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Abstract— System-on-Chip designs often have a large num-
ber of timing domains. Communication between these domains
requires synchronization, and the failure probabilities of these
synchronizers must be characterized accurately to ensure the
robustness of the complete system. We present a novel approach
for determining the failure probabilities of synchronizer circuits.
We use numerical intergration to perform large-signal analysis
that accounts for the non-linear behaviour of real synchronizer
circuits. We complement this with small-signal techniquesto
characterize behaviours near the metastable equilibrium.This
combination overcomes the limitations of traditional techniques:
the large-signal analysis accounts for the transfer of metastable
behaviour between synchronizer stages; and the small-signal
techniques overcome the limitations of numerical accuracyin-
herent in pure simulation approaches. Our approach is fully
automated, is suitable for integration into circuit simulation
tools such as SPICE, and enables accurate characterizationof
extremely small failure probabilities.

1. Introduction
Large integrated circuit designs are being divided into an

increasing number of separate time domains. There are several
motivations for this trend. First, distributing a global clock
across a large chip with low skew is difficult, power intensive,
and often unnecessary. Second, the use of independently
designed IP (“Intellectual Property”) blocks results in modules
with different performance requirements and clock speeds.
Third, power management techniques such as dynamic voltage
scaling introduce even more combinations of clock frequencies
into a design. Finally, interfaces to networks, graphics and stor-
age devices, memory, and other processors can each require a
separate clock. This proliferation of timing domains leadsto a
growing number of on-chip synchronizers at their interfaces.
While it is impossible to build a perfect synchronizer [1],
the probability of failure drops roughly exponentially with
the time allotted for synchronization [2], [3]. Calculating
these failure probabilities accurately is an essential part of
multi-timed design: underestimating the failure probability
leads to an unreliable design; conversely, overestimates lead
to excessive communication latency and lower system-level
performance. This paper presents an efficient and accurate
method for determining synchronizer failure probabilities.

The traditional analysis of synchronization failure uses a
small-signal linear approximation of the dynamics of the
bistable circuit near its metastable equilibrium [4, chap.7.5].
Such linearization neglects the large signal behaviours that
occur as the synchronizer first approaches its metastable
equilibrium and in the coupling between stages in multi-stage
synchronizers. Thus, the small-signal approach is useful for
gaining an intuitive understanding of synchronizer operation,

it does not provide accurate estimates of failure probabilities.
Simulation based on numerical integration is the most

prevalent way to analyse non-linear circuits. However, the
acceptable failure probabilities for real synchronizers are
extremely small, and the difference between an input that
causes a failure and one that leads to correct resolution is less
than the resolution of double-precision floating point numbers.
Furthermore, the dynamics of synchronizer circuits lead to
numerical instability in the integration routines so that the
accuracy of the simulator is much less than the floating point
resolution. Thus, simulation is an essential tool for circuit
design, but simulations cannot establish the very low failure
probabilities required for real designs.

Instead of using simulation or analysis, it is also possible
to experimentally measure the failure probability of a syn-
chronizer after it has been fabricated. In [5], Kinnimentet
al describe how they combined a clever experimental set-up
with careful statistical accounting to measure the failureprob-
abilities of a 74F5074 flip-flop down to10−12 (assuming a
100 MHz clock, and uniformly distributed input arrival times),
corresponding to a MTBF (Mean Time Between Failure) of
about three hours. They showed that due to the non-linear
effects in the coupling between the master and slave stages
of the flip-flop, the actual MTBF was less than that predicted
by the simple, linear model by more than a factor of 20000.
Similar measurements and results are presented in [6], [7].The
physical data that can be provided by these kinds of experi-
ments is valuable for validating any computational approach
for analysing metastable behaviour. However, such physical
measurements can only be performed after the synchronizer
has been fabricated, and the it must be possible to observe
the synchronizer from off-chip. Designers need to be able
to determine failure probabilities and evaluate design trade-
offs before their circuits are fabricated. Thus, we need a
computational approach for analysing these circuits.

This paper presents a novel method for computing the fail-
ure probabilities of synchronizers. We combine small-signal,
linear analysis with large-signal, non-linear simulationin a
way that exploits the strengths of each to allow us to accurately
compute failure probabilities that are much smaller than the
floating point precision. Section 2 presents that the dynamical
systems perspective that we use for analysing metastability and
describes the limitations of traditional methods based on small-
signal analysis or numerical integration. Section 3 shows how
we combine small-signal analysis with numerical integration
to obtain a robust, fully-automated method for computing
failure probabilities. In section 4 we illustrate our approach
by computing the failure probabilities for several synchronizer



data

m3

m4

i4x x

data

clock

out

m2

m1

i0

i1

i2i3
out

Vdd

Vdd

x

x

0
0

clock goes low

Metastable
Equilibrium

Separator

A latch circuit A Metastable Trajectory

Fig. 1. A Simple Latch and Its Metastable Behaviour

circuits.

