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Abstract. Various researchers have proposed using self-timed networks
to generate and distribute clocks and other timing signals. We consider
one of the simplest self-timed networks, a ring, and note that for timing
applications, self-timed rings should maintain uniform spacing of events.
In practice, all previous designs of which we are aware cluster events into
bursts. In this paper, we describe a dynamical systems approach to verify
the temporal properties of self-timed rings. With these methods, we can
verify that a new design has the desired uniform spacing of events. The
key to our methods is developing an appropriate model of the timing be-
haviour of our circuits. Our models are more accurate than the simplistic
interval bounds of timed-automata techniques, while providing a higher
level of abstraction than non-linear differential equation models such as
SPICE. Evenly spaced and clustered event behaviours are distinguished
by simple geometric features of our model.

1 Introduction

Like many problems in hybrid systems, the problem of analyzing temporal clus-
tering of events in self-timed rings involves a modeling problem. Clustering shows
up in detailed circuit models (e.g. SPICE), but such models are too detailed to
provide insight into the causes of the clustering or possible solutions. At the other
extreme, timed automata tools and logic simulators use bounded delay models
that are too coarse to distinguish the timing modes of self-timed circuits. We
require a model that captures the non-linear timing dependencies of real circuits
while abstracting away most of the details of a low-level circuit model.

We propose a new model of timing behaviour. The time of the output event
of a logic element is expressed as a function of the times of the input events
and the time of the previous output. This model recognizes the fact that gate
delay times depend not only on the time of the last input event, but also on
the time separation of these events. For a two input gate, this model can be
represented as a surface in a three dimension space. In a regular structure such
as a self-timed ring, the times of events are determined by an iterated map on
this surface. We identify the fixpoints of this map and the stability properties
of these equilibria. In particular, we show that self-timed rings exhibit critical
behaviours that lead to phase transitions with hysteresis between evenly spaced
and clustered equilibria. These phase transitions are in the timing of events; the



logical behaviour of the circuit is unaffected. In other words, the timed, discrete
event model gives rise to a continuous map with Hopf bifurcations. We present
simple, geometric criteria for identifying these phenomena.

Self-timed rings are introduced in section 2. Section 3 describes our timing
model, an extension of the “Charlie Diagrams” introduced in [EFS98]. Section 4
presents the main results of this paper; in particular, we derive geometrical
criteria for classifying the behaviour of a ring as clustered or evenly spaced. In
section 5, we apply our approach to two examples. In the first example, we use
a simple, synthetic model that admits easy analysis and provides the motivation
for our circuit design. In the second example, we describe a circuit that we have
designed and is currently in fabrication in a 0.35x CMOS process. This latter
example shows the value of our model as a design guide while revealing numerical
limitations of our current methods for generating Charlie Diagrams from SPICE
models.
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2 Self-Timed Rings

Self-timed circuits use handshake signals to control the sequencing of operations.
These handshake signals take the role of clocks in synchronous designs. Figure 1
shows a ring composed of self-timed, handshaking stages (see [Sut89]). Each stage
consists of a Muller C-element and an inverter. As illustrated by the transition
table in figure 2, a C-element drives its output to the value of its inputs when its
inputs agree; when the inputs of the C-element have different values, then the
output of the C-element retains the value from the last time the inputs agreed.



The schematic in the lower half of figure 2 shows the CMOS implementation of
the C-element used in this paper.

