
Efficient Self-Timed Interfaces for Crossing Clock Domains

Ajanta Chakraborty and Mark R. Greenstreet
Department of Computer Science

University of British Columbia
{chakra,mrg}@cs.ubc.ca

Abstract

With increasing integration densities, large chip de-
signs are commonly partitioned into multiple clock do-
mains. While the computation within each individual
domain may be synchronous, the interfaces between
these domains often use asynchronous methods. One
such approach is the STARI technique[12, 13] where
a self-timed FIFO compensates for clock-skew between
the sender and receiver. We present implementations of
STARI where the FIFO consists of a single, handshaking
stage. We start with the simplest case where the sender
and receiver operate at exactly the same frequency with
an unknown skew. We then generalize this design for
links with clocks whose frequencies are rational multi-
ples of each other, clocks whose frequencies are closely
matched, and arbitrary clocks. We show that in each of
these cases, the STARI interface can exploit the stability
of typical clocks to achieve low latencies and negligible
probabilities of synchronization failure using very sim-
ple hardware.

1 Introduction

Increasing integration densities and clock frequencies
drive designers to implement increasing numbers of on-
chip clock domains. In this widespread approach to de-
sign, circuitry within each clock domain is designed us-
ing traditional, synchronous approaches. As tight tim-
ing tolerances cannot be guaranteed between timing do-
mains, communication between domains either takes
place at a rate slower than the system clock (e.g. one
transfer for every two cycles of the clock) or with some
kind of mixed synchronous/asynchronous design. This
paper presents a family of novel asynchronous circuits
for transferring data between clock domains.

Our circuits are based on the STARI [12] approach
where a self-timed FIFO is used to compensate for
skew between two synchronous systems operating with
a common clock. We consider the boundary case where

the FIFO consists of a single, handshaking stage, and
show that such a design achieves a skew tolerance of
nearly two clock periods. We show how this leads to
small, low-overhead interfaces. Whereas STARI was
originally proposed for designs where the sender and re-
ceiver operate at the same clock frequency, we show how
our current designs support interfaces where the sender
and receiver operate at different frequencies.

Figure 1 shows three typical scenarios where a chip
is partitioned into multiple clock domains. In figure 1.a,
a single clock drives all timing domains. This is a typ-
ical situation in high-performance designs such as mi-
croprocessors for general purpose computers. In these
designs, clock and data skew [14] arise from a vari-
ety of sources [2]. First, scaling trends with decreas-
ing feature sizes decrease gate delays causing a cor-
responding increase in clock frequencies. For high-
performance designs, clock frequencies are further in-
creased by architectural trends favoring deeper pipelines
with fewer gates per pipeline stage. Traditionally, de-
signers target clock skews of about 10% of the clock pe-
riod [21, 27, 20, 16, 18]. Long wire delays and variations
in buffer delay make these targets challenging. Accord-
ingly, designers resort to careful layout [1, chapter 7.4]
and active skew compensation [33]. Likewise, fabrica-
tion engineers reduce wiring delays by deploying copper
wires [8] to lower resistance and low-k dielectrics [11]
to reduce capacitance. These approaches come at a cost:
circuit and layout approaches to lowering clock skew of-
ten do so at an increase in circuit complexity and power
consumption; improvements in materials are limited by
physical constants.

While designers in the asynchronous research com-
munity have cited the problems of clock skew for years
as a motivation for asynchronous design, synchronous
designs are still widespread. In large part, this is ac-
complished by partitioning designs into small domains
within which wire delays and clock skew are small
(e.g. [26]) and taking extra measures for communication
between clock domains. For example, the Intel Pentium
4 architecture includes pipeline stages whose sole pur-

1

cl
k:

 f
0

cl
k2

cl
k0

a: Single−Clock, multiple domains

f1/f0

f2/f0

f3/f0

cl
k1

cl
k3

b: Rational clock frequencies c: Multiple Clocks

cl
k

Figure 1. Chips with Multiple Clock Domains

pose is to “drive” data across chip between clock do-
mains [15]. In this paper, we describe asynchronous in-
terfaces between synchronous clock domains that offer
high skew tolerance with minimal area and latency over-
heads.

Figure 1.b depicts a design where different portions
of the chip operate at different frequencies, and the vari-
ous clocks are derived from a common source. This sce-
nario is common in system-on-chip designs where dif-
ferent IP blocks operate at different clock frequencies
or in multi-rate digital-signal-processing designs. Al-
though different domains operate at different frequen-
cies, these frequencies are all rational multiples of each
other, and these ratios are typically known in advance or
are determined by pre-designed operating modes of the
design. In this case, we can take advantage of knowing
the exact relationship between the various clocks to im-
plement an interface that operates with low latency and
without synchronization. Section 6 describes our design
for this scenario.