2. Synchronization
Consider the transparent latch shown in the left part of

Figure 1. Metastability can occur if thedata input changes at
roughly the same time as theclock input makes a high-to-low
transition. For example, the right half of Figure 1 illustrates
how the latch can function if thedata input makes a rising
transition as the clock falls. In response to the high value on
data, x starts to fall, which causesx to rise with some lag.
Metastability occurs ifx andx have roughly the same voltage
when the clock input falls.

We now consider the metastable latch as a dynamical
system. For simplicity, assume that invertersi1 and i2 are
identical. Let Vms be the voltage at which the inputs and
outputs of these inverters are equal in equilibrium. This
balance point is themetastable equilibrium of the latch.

When the trajectory is sufficiently close to the metastable
point, it can be accurately approximated using a linear model
for the circuit dynamics. Lety be a vector with an element
for each non-input node of the circuit, and letin be the vector
of inputs. An ODE (ordinary differential equation) model for
circuit is given by

ẏ = f(y, in), (1)

where ẏ is the time derivative ofy, and f is the derivative
function. Let yms denote the metastable equilibrium for the
synchronizer. Fory close toyms we get:

ẏ ≈ A(yms,in) · (y − yms) + ẏms (2)

where theA(yms,in) matrix is the Jacobian off at (yms, in).
The traditional textbook analysis [4, chap. 7.5] assumes that
in is constant during the time that metastability is a concern.
For typical synchronizer circuits, this is a reasonable approx-
imation as long as the clock signal is constant. We then get

y(t) ≈ yms + et·Ams · (y(t0) − yms) (3)

If y is n-dimensional, then the matrixA(yms,in) hasn − 1
negative eigenvalues and one positive one. The eigenvectors
for the negative eigenvalues span then − 1 dimensional
space corresponding to the separator nearyms; these decay
exponentially with time, bringing the trajectory closer to
the metastable equilibrium. The eigenvector for the positive
eigenvalue corresponds to the separation of trajectory from the
separator – this is the component that grows exponentially with

time, eventually bringing the synchronizer to a well-defined
logical state. Lettingλ+ denote the value of the positive
eigenvalue ofA(yms,in). If the state of the synchronizer at
time t0 is uniformly distributed in a small region aroundyms,
then the probability that the synchronizer has not resolvedby
time t decreases aseλ+t.

As noted earlier, the simple linear model from equation 3
fails to capture the behaviour of real synchronizers. Thereare
two main reasons for this. First, when a latch goes opaque,
its internal state may be near the separator between the stable
basins of attraction for the latch but still a significant distance
from the metastable equilibrium. The right side of figure 1
illustrates this where the trajectory is along the separator but
below the metastable equilibrium when the clock goes low.
Second, the assumption that the clock input to the synchronizer
is constant while the synchronizer is metastable does not hold
for a multi-stage synchronizer. Such a synchronizer attempts
to resolve metastability over several clock periods; with each
successive edge of the clock, the metastable behaviour effec-
tively moves from one stage of the synchronizer to the next.
These large signal swing activities violate the small signal
assumptions of linear analysis.

Numerical integration provides an alternative to small signal
analysis. For example, HSPICE provides a bisection command
to search for metastable equilibria. With bisection, a usercan
choose two input transition times such that the latch settles
high for the first and low for the second. Then, the bisection
routine searches for the input transition time that causes the
circuit to remain in an unresolved, metastable condition for a
prolonged time.