Figure 3 illustrates the operation of a self-timed ring. Let the output of n
stages be represented by the array x[0..n — 1]. By the operation of inverters
and C-elements, stage 7 is enabled to change the value of its output, x[i], when
x[¢] differs from x[i — 1], and x[4] is the same as x[i + 1] . We say that a stage
holds a “token” if the value of its output is different than that of its successor,
and a “bubble” if their output values are the same. In figure 3, stages that
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hold tokens are represented with a solid circle, O; stages that hold bubbles and
are not enabled are represented with a dotted circle, < :; and stages that hold
bubbles and are enabled are represented with a “star burst”, *.<. It is convenient
to rephrase the rules for when stages are enabled in terms of tokens and bubbles:
stage i is enabled if it holds a bubble and stage ¢ — 1 holds a token. After stage ¢
performs its action, stage 7 will hold a token, and stage i — 1 will hold a bubble. In
other words, performing an action exchanges a token and a bubble; tokens move
forward around the ring, and bubbles move backward. The number of tokens in
the ring is invariant, as is the number of bubbles. For example, if there are 6
tokens and 6 bubbles at time step 1, there will always be 6 tokens and 6 bubbles
in the ring. The sum of the number of tokens and the number of bubbles is the
number of stages.

In many applications of self-timed rings tokens and/or bubbles are used to
convey data values. The invariants on the number of tokens and the number
of bubbles guarantee that data values are neither lost nor duplicated. In our
current analysis, we focus on the timing of operations in the ring and do not
give further consideration to any data values that may be conveyed with the
tokens or bubbles.

Self-timed rings are ubiquitous in self-timed designs (e.g. [Wil91,5593]), and
their performance has been studied in many contexts. For example, [Thi91] an-



alyzed throughput assuming each stage has a fixed time for each operation.
Self-timed rings with exponentially distributed processing times were analyzed
in [GS90]. Xie and Beerel have developed tools that analyze general networks of
self-timed processors for general probabilistic models [XB97,XKB99]. All of these
analyses have focused on the long-term throughput of the self-timed network.

Although long-term throughput is an important measure, the details of time
separation between consecutive events is also important. In particular, in most
self-timed rings, events occur in “bursts” as depicted in figure 4. Noting that
stages in the ring are idle between bursts, even spacing can produce higher
performance. Furthermore, evenly spaced events are desirable if the self-timed
network is used to generate or distribute clocks and other timing signals in an
otherwise synchronous design. Our work was motivated by these applications
where self-timed circuits are used within a synchronous system. Although even
spacing is desirable, all designs that we had seen prior to the ones described in
section 5 produced bursts of events. In the remainder of this paper, we present
methods for analyzing the timing modes of self-timed rings.

3 Models

As with many hybrid systems, the key to understanding the timing properties
of self-timed rings lies in finding an appropriate model for the ring. Circuit sim-
ulators such as SPICE [Nag75] use non-linear ordinary differential equations
(ODEs) to model the circuit, and numerically integrate these equations to pre-
dict the circuit’s behaviour. These ODE models can be quite accurate, and they
correctly predict the burst behaviour that is observed by laboratory measure-
ments. However, the device models are complicated, and even the models for
small rings have dozens to hundreds of variables. Thus, whatever their virtues
for accuracy, ODE models are too detailed to provide the insight into the causes
of burst behaviour and how it can be controlled.

Another approach is to model the system as having discrete values
that change at instants in continuous time. This is the approach taken
by discrete event simulators (e.g. SHIFT [DGV96]) and timed automata
techniques [LPY97,Yov97]. Close to our current problem, Amon and Hul-
gaard [HBAB95,AH99] have developed algorithms for computing bounds on the
separation of events given bounds on operation times. All of these models specify
the range of possible event times for each operation with an interval. Such mod-
els admit a wider range of behaviours than occur in practice. In particular, they
show that bursts and evenly spaced events are both admitted by the models,
but they don’t predict which behaviour actually occurs.

Typical hardware delay models specify a delay after the last input event that
enables the change. Using such a model, the time at which the output of a C-
element changes, t. is given by max(t,, tp) + 9, where t, is the time of the change
of the a input; ¢; is the time of the change of the b input; and J is some value
with dmin < 0 < Omax- Let temax be the latest time at which an output may
change. For t, < tp, %tc,max =0, and for t, > t3, %tc,max = 1. An equivalent



observation holds for %tc,min, and for derivatives with respect to t;,. The ODE
models for circuits don’t exhibit such discontinuities. To remain consistent with
the ODE models, the delay intervals of these traditional hardware models must
be fairly large. This is what makes them too imprecise for our purposes.