Finally, figure 1.c shows a design where different
portions of the chip operate with clocks from indepen-
dent sources. This occurs, for example, in the design
of network routers [19] where each line card receives
a bit stream with an embedded clock from a different
source. Although each stream comes with its own clock,
typically these clocks are very closely matched in fre-
quency. For example, ATM standards specify that bit-
rates be within one part per million of their nominal val-
ues. In section 7, we show that we can adapt our sim-
ple interface to exploit this close matching and provide
robust data transfer without incurring synchronization
overhead in the latency critical path. In section 8, we
generalize this solution to designs with arbitrary clocks.

The essential observation behind our designs is that
clocks for synchronous systems are designed to be ex-
tremely stable. Thus, we can design STARI style inter-
faces that provide moderate amounts of skew tolerance
and dynamically compensate for any long-term drift. As
described above, we present designs when the sender

and receiver operate at exactly the same frequency; at
frequencies that are rational multiples of each other; at
closely matched frequencies; and at arbitrary, relatively
stable frequencies. In the remainder of the paper, we
show that these designs are small and can operate at
high clock frequencies with low latencies. We first sum-
marize existing techniques for communication between
clock domains.

2 Related Work

Given the challenges of transmitting signals between
clock domains, researchers have explored a variety of
asynchronous solutions. These range from building
completely asynchronous chips [22, 10, 28] to various
combinations of synchronous and asynchronous mod-
ules in the same design. We focus on the latter approach
in this paper. The various methods for combining asyn-
chronous and synchronous modules vary according to
the strength of the assumptions that they make about
the clock. At one extreme, GALS (i.e. “Globally Asyn-
chronous, Locally Synchronous”) designs make very
minimal assumptions about clock timing, effectively
turning the clock into a bundled completion signal and
adding handshaking to clock generation. At the other
extreme, “mesochronous” and “plesiochronous” meth-
ods rely on exact frequency matching by having a com-
mon clock source or on long term frequency stability
of clocks [23]. Between these two extremes, synchro-
nizing buffers allow each domain to operate with its
own, stable clock, but make minimal assumptions about
the relationships between these clocks. Our approaches
fall squarely in the mesochronous and plesiochronous
camps. To put our designs in context, we summarize
these approaches below.

2.1 GALS

As originally proposed by Chapiro [5], GALS (i.e.
“Globally Asynchronous, Locally Synchronous”) de-

2

signs use stoppable clocks to allow synchronous mod-
ules to communicate using asynchronous protocols.
Each synchronous domain has its own clock genera-
tor that consists of a ring oscillator with a handshaking
stage. When domain X has a value to send to domain
Y, X outputs the value, sends a request to Y and stalls
its clock until it receives an acknowledgment. Likewise,
when domain Y is prepared to receive a value from do-
main X, it stalls its clock, waits for a request from X,
latches the value, sends an acknowledgment to X and
restarts its own clock.

Yun and Donohue [36] extended Chapiro’s approach
by adding a mutual-exclusion element to the ring oscilla-
tor. This allows each locally synchronous block to con-
tinue operating while polling for input from its neigh-
bors. The mutual exclusion element delays the next
clock event, if needed, to allow metastability [4] aris-
ing from the polling to resolve. Yun and Donohue’s
approach allows GALS designs to be very flexible, and
their methods have been extended by several research
groups, e.g. [25, 31, 24, 29].

GALS makes minimal assumptions about clock sta-
bility; in fact, GALS discards the stability and low-jitter
of clocks that are the hallmarks of synchronous design.
The frequency stability of traditional clocks allows us to
determine the relative phase of two independent clocks
thousands or more of cycles in advance. As we describe
in sections 7 and 8, this predictability allows us to move
metastability off of the latency critical paths in our de-
signs. Jitter is the variation in the time between succes-
sive clock events. This variation directly degrades the
performance of synchronous designs. and clock pausing
exacerbates jitter. After pausing a clock, the first edge
through the ring oscillator and clock buffer will prop-
agate slower than subsequent events [34]. The loss of
long-term timing predictability and the increase of jitter
are consequences of the GALS approach of converting
synchronous designs into asynchronous ones by adding
handshaking control to their clock generators. In this
paper we show that more efficient designs are achieved
by letting synchronous modules be synchronous and us-
ing simple asynchronous interfaces to compensate for
clock-skew and other timing uncertainties.