Bisection provides a method for calculating MTBF. Let’s
say that a design allows timets for the output of the
synchronizer to settle. Lettearly(ts) and tlate(ts) be the
earliest and latest transition times respectively for the input
that cause the output to take at leastts to settle. Define
∆tin = tlate(ts) − tearly(ts). In words,∆tin (ts) is the width
(in seconds) of the window of input events that cause the
synchronizer to fail when given timets to settle. If the clock
frequency isfc, the rate of input transitions isfd, and the
times of input events are uncorrelated with the clock, we get

MTBF(ts) = (fcfd∆tin (ts))
−1. (4)

Given a value forts, we can use simulation and bisection
to computetearly(ts) and tlate(ts). Using SPICE or similar
models, the non-linearities of the circuit are taken into account,
overcoming the limitations of analysis based on small-signal
models. However, designers typically need very small MTBFs,
often specified in the millions of years or more. Iffd is 1GHz,
then to achieve a MTBF of one million years,∆tin must be
less than10−22(1/fc); this is beyond the numerical resolution
of a simulator using double-precision numbers. Furthermore,
the ODE for the synchronizer is numerically unstable near a
metastable equilibrium to to the positive eigenvalue,λ+ of the
Jacobian. Thus, the accuracy of a numerical integrator willbe
much less than the numerical resolution of the machine. In the
next section, we show how small-signal, linear analysis canbe



combined with large-signal numerical integration to compute
failure probabilities accurately for very large MTBFs.

3. Combining Large- and Small-Signal
Analysis

Our method for computing synchronizer failure probabilities
is based on two observations. First, the size of the window of
input events for which the synchronizer fails,∆tin decreases
exponentially with the amount of time that the synchronizer
has to settle,ts. Thus, the trajectories corresponding to input
events attearly(ts) and tlate(ts) will be extremely close to
each other during the initial part of the simulation, only
diverging from each other when the metastable condition is
finally resolved. Second, MTBF depends on thedifference
betweentearly(ts) andtlate(ts), the exact values oftearly(ts)
and tlate(ts) are not critical. Our approach calculates this
difference,∆tin , directly, and avoids the “small difference of
large numbers” problem associated with existing simulation
based techniques for analysing metastability.

3.1. Restarting Bisection
Our approach extends the traditional bisection approach.

For simplicity, we describe our algorithm for a synchronizer
whose data input makes a low-to-high transition. The analysis
for transitions in the other direction is equivalent. Initially,
we start with timestH0

and tL0
such that the synchronizer

settles high when the input transition fordata occurs at time
tH0

and settles low when the transition is at timetL0
. The

times tH0
and tL0

are provided by the designer; they may
be widely separated; so finding such times is not difficult.
Using bisection, we find a small interval,[tH1

, tL1
] such that

the synchronizer settles high if the input transition occurs
at time tH1

and low if it occurs attL1
. We keep the gap

betweentH1
and tL1

large enough that the trajectories for
these two conditions are clearly distinguished by the numerical
integrator.

Rather than further bisecting the interval of transition times
for data, we restart the simulation at a later time. Let
V1(tin , t) give the state vector (voltage on each node of the
circuit) at timet when the input changes at timetin . We find
a time,t1, such that fortH1

< tin < tL1
and0 ≤ t ≤ t1

V1(tin , t) ≈

tL1
− tin

tL1
− tH1

V1(tH1
, t) +

tin − tH1

tL1
− tH1

V1(tL1
, t) (5)

The main considerations for choosingt1 are thatt1 must be
small enough for the accuracy of the linear approximation
to be acceptable and large enough for the analysis to make
progress. Section 3.3 describes the selection oft1 in greater
detail and shows that these conditions are easily satisfied in
practice. In the following, letVH1

= V (tH1
, t1), andVL1

=
V (tL1

).
The pointsV1(tH1

, t1) andV1(tL1
, t1) are the endpoints of

an interval that we can use for further bisection. Letα2 ∈ [0, 1]
be the bisection parameter; set the initial voltage state ofthe
circuit to (1−α2)VH1

+α2VL1
and the initial time tot1; model

the data input with a transition at time(1− α2)tH1
+ α2tL1

.
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We bisect onα2 to find a small interval,[αH2
, αL2

], such that
the synchronizer settles high when simulated from the initial
state forαH2

and low when simulated from the initial state
for αL2

. Let V2(α2, t) give the state vector at timet when
simulated from an initial state of(1−α2)VH1

+αVL1
at time

t1. We now find a time,t2, such that forαH2
< α2 < αL2

and t1 ≤ t ≤ t2

V2(α2, t) ≈

αL2
− α2

αL2
− αH2

V2(αH2
, t) +

α2 − αH2

αL2
− αH2

V2(αL2
, t) (6)

Section 3.3 describes the selection oft2 in more detail. The
points V2(αH2

, t2) and V2(αL2
, t2) are the endpoints of an

interval that we can use for further bisection.
Figure 2 illustrates our repeated bisection method. We write

VHi−1
andVLi−1

for the endpoints of the interval that we use
for starting theith round of bisection. We writeαHi

andαLi

for the interval that we reach at the end of theith round, and
V ′

Hi
and V ′

Li
for the corresponding voltage points. We have

for i ≥ 2:

V ′
Hi

= (1 − αHi
)VHi−1

+ αHi
VLi−1

V ′
Li

= (1 − αLi
)VHi−1

+ αLi
VLi−1

VHi
= Vi(αHi

, ti)
VLi

= Vi(αLi
, ti)

(7)

whereVi(α, t) is the voltage state reached at timet starting
from an initial voltage of(1−α)VHi−1

+αVLi−1
at timeti−1.

