear nonhomogeneous models is pre-
sented. This reduction provides a sound basis for applying methods for
linear systems analysis to non-linear systems.

1 Introduction

We are interested in verifying that circuits, as modeled by systems of non-
linear ordinary differential equations (ODE’s), correctly implement discrete
specifications. Challenging verification problems arise when VLSI designers
use methods such as precharged logic, single-phase clocking, and sense-amp
based techniques that depend on the analog properties of the circuits to
obtain better performance. In current practice, design validation relies heavily
on simulation tools such as SPICE [Nag75]. However, even the best model
is only approximate, and each simulation run can only consider a particular
set of functions as inputs to the circuit and a particular set of values for
model parameters. To obtain a reasonable level of confidence in a design, a
large number simulations must be run. This process can be extremely time
consuming; yet, in the end, simulation can not prove the correctness of a
design.

Recently, we have been exploring an alternative approach to the problem
of circuit-level design verification, based on ideas from dynamical systems the-
ory. Correctness criteria for a circuit can be formulated in a logic which has
meaning in both continuous and discrete domains. Rather than considering
individual simulation runs, correctness criteria become topological properties
in the continuous domain that must hold for an invariant set that contains all
possible trajectories of the ODE model. To establish these invariants, we con-
struct regions such that all trajectories on the boundaries flow inward [GM97].
For simple models these regions can be constructed manually, but for models

arising in real circuits more automated methods are required. In [Gre96], we
showed how these invariant sets can be constructed by reachability analysis
using numerical integration.

An important advantage of our approach is that our analysis is based
on ODE models similar to those that are used for industrial circuit simu-
lation. Thus, our results are comparable with those obtained by traditional
simulations—by speaking the same language as circuit designers, we encour-
age interaction with the eventual users of our techniques. Furthermore, con-
siderable effort continues to be invested in developing accurate models for
current fabrication processes. By using ODE models as the basis of our work,
we can exploit these advances directly.

Two contributions are made by this paper. First, we describe an effi-
cient way of representing non-convex high dimensional polyhedra using two-
dimensional projections. This representation is by no means universal; how-
ever, 1t has shown promising results for a small number of circuits that we
have analysed. Second, we show an integration based approach for computing
reachability between regions represented using projections. Although we use
floating point arithmetic in our implementation to obtain acceptable perfor-
mance; in principle, the same techniques could be implemented with rational
arithmetic and conservative rounding to create a strictly conservative imple-
mentation of the algorithm. The theoretic aspects of these contributions are
contained in section 3. Preceding that section is a description of our models.

2 Models

In this section we show how to construct ODE models for our analysis. Sec-
tion 2.1 describes the construction of models for MOS circuits. These cir-
cuits require inputs, and we typically wish to verify a circuit for all legal
inputs. Readers familiar with circuit modeling may wish to skip directly to
section 2.2, which describes Brockett’s annulus construction and shows how
it can be used to model inputs to our circuits.

2.1 Circult Models

We model MOS circuits as a collection of voltage controlled current sources
and (linear) capacitors. A voltage controlled current source defines a relation-
ship between the voltages on its terminals and the currents flowing into those
terminals. By convention, current is the flow of “positive charges,” and a flow
of electrons into the device is represented by a negative current. Consider the
device depicted below:

The device U is connected to three nodes, a, b, and ¢. The voltage V,, denotes
the voltage at node a, and likewise for V4 and V.. We write Vj, to denote
Vi, — V, and likewise for V.. The current ¢, denotes the current flowing into
device U through node a. If U is a voltage controlled current source, then ¢,
is a function of the voltages V,, V, and V.. We write i, = Ug(Va, Vo, V2).