2.2 Synchronizing Buffers

The next step in our taxonomy allows independent,
free-running, stable clocks in each domain, and makes
minimal assumptions about the timing relationships be-
tween them. A common rule-of-thumb for design speci-
fies the use of two or three synchronizing latches when-
ever a clock domain is crossed [17, chapter 3.11.4].
For high-performance designs with a small number of
gate-delays per clock period, even longer chains may be

needed to achieve acceptably low probabilities of fail-
ure. Seizovic [30] recognized that these synchroniza-
tions can be pipelined allowing high throughput even
when the time for reliable synchronization is many clock
periods. Chelcea and Nowick [7] further optimized
this approach by noting that synchronizations are only
needed for the receiver when the buffer is close to empty
and only needed for the sender when the buffer is close
to full. All of these approaches incur the worst-case syn-
chronization latency when the buffers are nearly empty.
Iyer and Marculescu [16] evaluated the performance of
a superscalar microprocessor design decomposed using
Chelcea and Nowick’s FIFOs. Superscalars are particu-
larly sensitive to latency, and Iyer and Marculescu found
that the performance penalties arising from the added la-
tency outweighed the power savings for the design that
they considered.

2.3 STARI

The synchronization latency of the designs described
above can be reduced or eliminated by taking advan-
tage of the stability of clocks. This stability allows us
to predict the timing relationship of clocks in different
domains well into the future. Mesochronous designs
(a.k.a. “STARI” [12, 13] or “source-synchronous” [35])
have a common clock source for the sender and receiver,
guaranteeing that both operate at the same frequency al-
though the phase difference between the two may be
unknown. A FIFO at the receiver is initialized to be
roughly half full. During each clock period, the trans-
mitter inserts one item into the FIFO and the receiver
removes one value from the FIFO. The FIFO occupancy
remains within one of half-full; in particular, overflows
and underflows are excluded. This removes the need for
testing full and empty conditions and thereby removes
the need for synchronization and synchronizers.

The designs presented in the paper are both spe-
cializations and generalizations of the original STARI
work. In sections 3 and 5 we specialize STARI by fo-
cusing on the case where the FIFO consists of a single
stage. We show that such implmentations can provide
nearly two clock periods of skew tolerance. By opti-
mizing for the single-stage case, we obtain very sim-
ple interfaces between the edge-triggered conventions
common in synchronous design and the handshaking
communication that is characteristic of self timed de-
signs. We then generalize STARI to relax the require-
ment of exactly matched clocks at the sender and re-
ceiver. We present interfaces where the sender and re-
ceiver clock frequencies are rational multiples of each
other 6, closely matched 7, and arbitrary 8. In all of these
designs, we exploit the long-term stability of clocks to
obtain simple interfaces with small latencies.

3

latch−Rlatch−Xlatch−T
QD

ΦT ΦR

QD data_out

Φ

latch controller

X

QDdata_in

single−stage FIFOtransmitter receiver

Figure 2. The Single Stage FIFO

3 The Single-Stage FIFO

We now describe a simple interface circuit for STARI
communication when the FIFO has a single stage. As
shown in figure 2, the FIFO consists of a single latch,
and a latch controller that generates a clock for this latch
based on the clocks from the transmitter and receiver. To
the user, this FIFO appears as a latch with two clock in-
puts:

ΦT ΦR

D Q receiver
data todata from

transmitter

In this section and the next, we assume that the transmit-
ter and receiver operate at exactly the same frequency,
only the relative phase difference is unknown. This is
easily achieved if both of their clocks are derived from a
common source.

Figure 3 depicts the timing for the single-stage FIFO.
For simplicity, we assume that latch-T, latch-X and
latch-R are positive edge triggered. Our design eas-
ily generalizes to other latching styles. For proper op-
eration, the latch controller must generate ΦX so as to
satisfy the set-up and hold requirements of latch-X and
latch-R. To satisfy the requirements of latch-X, the ris-
ing edge of ΦX must occur at least tset−up + tprop (ab-
breviated ts in the figure) after the previous ΦT event,
and at least thold − tprop (abbreviated th in the figure) be-
fore the next ΦT event, where tset−up, thold, and tprop

denote the set-up and hold times and propagation de-
lay of the latches respectively. To satisfy the require-
ments of latch-R, the rising edge of ΦX must occur at
least thold − tprop after the previous ΦR event, and at least
tset−up + tprop before the next ΦR event. The “exclu-
sion” regions corresponding to these requirements are
indicated by cross-hatched regions in figure 3.