Thus,VHi
= Vi(αHi

, ti) and VLi
= Vi(αLi

, ti). Because we
chooseti to be small enough to allow for an accurate linear
approximation ofVi we have

Vi(α, ti) ≈
αLi

−α

αLi
−αHi

VHi
+

α−αHi

αLi
−αHi

VLi
. (8)

Rather than attempting to simulate an entire trajectory
from the critical transition of thedata to the resolution of
metastability, our method divides such trajectories into multi-
ple segments. The dynamics of metastable circuits ensures that
trajectories that resolve to different logical states willdiverge
exponentially with time. While this divergence causes serious
stability problems when trying to find metastable trajectories
by numerical integration alone, we use the divergence to find
intervals for restarting our bisection that are larger thantheir
predecessors. Because these divergent trajectories are initially
quite close to each other, we can build linear maps from the
trajectories at each step of our computation back to trajectories



in earlier steps. The next section describes how these mappings
allow us to compute failure probabilities accurately.

3.2. Computing Bounds for∆tin

Using equation 4, it is sufficient to compute∆tin (ts) to
determine the failure probability of a synchronizer that has ts
time units of settling time. For each bisection step, we find
trajectories for which metastability takes longer and longer to
resolve. These correspond to larger values forts and smaller
values for∆tin . The value ofts can be observed directly from
the simulation: we simply note that time of the corresponding
output transition (e.g. the time that the output signal crosses
Vdd/2). This section describes how we compute∆tin . There
are two main issues that we address:

1) At most steps, our algorithm bisects a voltage interval.
We need to map these initial voltage states back to input
transition times in a way that allows accurate calculation
of ∆tin .

2) Consider a synchronizer whose input makes a low-to-
high transition. If the synchronizer settles high, we can
observets directly. On the other hand, if the synchro-
nizer settles low, there may be no change on the output.
Thus, to compute∆tin we need to find the latest that
the input can change and still have the synchronizer
settle high. This effectively means finding the perfectly
metastable trajectory that never resolves.

For i ≥ j, let Back i,j map a voltage from the segment that
was used to start theith round of bisection, i.e.(VHi

, VLi
),

back to the corresponding voltage on the segment(VHj
, VLj

)
if j > 1 or the transition time of thedata input if j = 1.
Inverting equations 5 and 8 we get:

Back i,j(V ) = V , if i = j

=
‖VL1

−V ‖tH1
+‖V −VH1

‖tL1

‖VL1
−VH1

‖ , if i = j = 1

= Back i−1,j

(

‖VLi
−V ‖V

′

Hi−1
+‖V −VHi

‖V
′

Li−1

‖VLi
−VHi

‖

)

, if i > 1

(9)
We now need to determine the latest time that the input

can make a low-to-high transition such that the synchronizer
eventually settles to a logical high value. Each bisection phase
computes bounds for this time, and these bounds become
progressively tighter. For eachi, V ′

Hi+1
is an initial condition

for which the synchronizer settles high andV ′
Li+1

is an initial
condition for which it settles low. Letk denote the total
number of bisection rounds performed in the analysis. We
could useBackk,1(V

′
Hk+1

) andBackk,1(V
′
Lk+1

) as lower and
upper bounds respectively for the input times that lead to
“perfect” metastability. However, this would lead to large
numerical errors, because∆tin may be very small compared
with the time of the input transition.