More accurate delay models account for the effects of closely spaced input
events [DM194,CS96] and intersymbol interference [DP98]. As described in sec-
tion 3.2, when enabling input events are closely spaced, the delay from the last
input event to the resulting output event is greater than when the input events
are more widely separated. In [CS96], this phenomenon is modeled with function
that applies a correction term to a delay model for a single enabling event. This
is similar to the Charlie Diagram model described in section 3.1. However, the
model in [CS96] lacks the continuity of the Charlie Diagram. In particular, for
large separations, it assumes that the effect of the earlier signal on the output
time is negligible. As described in section 5, even very small dependencies can
be critical in determining whether a ring has evenly spaced or clustered events.

3.1 The 2D Charlie Diagram

The starting point for our models are the “Charlie Diagrams” first described
in [EFS98]. Based on observations like those above, Charles Molnar (after whom
the diagrams were named) proposed measuring the output delay from the average
of the two input arrivals. This delay is parameterized by the half-difference of
the arrival times:

t. = m + Charli¢s)

where:
m = (ta + 1) /2 (1)
s = (ta — 14)/2
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Figure 5 shows a typical Charlie Diagram. The curve of Charli€s) versus
s resembles a hyperbola. For large separations of the input events, the output
time approaches the time of the last input plus some constant. Thus, the Charlie
Diagram has asymptotes with slopes of 1. We assume that all stages in the ring
are identical and that their behaviour is causal; these assumptions imply that
the asymptotes of the Charlie Diagram intersect the vertical axis at positive
values.

Charlie Diagrams can be used to model any two-input gate, and the obvious
higher dimensional diagrams can be used to model gates with more inputs. We
use Charlie Diagrams to model stages of the ring, where each stage consists of a
C-element and an inverter. For stage 4, signal x[i-1] is the a input to the stage;
signal x[i+1] is the b input of the stage; and signal x[i] is the output of the stage.
The forward delay of stage i is the time from receiving an event on signal x[i-
1] until producing an event on x[i]. Likewise, the reverse delay is the time to
propagate an event on x[i+1] to x[i]. Using the Charlie Diagram notation, we
obtain:

0p =t. —t, = Charlids) — s, forward delay
0gr = t. — tp = Charli€s) +s, reverse delay

(2)

3.2 The Charlie Effect

We now examine how the curve of a Charlie Diagram approaches the asymptotes.
Consider a scenario where both a and b make low-to-high transitions, and a
changes after b. If a changes a long time after b, then the p-channel transistor
controlled by b will be in its cut-off region, and the n-channel transistor controlled
by b will be fully conducting as a changes. Furthermore, the node between the two
n-channel transistors will be close to ground potential. This allows a relatively
fast transition on signal q and therefore on the output c. On the other hand,
if a changes only slightly after b, then the transistors controlled by b will both
be partially conducting as a changes. This results in a greater delay from the
transition of a to the transition of c. Similar effects occur if a changes before b.

Charlie Diagrams provide a simple way to model these effects. If input a
changes a long time after b, then s is large and positive. Conversely, if a changes
only slightly before b, then s is small and positive. The delay from an event at
input a to an event at output c is t, — t, = Charlids) — s. The dependence of
output delay on relative arrival times described above is reflected in the curve
of the Charlie Diagram approaching the asymptotes monotonically from above.
In general, when enabling events for a multiple input gate arrive at roughly the
same time, the delay from the last input event to the output is greater than
when the arrival times of the events are widely separated. Because this effect is
naturally modeled by Charlie Diagrams, we call this effect the “Charlie Effect”.