More generally, let V' denote the vector of node voltages in the circuit,
and let 7y denote the vector of currents flowing into U through each node of
the circuit. We write

w = Iu(V) (1)

For example, an n-channel MOSFET can be modeled as a three terminal,
voltage controlled current source. The three terminals are the gate, g, the
source, s, and the drain, d. A simple model (see [GD85], equations 2.85 -
2.87) is

lg(vgvvsvvd) =0

ia(Vy, Ve, Vi) = 0, i Vie >0 & Vo < Vi
= (Vgs_‘/t)27 ldeSZO&VdS>Vs_‘/tZO (2)
= GV (2(Vye — Vi) — Vo), if Vae > 0 and Voo — Vi > Vi > 0
= —id(Vg7 Vd, VS)7 if Vgs <0

is(vg7‘/57Vd) = _id

where V; 1s the “threshold voltage” of the transistor, and G is the transcon-
ductance. These two constants are determined by the size and shape of the
transistor and by properties of the fabrication process.

A capacitor defines a relationship between the time derivatives of the
voltages on the terminals and the currents flowing into these terminals. For
a capacitor of fixed capacitance C' connected to nodes a and b,

iy = —ig = C4 — O
More generally, a capacitor U defines a matrix valued function Cy such that
w = Cu(V)G (3)

For the models arising from MOS circuits, this matrix corresponds to a net-
work of voltage dependent, two-terminal capacitors. Physically, there must
be some capacitance between every pair of nodes; in practice, many of these
capacitances are small and neglected when constructing a circuit model. Any
realistic model will associate at least one capacitor with each node; for such
models, Cyy (V) is real-symmetric and positive definite.

Given models for each device in the circuit, we construct an ODE model
for the whole system using Kirchoff’s current law. As depicted in figure 1,
Kirchoff’s current law states that the sum of the currents flowing into each
node of the circuit must be zero. Likewise, the sum of the currents flowing into
each device must be zero. Both of these constraints are direct consequences
of charge conservation.

Kirchoff’s Current Law:

6
Vo €{a...f}.) dom =0
m=1

f
Vme{1...6}.) igm =0

ifat| f
— —o—{s
if5 id5 1d6

Fig. 1. Kirchoff’s Laws

From Kirchoff’s current law, we have

ZUeC CU(V)% + ZUeI IU(V) =0

where (' denotes the set of capacitor devices, and I denotes the set of current
source devices. Solving for dV /dt yields

W= (Npee Co(V) ™ (Sper (V) (4)

which is an ODE model for the circuit.

The device models above are simplistic, allowing a shorter presentation
and making the analysis in the remainder of this paper tractable. While these
models capture many of the key features of MOS circuit operation, we note
that the transistor model of equation 2 neglects the body effect and short
channel effects. Similarly, when modeling capacitors we make the simplifying
assumption that Cy is a constant; in real MOS designs, Cy depends sub-
stantially on V. Kirchoff’s current law is itself an approximation of Maxwell’s
equations, and so ignores “displacement currents.” Typically, designers use
more accurate models than those presented for transistors and capacitors—
here we have chosen to avoid complexity while retaining the key features of
realistic circuit models.

2.2 Input Signals

The problem of verifying an entire chip at the ODE level appears to be hope-
lessly intractable. Instead, we focus on the problem of verifying small circuits

and showing that the outputs of one circuit satisfy the constraints that we
assume for inputs to other circuits. Such a method requires a mechanism for
specifying the expected inputs and the allowed outputs of each small circuit.

o
5

- EES
- - <
o
X
o
=2
<
e
<

3y

b/@
L

The Annulus A "typica" trgjectory

Fig. 2. Brockett’s Annulus

Figure 2 depicts the annulus proposed by Brockett [Bro89] that we use to
specify the levels and transitions of signals. When a variable is in region 1, its
value 1s constrained but its derivative may be either positive or negative. We
will consider this a logically low signal. When the variable leaves region 1, it
must enter region 2. Because the derivative of the variable is strictly positive
in this region, it makes a monotonic transition rising to region 3. Regions 3
and 4 are analogous to regions 1 and 2, and correspond to logically high and
monotonically falling signals respectively. Because transitions through regions
2 and 4 are monotonic, traversals of these regions are distinct events. The
properties of the annulus provide a topological basis for discrete behaviours.

Many common signal parameters are represented by the geometry of an
annulus. The horizontal radii of the annulus define the maximum and mini-
mum high and low levels of the signal (i.e. Vi, Vop, Vi;, and Vi in figure 2).
The maximum and minimum rise time for the signal correspond to trajecto-
ries along the upper-inner and upper-outer boundaries of the annulus respec-
tively. Likewise, the lower-inner and lower-outer boundaries of the annulus
specify the maximum and minimum fall times.