There are two windows of opportunity for generating
ΦX : a rising edge of ΦX may occur between a rising
edge of ΦT and the subsequent rising edge of ΦR, or
between the rising edge of ΦR and the subsequent rising
edge of ΦT . We refer to these scenarios according to the
last event (ΦT or ΦR) that occurs prior to each ΦX event.
Thus, if ΦX occurs after a ΦT event but before the next
ΦR event, we refer to this situation as “transmitter-last,”
and we write “receiver-last” to refer to the other case. In

ΦR

TΦ

st

ΦX

TRδ

ht

RTδ

hthtst st

γ
TR

γ
RT

OK OK

Figure 3. Clock Timing for the FIFO

the figure, δT R denotes the time from the rising edge of
ΦT to the next rising edge of ΦR. Likewise, δRT denotes
the time from the rising edge of ΦR to the next rising
edge of ΦT . Let P denote the clock period. Now, let
γT R denote the width of the window of opportunity for
the transmitter-last scenario, and γRT denote the width
of the window of opportunity for the receiver-last case.
We have:

γT R = δT R −2(tset−up + tprop)
γRT = δRT −2(thold − tprop)

⇒ γT R + γRT = δT R +δRT −2(tset−up + thold)
= P−2(tset−up + thold)

⇒ max(γT R,γRT) ≥ P/2− (tset−up + thold)
(1)

In other words, if the clock period is greater than
2(tset−up + thold), then the window of opportunity for at
least one of the transmitter-last or the receiver-last case
is non-empty, and the latch-controller can generate a
clock that ensures proper operation of the interface. In
particular, if γT R > 0, then the latch controller can safely
generate a rising edge tset−up + tprop after the rising edge
of ΦT ; otherwise; γRT must be positive, and the latch
controller can safely generate a rising edge thold − tprop

after the rising edge of ΦR. In section 5 we show how
the latch controller can be initialized to operate in one
of these two scenarios. For the remainder of this section
we will consider steady state operation.

The latch controller can be implemented by a C-
element. To see this, first consider operation in a
transmitter-last scenario with γT R > 0. Following each
rising edge of ΦT event, the latch controller outputs a
corresponding rising edge for ΦX . Then, there will be
the next rising event for ΦR followed by a rising event
for ΦT before the controller outputs the next rising edge
of ΦX . Conversely, for the receiver-last case, following
each rising edge of ΦX event, the controller sees a ris-
ing event for ΦT followed by a rising event for ΦR event
before generating the next rising edge for ΦX . In either
case, between producing consecutive rising edges of ΦX ,
the latch controller receives rising edges from both ΦT

and ΦR.
In our design, timing is determined by the rising

edges of the clocks. Accordingly, we use a self-
resetting [6, 32] implementation as shown in figure 4.

4

RaΤa
ΦRΦT

ΦT’ ΦR’

ΦX

c

δR
δT

m1

m2

m3

m4

m5

m6

Figure 4. The Latch Controller

On a rising edge of ΦT , transistors m1 and m2 pull
node aT low. The three-inverter chain to the gate of m1
disables the pull-down path shortly after ΦT has gone
high to make the circuit edge-sensitive rather than level-
sensitive. Likewise, node aR drops on a rising edge of
ΦR. When both have dropped, node c goes low, resetting
the edge-triggered C-element and generating a pulse on
ΦX . Delay δT ensures that the delay from a rising edge
of ΦT to a rising edge of ΦX is greater than tset−up +tprop.
Likewise, delay δR ensures that the delay from ΦR to ΦX

is greater than thold − tprop. As promised, our design is
extremely simple and requires very little layout area.

4 Skew Tolerance

To analyze the skew tolerance of our design, we start
with a transmitter-last scenario; proper operation re-
quires γT R > 0 which is equivalent to δT R > 2(tset−up +
tprop). If the initial time difference, δT R0, is greater than
this value, then the transmitter may be further delayed
by up to δT R0 −2(tset−up + tprop) without malfunction of
the interface.

Figure 5 shows what happens starting from a
transmitter-last scenario where transmitter events occur
progressively earlier due to drift in the skew. In this
figure, the transmitter outputs the sequence of values:
[−1,0,A,B,C, . . .] on node QT . The values shown for
QX , and QR show how transmitter data is propagated
to the other two latches. For each ΦX event, the fig-
ure shows a vertical dotted line labeled with the value
loaded into latch-X by that event, and with arrows from
ΦT and ΦR events showing the two events that triggered
the latch controller. The rising edges of ΦX for values
B and C are transmitter-last events; for value D, the ΦT

and ΦR events are coincident; and for values E and F,
ΦX is generated by receiver-last events. In all cases, the
latch controller waits until it has received events on both
inputs. The relative order of arrival of the rising edges
of ΦT and ΦR doesn’t matter; thus, no synchronization
is necessary.