The curves of the Charlie Diagrams described in [EFS98] monotonically ap-
proach their asymptotes from above. This is due to the Charlie Effect described
above. As we show in section 4, this monotonicity implies that events are evenly
spaced. In practice, most self-timed rings produce bursts of events. The authors



of [EFS98] noted this discrepancy — it shows that their Charlie Diagram model
neglects phenomena, that are crucial to understanding the spacing of events.

3.3 The Drafting Effect

We extend the Charlie Diagram to model the effects of the output capacitance
of the gate. Due to this capacitance, output transitions are not instantaneous.
Instead, the voltage of the output asymptotically approaches the level of the
power supply or ground. If input events are closely spaced, then the output of
the gate will still be a significant distance from the power or ground rail when
a new transition occurs. This allows subsequent transitions to occur faster than
in the case where the output has reached a value closer to the rail. We call this
phenomenon “drafting,” after the practice of bicyclists to ride in closely spaced
lines to reduce wind drag. Just as the lead cyclist reduces the work required of
those behind her, the lead token in a burst allows subsequent tokens to propa-
gate with reduced delay. The handshake protocol prevents trailing tokens from
overtaking earlier ones (fear serves an equivalent purpose for bicyclists). As an
example, figure 6 shows the time from an input event to the corresponding out-
put event for our FIFO stage as a function of the input period. In this example,
both inputs of the FIFO change simultaneously.

Charlie(s, y)

z = (output delay from mean)/2

Fig.7. A Three-Dimensional Charlie Diagram

3.4 The 3D Charlie Diagram

We model drafting by extending the Charlie Diagram to three dimensions. As
with the original Charlie Diagram, the time separation of the input events is



drawn along one axis of the domain. The other domain axis is the time from the
last output event to the mean of the input event times. Figure 7 shows such a
Charlie Diagram.

4 Analysis

Consider a burst of events propagating around a self-timed ring. We’ll call the
leading event in the burst event 1, and number the subsequent events consec-
utively. In the following analysis, we assume that the spacing of events in the
burst remains invariant as the burst travels around the ring. This is intuitively
plausible (otherwise, the burst would alternately expand and contract, etc. as it
propagated). While we don’t have a proof for this conjecture, we observed it in
all cases for a wide variety of synthetic models and models from real circuits.

Now consider event 1. By the invariance assumption above, each stage that
propagates event 1 has the same separation of input events, call this separation
s1. Likewise, each stage that propagates event 1 has the same time since its
last output change, call this y;. The values s; and y; specify a point on the 3D
Charlie Diagram. These observations about event 1 apply to any event. If there
are np tokens in the ring, and these tokens form a burst, then the operation of
the ring is completely characterized by the values of s for each of the ny events
in the burst, and the nr values for y. This cycle of nr points on the 3D Charlie
Diagram define an operating point for the ring.

In the remainder of this section, we will show how to identify the steady state
operating points of a self-timed ring. This identification is based on geometric
properties of the 3D Charlie Diagram. In particular, we show that our invariance
assumption above implies that the forward latency, dF is the same for all event
propagations. If the events form a burst, then there are two values of dg: one
for the leading event in the burst, and the other for all other events. This means
that the leading event of the burst corresponds to one point on the Charlie
Diagram, and all other events correspond to one other point. If the events are
evenly spaced, then all events occur at the same point on the Charlie Diagram.

More abstractly, the operation of the ring defines a mapping between points
on the Charlie Diagram. We are interested in limit cycles of this mapping. In the
rest of this section, we show how to locate and characterize these limit cycles.

4.1 The Constant fif assumption

The conjecture stated above that the spacing of events in a burst remains in-
variant as the burst travels around the ring is equivalent to assuming that dr is
the same for all events. We would like to find sufficient conditions on the Char-
lie Diagram than guarantee this conjecture. For the time being, we note that
we have never observed a counter-example and will assume a fixed value for ép
in the remainder of our analysis. We write d}. to denote this common forward
latency.