3 Reachability Analysis

In this section we present our theoretic results. After looking at the con-
nection between verification and reachability, we examine three increasingly
difficult reachability analyses: linear models with convex polyhedra, linear
models with non-convex polyhedra, and finally nonlinear models with non-
convex polyhedra.

3.1 Verification as Reachability

Many circuit verification problems can be formulated as reachability analysis
problems. For example, consider a circuit that implements a simple state
machine. An ODE model provides a mapping between the continuous circuit
state (node voltages) and the time derivative of that state. Thus, given a point
in the continuous space, the value and derivative of each signal 1s known.
Using a Brockett annulus, each signal can be interpreted discretely as being
low, rising, high, or falling. The continuous model implements the discrete
specification if every reachable point in the continuous model corresponds to
a state or transition of the discrete specification.

First consider the verification of bounded prefixes of trajectories. For a
circuit with d nodes, the continuous state space is R%. We assume that the
derivative function for the model is autonomous (i.e. independent of time) and
finitely piecewise continuous (therefore locally bounded). Given a bounded
region Q C R4 Qp C @, and t; € RT, we want to show that all trajectories
that start in () at time 0 will remain in @ for all times up to ¢;. Our approach
to this problem is to construct a sequence of time steps to < t1 < ... < #;
such that t, = 0 and ¢, = ¢;. For ¢« = 1...k, we construct a region @);
such that any trajectory that starts in);_; at time t;_; will be in @Q; at
time ¢;. We then construct a second set of regions @, .. .Q},_; such that any
trajectory that starts in @; at time #; will remain in @} up to and including
time ¢;41. If Ufz_ong C @, then all trajectories that start in Qg at time 0 will
remain in @) for all times up to ¢; as can be readily shown by the construction
of Q).

Now consider infinite trajectories. Let @, @y, @}, and t; be constructed
as above, D = Ufz_ol ...Q} and Qt = Ufz_ol Qi If Qr C QF, then any
trajectory that starts in Qo remains in D forever. To see this, let z : Rt — R¢
be a trajectory with (0) € Qo. Let Tmin = minf:1 tp —tx—1. There exists a
sequence of times, 7,,, such that for all m > 0, z(7,,,) € Q% and 7, > MTinin -
The proof is completed by induction on m. For m = 0, 7,, = 0. For m > 0,
let j € {0...k — 1} such that z(7m_1) € Q;. Let

Tm = Tm—-1 1 (tj+1 - t]) 2 Tm—1+ Tmin = MM * Tmin

Then, z(7,) € Qj+1 C QT.

In general, it 1s not feasible to represent exactly the reachable regions
of systems modeled by ODEs. Most non-linear ODEs, including those that
arise when modeling VLSI circuits, do not have closed form solutions. Because
proof of safety properties is our objective, over estimation of the reachable
space is conservative—false negatives are possible, but not false positives.
Consequently, we use “containing approximations”, within which lie the true
reachable state spaces.

As described above, the next few sections examine three different cases of
reachability analysis. First, we consider the special case of linear ODE’s where
the initial region is a convex polyhedron—we show that the @; sequence can

be computed exactly, and the @} sequence can be computed with arbitrary
accuracy. In general, convexity is not preserved by non-linear models, and we
develop our treatment of non-linear models in two steps. First, section 3.3
presents a conservative approximation technique for the particular class of
non-convex polyhedra that can be represented by their projections onto two-
dimensional subspaces; however, linear models are retained. In section 3.4 we
show how these projection polyhedra can be used with non-linear models.

3.2 Linear models and convex polyhedra

This section presents the special case where the ODE model is linear; and
Qo 1s convex. An ODE model is linear if it can be written in the form

i = Az (5)

where z : Rt — R?is a trajectory and A € R4*? is a matrix (note that this
definition of “linear” 1s more general than the one used in much of the hybrid
systems literature). We assume that A has a full-rank set of eigenvectors. If
not, a small perturbation of A will produce such a matrix, and the techniques

presented in section 3.4 can be applied. With this assumption, the solution
of equation 5 is [HS74]

z(t) = e4z(0) (6)
For any fixed value of ¢, €' is a linear operator that can be represented by
a matrix, and e*4 is invertible.