To avoid these numerical issues, we perform the subtraction
as early as possible. For example, when we findV ′

Hi+1
we

know its settling time – we call thists,i. Now, when we
complete our last round of bisection, we haveV ′

Hk+1
. Note that

Backk,i(V
′
Hk+1

) gives the state at timeti that led toV ′
Hk+1

at

time tk. Likewise, Backk,i(V
′

Lk+1
) gives the state at timeti

that led toV ′
Lk+1

at time tk. Let

ρ1 =
tL1

−tH1

‖VL1
−VH1

‖ ,

ρi = ρ1

∏i

j=2

‖V ′

Lj
−V ′

Hj
‖

‖VLj
−VHj

‖ , if i > 1
(10)

We now have

‖Backk,i(V
′
Hk+1

) − V ′
Hi+1

‖ρi

≤ ∆tin (ts,i)
≤ ‖Backk,i(V

′
Lk+1

) − V ′
Hi+1

‖ρi

(11)

This is the formula that we use for computing bounds for∆tin

in the remainder of this paper.

3.3. Implementation Issues
We implemented the computation described above using

MATLAB . We used the simple, short-channel transistor model
from [8, chap. 2.5.2] and adjusted the model parameters so that
inverter transition times matched those from HSPICE for the
0.18µ TSMC CMOS process. We used MATLAB ’s ode45, a
fourth-order Runga-Kutta integrator, for numerical integration.

Our algorithm has an inherent trade-off between the ac-
curacy of the integrator and the accuracy of the linear ap-
proximation. If we continue bisection to produce a very small
segments for(V ′

Hi+1
, V ′

Li+1
) then the linearization will be

very accurate, but the results will be sensitive to errors from
the integrator. If we use a larger interval, then linearization
error will dominate. In our implementation, we bisect until
we produce a segment for(V ′

Hi+1
, V ′

Li+1
) this is roughly one-

tenth the length of(VHi
, VLi

).
A similar trade-off occurs in the choice of theti’s. Using

larger values reduces the number of rounds of bisection
required to reach a pre-specifiedts or ∆tin , thus reducing
the time for the algorithm to run and the impact of integration
error. On the other hand, large values forti lead to larger
linearization errors. In our implementation, we integratethree
trajectories at the end of each bisection round. These start
from V ′

Hi+1
, V ′

Li+1
, and (V ′

Hi+1
+ V ′

Li+1
)/2 respectively. At

each time step of the integration, we compare the integrator’s
value for the trajectory starting from(V ′

Hi+1
+ V ′

Li+1
)/2 with

the value obtained by linear interpolation from the other two
starting points. We choseti+1 as the largest time for which this
error is less that 2% of the magnitude of the voltage vectors.

Any method that relies on numerical integration for
analysing metastability must address the instability thatarises
from the positive eigenvalue of the Jacobian,λ+. The
(VHi

, VLi
) segments are parallel to the corresponding eigen-

vector. Thus, the calculation of‖VLi
− VHi

‖ is susceptible to
this instability. Instead of calculating the difference explicitly,
we compute the small signal sensitivity of the circuit alonga
trajectory fromti to ti+1. In particular, we augment the ODE
from equation 1 with a matrixS(t) where

Ṡ = (Jacf(y))S
S(ti) = I

(12)
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where Jac is the Jacobian operator. We now have that
S(ti+1)(i, j) = ∂yi(ti+1)/∂yj(ti). This sensitivity matrix
allows us to calculate theρi’s (includingρ1) from equation 10
without numerical differencing. Our experimental resultsshow
that our method is very robust, and we expect to prove this
using standard error analysis techniques in future work.

4. Results
We tested our algorithm by analysing the failure proba-

bilities of chains of synchronizers. Figure 3 shows our two
implementations. The chain on the top uses simple inverters
to couple the output of one latch to the input of the next.
The chain on the bottom uses a “metastability filter” – the
n-channel transistors in the filter remain in cut-off until two
sides of the cross-coupled inverter pair differ by a n-channel
threshold. This ensures that the latch output does not change
until metastability has resolved. For all of our measurements,
we use a clocks with a period of1.5ns and 50% duty cycle.
The phase for each latch in the chain is half of a period later
than that for the previous stage. We “freeze” the clocks when
the final stage of the chain goes opaque so we can observe
settling times greater than the clock period.

Figure 4 plots the input window,∆tin (ts), as a function
of the output settling time,ts, for the chain coupled with
simple inverters. We calculate the settling time from the clock
edge that makes the first latch in the chain opaque to facilitate
comparison of chains of differing numbers of latches. For the
multistage chains, the curve drops below the straight line that
would be predicted by a simple, small-signal analysis. In a
n-stage synchronizer chain, an input transition first affects
the output when latchn − 1 goes opaque and latchn goes
transparent. At this time we can observe the metastability of
latch n − 1. Half a clock cycle later, latchn goes opaque,
and the synchronizer remains in an unresolved state if this
latch becomes metastable as well. This is the “back edge
effect” described in [5]. Whereas [5] observed a positive
back edge (increased delay) for the 74F5074 flip-flop, our
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synchronizer exhibits a negative back edge. We conjecture that
the inverters coupling the stages have greater gain-bandwidth
products than the cross-coupled pairs for the transistor sizes
that we simulated.