4.2 The z =y Constraint

An enabling of stage ¢ requires two input events: one from stage ¢ — 1 and the
other from stage ¢ + 1. The z = y constraint says that for any limit cycle of the
Charlie Diagram, the midpoint of the input arrival times coincides exactly with
the midpoint of the time of the last output event and the time of the output
event triggered by these inputs. In this section, we show that this condition is
implied by the definition of the Charlie Diagram and the handshake rules for
the ring.

voltage
A

Fig. 8. Forward and Reverse Delays

Let tj45: and tneq ¢ be the time of any two consecutive events at some stage
i. Let z = Charlids, y) where

y=m — tiast (3)

and m and s are defined as in equation 1. Let 6 € {0ro,dR1} be reverse latency
of stage i leading to the event at time t,.,;. We derive:

tneost = M+ 2, eq. 1
A m = tiast + Y, €q. 3
A trnest = tiast + 6;7' + 5R, see ﬁg 8 (4)
A0} +0r = 22, eq. 2
= y==z

Graphically, we can intersect the surface of a three-dimensional Charlie Diagram
with the y = 2 plane to obtain a curve that includes the operating points of any
burst or evenly spaced equilibrium. We write Charlig—,(s) to denote this curve.
In the remainder of this section, we restrict our attention to the Charlig_.(s)
curve.

4.3 The fﬁf} Constraint

The assumption that d} is the forward latency for all events means that all
points on a limit cycle lie on the intersecton of the Charlig_.(s) curve with a
line corresponding to 67.. We call this the d} constraint.



More specifically, the points of a limit cycle lie at the intersection of

z = Charlids, y),
z =y, (5)
and z = s + 0}

If OCharlig—,(s)/0s < 1 at the point of intersection, then that intersection is
stable — in other words, if the ring is operating at a point near that intersection,
it will converge to that stable point. On the other hand, if dCharlig—,(s)/0s > 1,
then the point of intersection is an unstable equilibrium.

Noting that 0Charlig_.(s)/0s approaches —1 as s approaches —oo and +1
as s approaches +oo we classify five scenarios as exemplified in figures 9 and 10.
In the “low drafting” case, dCharlig—(s)/0s approaches +1 monotonically as s
goes to infinity. For any value of §}, greater than the asymptotic forward delay,
the z = s + 0} line intersects the Charlig_.(s) curve at a single point. As there
is only one solution to equation 5, all events have the same operating point, and
therefore the same reverse latency. Thus, the first scenario has evenly spaced
events.

Fig. 9. z = Charlig—, (s), low drafting || Fig. 10. z = Charlig—.(s), high drafting

In the second scenario, dCharlig—;(s)/0s takes on values greater than one for
some range of s. In this range, the drafting effect dominates the Charlie Effect,
and forward delay increases with increases of the arrival time of the input token.
If 6% is large enough, then equation 5 is satisfied at three points: the leftmost and
rightmost of these points are stable, and the inner one is unstable. The upper,
dashed line in figure 10 illustrates this scenario. This solution gives rise to the
burst of events: Jgo corresponds to the right intersection, and dg; corresponds
to the left intersection.

The third, fourth, and fifth scenarios arise for smaller values of §}. as shown
by the lower, dashed line in figure 10. This can either be a stable, evenly spaced
mode where all events take place at the left intersection; an unstable, evenly
spaced mode where all events take place at the right intersection; or an unstable,
burst mode that exits to the stable burst mode or the evenly spaced mode.



4.4 Computing fﬁﬁ3¢

Not all values of § are feasible for any particular number of tokens and bubbles.
Every time a stage performs an action, it exchanges a token and a bubble. This
imposes a balance in the rates of token and bubble propagation which in turn
determines the feasible values for d7.