A d-dimensional convex polyhedron with m faces can be represented by
linear program of the form

Mz < B (7)

where M € R™*4 is a matrix and B € R™ is a vector (see [PS82]). We write
(M, B) to denote the linear program of equation 7, and write z € (M, B) to
denote that = satisfies this linear program.

Polyhedra can be bloated. If (M, B) is a linear program, and u is a real
number, then, bloat((M, B),u) is the polyhedron obtained by moving each
face of M outward by u. Let A € R?%be a vector such that that its j*" element
is given by A;(j) = u||M;||2, where ||M;|]> denotes the L2 norm of row j of
M . Then,

bloat((M, B),u) = (M, B — A) (8)

Convexity is preserved by linear operators. In particular, let the linear
program (Mg, Bg) describe the convex region Qq, let ¢; € RT and let A
be the matrix representation of a linear ODE model. A point z is reachable
from Qg at time ¢, if and only if € (Mge™!4, B), which follows directly from

equations 6 and 7. Thus, we can construct @1 ... Qg such that forz =1...k,
any trajectory that starts in);_1 at time #;_; will be in @); at time ¢;. In
particular,

Qi = (Mpe="4 B) (9)

These (); are exact.

“Q
.’i‘o = —21

Qo
Fig.3. A simple linear system

Although the @;’s (the reachable regions at each time step) are convex, the
same does not necessarily hold for the @Q4’s (the regions reachable during all
times between steps). For example, consider the system depicted in figure 3.
Trajectories are counter-clockwise circles centered at the origin. Although Qg
and @ are both convex, the minimal region for Qf is the region swept out
by moving o through an arc of ¢; radians (the shaded region in figure 3).
Region Q) is not convex.

Rather than trying to solve for @} exactly, we will find an approximation.
Note that z = Ax is locally bounded; therefore it is bounded in). Define
the scalar ||2||max = maxeeq [|Az]|2. A trajectory that starts in region Q; at
time ¢; remains within a distance (¢;41 — ;)||#||max of @5 until time ¢;4;. Let

Q; = blOat((Moe_t'A,B),||i’||max) (10)

For any trajectory x such that z(¢;) € @; and for any time ¢ € [t;,t; + 1],
z(t) € @ as required.

Although the Q! are containing approximations, each one is computed
from an exact);—the errors of making a conservative approximation do
not accumulate between time steps. To achieve accurate estimates of the
reachable space, the time steps should be relatively small so that there is
little of @} outside of Q; U Q1. For example, this approach would compute
a large overestimate of Qf, for the time step depicted in figure 3.

A straightforward approach to verification is to construct a sequence of
Q; and @) as described above, and verify that each @} is contained in Q.
If all containments are established, then the verification is complete. Other-
wise, choose ¢ such that @} is not contained in @. A counterexample to the
verification is established if either of the exact solutions @; or ;41 is not
contained in Q. If neither of the exact solutions provide a counterexample,

divide the step from @; to ;41 into two smaller steps and repeat the verifi-
cation. This process terminates when containment of all the Q}’s is verified,
a counter-example is found, or the time step is smaller than is meaningful
for the chosen model. In the latter case, the property cannot be verified with
the given model. Typical variation in MOS circuit parameters can £20% or
more, although closely matched circuits (e.g. sense-amplifiers, see [Bak90])
can be designed that are balanced to within a few parts per thousand.

3.3 Linear models and non-convex polyhedra

Although systems with linear ODE models can be analysed quite accurately
using the techniques described in the previous section, such systems do not
have a rich enough phase space structure for interesting digital computation.
In a linear system, the asymptotic behaviour of trajectories is either conver-
gence towards the origin, divergence to infinity, or an orbit centered at the
origin. In order to examine more interesting systems, we need techniques to
analyse non-linear models. In general, these models do not preserve the con-
vexity of polyhedra; therefore, we begin by describing the class of non-convex
polyhedra that we use in our analysis.