Figure 5 shows∆tin versus ts for a single stage syn-
chronizer. Here, we compare with values calculated using
HSPICE’s bisection capability. In the figure, the circles are the
HSPICE simulation data and the diamonds were calculated
with our approach. We find that in the range where HSPICE
can compute a result, the two agree quite well. However,
HSPICE can only determine∆tin down to 0.2 femtoseconds
– if fc and fd are both 1GHz, this corresponds to a MTBF
of about five milliseconds. In contrast, our method easily
calculates∆tin to 10−50 seconds or less corresponding to an
MTBF of greater than1024 years.

Figure 6 compares synchronizer chains with and without
metastability filters. We first observe that the simple syn-
chronizer outperforms the synchronizer with the metastability
filter. At first, this seemed surprising as a metastable latchin
the filtered synchronizer can only corrupt its successor as it
exits metastability, whereas a metastable latch in the simple
synchronizer is always visible to the next stage. However,
the couping inverters in the simple inverter are faster than



0.5 1 1.5 2 2.5 3 3.5

x 10
−9

−45

−40

−35

−30

−25

−20

−15

settling time, t
s

in
pu

t w
in

do
w

, l
og

10
(∆

t in

(t
s) 

)

 

 
1−stage filtered synchronizer
2−stage filtered synchronizer
3−stage filtered synchronizer
4−stage filtered synchronizer
2−stage simple synchronizer
4−stage simple synchronizer

Fig. 6. Comparing the Two Synchronizer Designs

the metastability filters of the alternative design. This added
speed gives the simple design its advantage. This also shows
how our approach can be used to confirm or refute proposed
design optimizations in regimes that cannot be resolved by
traditional simulators. Our second observation is that the
filtered synchronizer has a positive back edge, like those
described in [5]. Again, we attribute this to the added delays
of the filter circuit.

As described in section 3.2, our algorithm computes upper
and lower bounds for∆tin . Figure 7 plots these bounds
for a two-stage, simple synchronizer chain. For comparison
purposes, we also plot the value of∆tin obtained after each
bisection round if we useV ′

Li+1
to compute our estimate.

Not surprisingly, the latter approach significantly overestimates
∆tin . In contrast, our method computes very tight bounds
with the difference between the upper an lower bound only
becoming visible at the final data point.

5. Conclusions
We presented a novel method for measuring failure proba-

bilities and MTBF for synchronizer circuits. By combining lin-
ear interpolations between nearby trajectories with numerical
integration to account for the non-linearities of synchronizer
circuits, we overcome the limitations of traditional small-
signal analysis or numerical simulation based approaches.This
allows us to verify MTBFs of a million years or greater. To
the best of our knowledge, our approach is the first to demon-
strate the ability to verify realistic reliability requirements
for synchronizer circuits. We demonstrated our methods by
implementing them inMatlab, using them to compare two
designs for synchronizer chains, and comparing our results
with those from HSPICE.

Our methods build upon numerical techniques that are
already used in circuit simulators such as numerical integra-
tion, bisection, and calculation of small-signal sensitivities
by augmenting the ODE model. Thus, we believe that our
approach is well suited for integration into existing circuit
simulators.

Our method is fully automated. We are interested in apply-
ing it to other circuits where metastability plays an important
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role. These include analog-to-digital converters, sense ampli-
fiers, and high-speed digital circuits that with minimal reset
circuitry. We presented our approach as a method for comput-
ing failure probabilities. It should be possible to extend this
approach to also generate traces of metastability failures. We
are also interested in extending our approach to automatically
optimize transistor sizes for synchronizer circuits.

Simulating metastable behaviour is inherently difficult be-
cause of the numerical instability introduces by the positive
eigenvalue of the Jacobian operator near the metastable equi-
librium. With our approach, we believe that this error showsup
in the absolute time of the vulnerability window, but has little
impact on the value computed for the width of the window.
Our experience with our test cases supports this conjecture,
and we plan to perform a formal error analysis to test this
conjecture. Such an analysis should also provide a basis for
determining the optimal criteria for moving from one bisection
phase to the next and to determine the size of the time interval
between these phases.
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