Let the number of tokens be ny, and the number of bubbles be ng. We derive
another constraint by considering a token that makes one complete orbit of the
ring. This token is processed by n stages, with a delay of §}. at each stage. The
total time for the orbit is nd}.. For any 4, stage ¢ processes each of the nr tokens
during the same interval. After processing one token, the stage waits 3, for the
bubble to come back from stage ¢ + 1, and then §r additional time to process
the bubble. For the first token in a burst, dg = dro. For the remaining nr — 1
tokens, dg = dg1. Setting the time for one token to go around the ring equal to
the time for one stage to process nr tokens yields:

néy = (TLT)(SI;- + dRo + (TLT — 1)6R1 6)
= 0=TLB(5;| —dpo — (TLT—l)(SRl
For any value of 6} we compute the intersection of 2 = s + 65 and 2z =
Charlig—.(s) to find the possible values of s and thereby the values of dro and
0g1. Thus, the right side of equation 6 is a function of 6}; the roots of this
function are the feasible values of dr.

In evenly spaced mode, dro = dgr1- In this case, equation 6 can be rewritten
as npdr = nrdg. Substitutions for equation 2 yield:

z= LT—F“BS (7

nr —nB

4.5 Classification

Given a three-dimensional Charlie Diagram, and values for nr and np, we clas-
sify by the following procedure:

1. Find the curve z = Charlig—,(s) by intersecting the surface of the Charlie
Diagram with the z = y plane.

2. Compute the intersection of z = Charlig—(s) with 2 = ((nr + ng)/(nr —
ng))s. This is the evenly spaced solution. If 9Charlig—(s)/ds < 1 at the
intersection, then the evenly spaced solution is stable (i.e. an attractor). If
OCharlig—,(s)/0s > 1, then the evenly spaced solution is unstable.

3. Determine max(9Charlig—.(s)/9(s)). If this value is greater than one, then
burst behaviours are possible. If it is less than one, then burst behaviours
are excluded.

4. If burst behaviours are possible, find the feasible values of d3 by solving
equation 6. If there is a solution with dgo # dr1 where 9Charlig_.(s)/0(s) <
1 at both points, then the ring has stable, burst behaviours.



5 Examples

We have applied the analysis of the previous section to a small handful of ex-
amples; both real circuits and synthetic models. We start with our synthetic
modeling because it permits succinct description.

5.1 Synthetic Example

Out synthetic model consisted of a ring with 30 stages modeled by the family of
3D Charlie Diagrams described below. We analyzed the ring using the methods
described in section 4 and observed the predicted phase transitions between
clustered and evenly-spaced events using event driven simulation.

The two-dimensional Charlie Diagram from figure 5 is given by:

Charlids) =14 /14 (s +0.1)2 (8)

To simulate drafting, we added a delay that converges exponentially to a limit

value:
alue u(s) — 1+\/m (9)

Charlids, y) = u(s) + b(1 — e~ 2 tu()))

Note that y + u(s) is the time from the previous firing until the gate would
fire next without drafting. The exponential convergence to the asymptotic delay
corresponds to a simple, first-order, RC delay. Figure 7 corresponds to this model
with @ = 0.2 and b = 3.0.

Varying b in equation 9 varies the strength of the drafting effect. Figure 9
corresponds b = 0.5, and figure 10 corresponds to b = 2.0 (both drawn with
a = 0.2). For a = 0.2, evenly spaced events are the only stable behaviour for
b < 0.63166476. For 0.63166476 < b < 1.18011777, both evenly spaced and
burst spacings are stable. As b increases in this interval, the intersection of the
z = Charlig—,(s) curve with the z = ((nr +ng)/(nr — ng))s line moves to the
right. When it reaches the local minima of slope equals 1 point of the curve, the
evenly spaced solution becomes unstable. For b > 1.18011777, only the burst
behaviour is stable.