Representation

We represent high dimensional polyhedra by their projections onto two di-
mensional subspaces, where these projections are not required to be convex.
Conversely, a full dimensional polyhedron can be obtained from its projec-
tions by back-projecting each into a prism in B¢ and computing the inter-
section of those prisms (see figure 4). More formally, let {u1,usa,...uq} be
an orthogonal basis for R If P is a polygon, we write (ux(py, uy(p)) to
denote the basis of P. We write ConvexHull(P) to denote the convex hull
(see [PS85]) of P, and it is understood that X(ConverHull(P)) = X(P)
and Y (ConverHull(P)) = Y(P). We write prism(P) to denote the inverse
projection of P back into the full dimensional space:

prism(P) = {(x1,...2q) € Rd|(xx(p),xy(p)) e P} (11)

Let P be a collection of polygons. The object represented by P is Q(P) where
Q(P) = () prism(p) (12)
P=P

We note that faces of Q(P) correspond to edges of the projection polygons.
If P is a projection polygon, and e is and edge of P, we write X (e) and Y (e)
to denote X (P) and Y (P) respectively. Likewise, we define prism(e) to be

prism(e) = {(x1,...2q) € Rd|(1‘x(e), Ty(e)) € €} (13)

y z z > < PrO] ectior
L> X L> y L> X
z /
Xy \
Maximal
7 Reachable
Space
Y

Fig.4. A three dimensional polyhedron and its projections

If e is an edge of a projection polygon, we write face(e,P) to denote the
corresponding edge of e:

face(e, P) = Q(P) N prism(e) (14)

We write face(e) when P is apparent from context.

There are several advantages to this representation. First, it corresponds
to an engineer’s intuitive notion of how a circuit works. Typically, each signal
is “controlled” by a small number of other signals. Pairing each node with
each of 1ts controlling nodes naturally captures the causal behaviour of the
circuit. Because most circuits have limited fan-in and fan-out, the number of
such pairs, and hence the number of polygons, is proportional to the number
of nodes in the circuit.

From the perspective of a numerical analyst, the engineer’s intuition
means that a full dimension polyhedral representation of the reachable re-
gion may provide unneeded freedom in its ability to represent constraints
between every possible combination of variables. In the same way that many
matrices encountered in practice contain interaction between only limited
sets of variables, in many ODE systems each variable only directly influences
a small number of others. Dense storage and manipulation of sparse ma-
trices is wasteful; similarly, representing the reachable state space as a full
dimensional polyhedron may be exponentially extravagant.

Finally, there are algorithmic advantages to using projections. The exis-
tence of a sound method for computing the evolution of bounding polyhedra
represented in this manner is key to verification. In addition, all geomet-
ric operations take place in two dimensions where there are many results

and algorithms available from computational geometry [PS85]. Lastly, it is
relatively easy to compute the convex hull of a polygon, thus producing a
containing approximation of that polygon in the form of a linear program.

Of course, there are many polyhedra that cannot be exactly represented
by this approach. First, indentations on the surface of an object can not
be represented; likewise, many perforated objects and knot-like objects can
only be approximated. We require that the projections are orthogonal; there-
fore, edges formed by the intersection of projections must be at right-angles.
Further experimentation is needed to determine the significance of these lim-
itations when analysing circuits modeled by ODEs.

Reachability

Let Q(Pg) be a polyhedron, and let # = Az be a linear model for a system.
Given a monotonically increasing sequence of times, ¢ . . .%g, we will construct
a sequence of polyhedra Q(P1)...Q(Px) such that trajectories that start in
Q(Py) at time t = 0 are contained in Q(P;) at time ¢t = ¢;. Our approach
is based on three observations, which we justify below. First, it is sufficient
to consider trajectories emanating from the faces of Q(Py), as these will
define the faces of the polyhedron at later times. Second, for each edge e of
a projection polygon, it is straightforward to construct a convex containing
approximation for face(e). Third, the method described in section 3.2 can be
used to determine reachability from this convex approximation.

Because Ax is locally bounded, trajectories are continuous and cannot
cross. Therefore, trajectories starting on a face of the polyhedron provide
bounds for trajectories starting in the interior.

To construct a convex approximation for face(e) let

Z(P) = ﬂ prism(ConvexHull(P)) (15)
PeP

It is straightforward to show that ConvexHull(Q(P)) C Z(P), and
ConverHull(face(e,P)) C ConvexHull(Q(P)) N prism(e). Therefore,

ConverHull(face(e, P)) C Z(P) N prism(e) (16)

Given P, a linear program for Z(P) can be constructed by computing the
convex hull for each polygon in P and taking the conjunction of their con-
straints. Each polygon is two dimensional, allowing efficient (i.e. O(nlogn))
algorithms to be used. Once Z(P) is calculated, it is easily extended to pro-
duce Z(P) N prism(e) for each edge. This provides our convex approximation
of face(e, P).

The method described above allows us to construct a d — 1 dimensional
convex approximation for each face of Z(Py). The reachable space from each
face can then be computed by the techniques given in section 3.2. The bound-
ary of the region reachable from Z(Py) is contained in the union of the regions
reachable from the faces.

In order for the same algorithms to be used for the next time step, we
would like to compute a containing approximation of this boundary as a se-
ries of projections—describing the new boundary in the same way that Z(Py)
was described. Given a linear program for a face, the projection of that face
onto a plane can be computed by finding an extremal vertex of the projec-
tion, and tracing the rest of the vertices with a series of pivots (see [AF92]).
Because there may be an exponentially large number of vertices in this pro-
jection, such an approach may be slow. To avoid tracing too many vertices,
extremal vertices can be computed for a fixed set of directions, and edges as-
sociated with these vertices joined to produce a containing approximation of
the projection. Regardless of the method chosen to compute the projections,
an object that contains everything reachable from Q(Py) can be constructed
by filling in the projection polygons (another straightforward operation).

An unattractive feature of this approach is that the reachable polyhedron
for each face must be projected onto all planes used for the original projection
polygons. Intuitively, this 1s because with a linear model, we can calculate
the exact image of the convex approximations of the face for arbitrarily large
times. During such an extended time interval, the polyhedron can rotate, and
any face can become an extremal face for any projection.

3.4 Non-linear models and non-convex polyhedra

We extend the methods of the previous section to non-linear models in three
steps. First, we will approximate the non-linear model by a linear model
and a correction term. Second, we show how this correction term can be
described as an non-determinate function of time, allowing the non-linear
ODE to be approximated by a first order linear differential equation with an
non-determinate nonhomogeneity. Finally, by bounding the solutions of the
nonhomogenous system, we obtain a containing approximation of solutions
to the original non-linear system.

Because the method from section 3.3 considers each face separately, we
focus on the problem of finding the points reachable in time Af from a point in
face(e) for some edge e, for a model whose derivative function has an L2 norm
bounded by ||#||max. In determining the region reachable from face(e), only
points in bloat(face(e), (At)||#||max) need to be considered. The derivation of
the linear approximation and correction term is handled by the model—in
other words, we leave it to the ingenuity of the programmer. When the model
is evaluated, bloat(face(e), (At)]|%||max) is available as a linear program, so
linear bounds can be readily obtained describing the region in which the
approximation and correction must be valid.

As an example, consider the transistor model presented in equation 2
with V; = 0.5. For a particular bloated face, assume 1.2 < V,, < 1.6 and
2.4 < Vis < 3.1. Then, everywhere in this region iqs = G(Vys — V;)?. Lin-
earizing about the mid-point of the region and choosing an additive con-
stant to minimize the worst-case absolute value of the error, we get 74 =

G(1.8Vys — 1.69) £ €(vgs, v4s), where €(vgs, v4s) € [—0.02,0.02]. Similar tech-
niques apply when the feasible region includes more or other modes of the
transistor’s operation.

Linear models can also be computed for input signals that are described
using annuli (recall figure 2). As for the transistor model, the input signal
model queries the linear program for the bloated face to determine upper and
lower bounds for the value of the signal. For any given value of the signal, the
annulus specifies upper and lower bounds for its time derivatives. From this
description, a linear model with an error term can be computed. For such
signals, the error term can be quite large; especially when the signal can be
in the first (logical low) or third (logical high) regions of the annulus.