5.2 Circuit Example

Following the example of [EFS98], we initially considered an entire FIFO stage
as a two-input module consisting of a C-element and an inverter. Based on our
analysis, we assumed that drafting was the cause of event clustering. A signal
that bounced away from the rail should generate a negative drafting effect and
produce evenly spaced events. We tried this by adding small, delayed negative
feedback circuitry to the output (c) of each stage in our ring.

This did not work as expected: events in the ring clustered into bursts regard-
less of the feedback that we applied. To understand this outcome, we attempted
to construct 3D Charlie Diagrams for the stage using HSPICE, but this effort



was hindered by the limited numerical resolution of HSPICE. At the operating
point of the ring, the Charlie Diagram is flat to within the resolution of HSPICE.

Elementary continuity arguments imply that the surface must have some
residual curvature, but we cannot observe this curvature directly. After further
consideration, we realized that the bounce had a side effect of reducing the
Charlie Effect. Consider a scenario where the ¢ output of stage ¢ is initially
low and the f input from stage i — 1 goes high before the r input from stage
i+ 1 goes low. While waiting for the event from stage ¢ + 1, the output of stage
i — 1 decreases towards its asymptotic value. This increases the delay from the
subsequent transition of stage i + 1. Thus, while the negative feedback may have
counteracted the drafting as desired, it also counteracted the Charlie Effect,
resulting in a ring that continued to generate bursts of events.

To obtain the desired outcome, me moved the feedback point to the internal
node, q of the C-element. This required some care to avoid spurious transitions.
In the final solution, we use and N-channel pull-up to fight the keeper’s pull-down
and get good device matching. Likewise we fight the keeper’s pull-up with an-
other P-channel device. Our successful solution is shown in figure 11. We included
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Fig.11. A Ring Stage With Feedback

current mirrors (not shown in the figure) in series with the feedback devices to
allow external control of the strength of the feedback for testing purposes. Ac-
cording to HSPICE simulations, this circuit can be started in burst-mode, and
forced to evenly-spaced mode by a control input. Circuit considerations limit
the range of our control input, and we can’t force the ring back into bursting
behaviour. Again, we would like to construct detailed Charlie Diagrams to better
understand the behaviour of the circuit, but are hindered by numerical issues.

6 Conclusions and Future Work

We have presented a new model for reasoning about the timing behaviour of
digital circuits: the three-dimensional Charlie Diagram. We have shown that



the temporal properties of self-timed rings can be understood by examining
fixpoints of iterated maps of this model. Simple geometric properties of the
model distinguish evenly spaced and bursting behaviours. Three-dimensional
Charlie Diagrams model behaviours that cannot be distinguished by traditional,
timed-automata style models. At the same time, these Charlie Diagrams provide
a much higher level of abstraction than circuit-level differential equation models
(such as SPICE). This higher level of abstraction makes verification of timing
properties practical.

While traditional timing analysis focuses on estimating delay values for gates
and paths, we have presented an analysis that focuses on the dynamics of the
timing. To this end, our models not only estimate the delays of logic elements
but also the derivatives of these delays with respect to event times at the gate’s
inputs and outputs. We have shown that self-timed circuits have distinct tim-
ing modes, with phase transitions between these modes that exhibit hysteresis.
Understanding these timing modes allows us to design circuits with timing prop-
erties not previously achieved.

We have used these techniques to design a new circuit for a self-timed ring
stage. We are currently fabricating a chip based on this circuit to obtain exper-
imental measurements and validate our models.

We currently generate three-dimensional Charlie Diagrams for our circuits
through iterated SPICE simulations. In the future, we plan to explore ways of
combining analytical and numerical techniques for generating these models to
reduce the model generation time and improve model accuracy. In particular, by
integrating SPICE’s Jacobian matrix along paths between events, we should be
able to compute an accurate value for the tangent plane of the Charlie Diagram
at each point in spite of errors in the exact value of the point. We are also
interested in ways to apply these techniques to other design, verification, and
simulation problems.
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