The non-linear correction term is a function of the state of a trajectory:

&= Ax + e() (17)

The model provides bounds on ¢(z); thus, we write ¢(z) € E for some E C R
For any particular trajectory, the correction term can be understood as a
function of time, and we write

i = Az +£(1) (18)

By computing the set of points reachable by trajectories for all functions &
with £(¢t) € E, we obtain a containing approximation for the original, non-
linear system.

Equation 18 is a linear, nonhomogeneous, first-order differential equation.
Such equations have a closed form solution [Apo67], namely:

x(t) = e (0) + etA/O t e~ e (u)du (19)

The e'42(0) term is the solution to the linear approximation and the
efd fOAte_“AE’(u)du term is the perturbation arising due to the non-linear
correction in the model. A bound on the contribution of this correction term
1s computed next.

We assume that A has a full rank set of eigenvectors. If not, A can be
perturbed slightly so as to satisfy this condition, and the perturbation can
be reflected by slightly enlarging the correction term. Now, A can be di-
agonalized [HS74]; thus e~ 4 = D~1e=tA" D where D is the diagonalizing
matrix, and AT is diagonal. The elements of e—tAT (also a diagonal matrix)
can be readily bounded for all ¢ € [0, At]. Using standard optimization tech-
niques [PS82], a linear program can be constructed that is a containing ap-
proximation for the values of ef4 fOAt e~uA¢ (u)du.

The previous paragraph provides a mathematically rigorous way to bound
the contribution to trajectories of the non-linear component of the model.
We expect that it would be impractical to implement this method due to its
reliance on diagonalizing A—a procedure that is both time-consuming and

numerically sensitive. Instead, we plan to sample e~ %4 for several values of
u € [0, At] using a numerical approximation such as an integration algorithm.
From these samples, approximate bounds on the non-linear contribution can
be found. Just as with the mathematically rigorous approach, these bounds
can be expressed as a linear program.

Using one of the methods in the previous two paragraphs, a containing ap-
proximation in linear program form for e!4 qu:to e~44¢(u) can be constructed.
Section 3.3 built a linear program containing the values of e!4 face(e). For rea-
sons that will be explained shortly, we will instead use a linear program that
contains the values of ¢4 face’(e), where

face' (e, (At)]|#]|max)

= bloat(Z(P), ||#||max) N prism(extend (e, (A1) ||#||max))
extend (e, (At)||#||max)

= e with end points extended outward by (At)||%|/max

Note that face(e) C face’(e). A containing approximation for the sum of

N e~4A¢(u) and e’ face(e) can also be described by a linear program,

and \ljvgocan approximate the boundary of the reachable space at time At as
the union of these linear programs for each face.

The methods described in this section rely on representation of the reach-
able space by a collection of two dimensional projections. For example, we
use an approximation of the convex hull of the reachable space which is
derived from the convex hulls of the projections. Furthermore, we need to
know the endpoints of each edge when creating the convex approximation of
the corresponding face. Finding the endpoints is straightforward when they
are defined by segment intersections in a plane. Therefore, each integration
step must end by computing projection polygons for the new reachable space
object.

The technique described in section 3.3—projecting the convex hull for
each transformed face onto each projection plane—could be applied here as
well. For the methods described in this section, it is only necessary to project
each transformed face back to the projection plane for its original edge. Let e
be an edge of polygon P and ¢’ be an adjacent edge of another polygon. Then
e and ¢’ are orthogonal. Also note that all points of face(e’) lie on the inside of
face'(e, (At)||2||max)- Therefore, all trajectories starting from face(e’) remain
on the inside of face'(e) at the end of the time step. Thus, the projection of
the boundary of the polyhedron into the plane of P i1s completely determined
by the projection of the faces arising from edges in P at the beginning of the
time step.

4 Conclusion

Many verification problems can be formulated as questions of reachability.
With a circuit modeled by a system of ordinary differential equations, the

reachability problem can be formulated as: “given an initial region @y and
an ending time t; (possibly +00), find a region) such that all trajectories
starting in Qg at time ¢ = 0 remain in @) at least until time ¢ = ¢;.”

We have addressed this problem for three classes of models and regions.
First considering linear models with convex regions, we showed how the region
reachable at a future time can be computed exactly. Furthermore, a contain-
ing approximation for points reachable through all times up until that future
time can be computed with a simple trade-off between effort and accuracy.
We note that the HYTECH tool [HH95] represents reachable regions as a
union of convex polyhedra, and it is possible that the techniques presented
there could be applied in this first context.

Because models with non-linearities do not preserve the convexity of re-
gions, 1t was next necessary to identify an efficient representation for non-
convex polyhedra. For our purposes, projection polyhedra—where an object
is represented by its projection onto two dimensional subspaces—provide such
arepresentation, allowingus to apply efficient algorithms from computational
geometry in two-dimensions to our higher dimensional problems.

Finally, we addressed the analysis of non-linear systems, by approximat-
ing the non-linear model by a linear term and a non-linear correction. The
correction can be kept small by computing separate such models for each
face of the reachable space, and can be approximated by a non-determinant
“error” function of bounded magnitude. This construction allowed us to con-
vert a non-linear model into a linear nonhomogenous differential equation,
which can be solved analytically, and such solutions allow us to bound the
reachable space.

The analysis presented in this paper shows that ideas from computational
geometry, dynamical systems, formal methods, linear algebra, and numeri-
cal computation can all contribute to the verification of systems with ODE
models. The authors are currently implementing a tool to demonstrate these
techniques.

Acknowledgements

We appreciate an extended e-mail discussion with Oded Maler and Thao
Dang on reachability with continuous models. Jack Snoeyink and Danny
Chen have guided us about what is and what is not feasible in computational
geometry.

References

[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and ver-
tex enumeration of arrangements and polyhedra. Discrete Computational
Geomelry, 8:295-313, 1992.

[Apo67] Thomas M. Apostle. Calculus, volume 1. John Wiley and Sons, Inc., New
York, second edition, 1967.

[Bako0] H.B. Bakoglu. Circuits, Interconnections, and Packaging for VLSL

[Bro&9]

[GDs5]

[GM97]

[Gre96]

[FH95]

[HS74]

[Nag75]

[PS82]

[PS85]

Addison-Wesley, 1990.

R. W. Brockett. Smooth dynamical systems which realize arithmetical and
logical operations. In Hendrik Nijmeijer and Johannes M. Schumacher,
editors, Three Decades of Mathematical Systems Theory: A Collection of
Surveys at the Occasion of the 50th Buirthday of J. C. Willems, volume
135 of Lecture Notes in Control and Information Sciences, pages 19-30.
Springer, 1989.

Lance A. Glasser and Daniel W. Dobberpuhl. The Design and Analysis of
VLSI Circuits. Addison-Wesley, 1985.

Mark R. Greenstreet and Ian Mitchell. Reachability with discrete and ODE
models. In Michael Lemmon, editor, Fifth International Hybrid System
Workshop, Notre Dame, September 1997.

Mark R. Greenstreet. Verifying safety properties of differential equations.
In Proceedings of the 1996 Conference on Computer Aided Verification,
pages 277-287, New Brunswick, NJ, July 1996.

T.A. Henzinger and P.-H. Ho. HyTEcH: The Cornell Hybrid Technology
Tool. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hy-
brid Systems II, Lecture Notes in Computer Science 999, pages 265-293.
Springer-Verlag, 1995.

Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical
Systems, and Linear Algebra. Academic Press, San Diego, CA, 1974.
L.W. Nagel. SPICE2: a computer program to simulate semiconductor
circuits. Technical Report ERL-M520, Electronics Research Laboratory,
University of California, Berkeley, CA, May 1975.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
maezation: Algorithms and Complexity. Prentice Hall, Englewood Cliffs,
NJ, 1982.

Franco P. Preparata and Michael 1. Shamos. Computational Geometry: An
Introduction. Texts and Monographs in Computer Science. Springer, 1985.