When the ΦT event precedes the ΦR event, then the

ΦR

XQ
ΦX

RQ

ΦT

TQ A B C D E F G

B C D E F

0 FA B C D E

−1 0 A B C D

Figure 5. Drifting Skew

interface operates with the receiver last, starting with
δRT = P. The interface continues to operate without
dropping a value as long as δRT > 2(thold − tprop). Start-
ing with an initial time difference of δT R0, transmitter
events can occur up to P−δT R0 time units earlier before
the receiver-last scenario occurs. At this point δRT = P,
and the transmitter can occur up to P− 2(thold − tprop)
time units earlier without malfunction.

To summarize, if the interface starts in a transmitter-
last scenario with δT R = δT R0, then the ΦT can be de-
layed with respect to ΦR by up to δT R0−2(tset−up +tprop)
time units, and it can be advanced by up to 2P−δTR0 −
2(thold − tprop) time units without malfunction of the in-
terface. The total width of the interval of relative de-
lays for which the interface operates correctly is 2(P−
tset−up − thold). Equivalent arguments hold starting from
a receiver-last scenario. If the latch set-up and hold win-
dow is small relative to the clock period, then our design
offers nearly two clock periods of skew tolerance.

In this section, we have described necessary and suf-
ficient conditions to ensure that the set-up and hold re-
quirements for latch-X and latch-R are satisfied. In ad-
dition to these requirements, node c in the latch con-
troller must return high when an ΦX pulse is generated
before the arrival of the next rising edge on ΦT or ΦR.
Let η be the time between triggering the latch controller
and the subsequent return of node c to a high value. Let
δT ′R′ and δR′T ′ denote the time from a rising edge of ΦT ′

to the next rising edge of ΦR′ and vice-versa. As ex-
plained in [3], proper operation with the transmitter last
requires δT ′R′ > η, and proper operation with receiver
last requires δR′T ′ > η. At least one of the two modes is
feasible if

P > 2η (2)

For our proof-of-concept test-chip [3], our latch set-up
and hold windows were significantly smaller than the
latch controller’s cycle time. Thus, these cycle time con-
straints are the critical ones for our design.

5

5 Initialization

Under many circumstances, γT R and γRT are both pos-
itive. When this occurs, the interface can operate in
either transmitter-last or receiver-last mode. This sec-
tion describes two ways to decide which mode is “bet-
ter” and initialization procedures to achieve the desired
mode. Throughout this section, we assume that it is ac-
ceptable for the interface to drop values, duplicate val-
ues, and/or exhibit metastable behavior during initializa-
tion. Of course, it must deliver data without error after
completion of initialization.

5.1 Maximum Robustness

Clock jitter, temperature drift, and other fluctuations
cause the skew on physical chips to vary while the chip
is operating. Typically, this variation is just as likely to
make the transmitter earlier as it is to make it later. Thus,
to maximize robustness to skew variation, we want to
choose the mode tolerates the largest skew change in
either direction. This corresponds to starting in the
transmitter-last mode if δT R > δRT and in the receiver-
last mode if δT R < δRT .

An easy way to achieve this is to insert an adjustable
delay into the self-reset cycle of the latch-controller. If
this delay is initially very large, then neither mode is
feasible and the latch-controller will generate ill-timed
clock signals. By gradually decreasing this delay, the
circuit will reach a point where exactly one of the two
modes is feasible and after one or two cycles the latch
controller will operate stably in that mode. As the delay
is further decreased, the latch controller will remain in
the first mode that became feasible. This is the mode
with the larger skew margin. Thus, the analog dynam-
ics of our circuit provide a very simple mechanism for
initialization.

A metastable situation can occur if δT ′R′ ≈ δR′T ′ ≈
P/2: there is a metastable periodic behavior separating
the periodic attractors corresponding to the “transmitter-
last” and “receiver-last” modes. The probability of re-
maining in this metastable situation drops exponentially
in time with the keeper inverters for nodes aT and aR

providing the feedback. To ensure robust operation, an
implementation should either use a “strong keeper” cir-
cuit for these inverters or allow extra time for initializa-
tion.

On our proof-of-concept chip, we implemented this
form of initialization. The variable delay is achieved by
modulating the ground potential for circuits in the self-
resetting C-element. See [3] for details.

5.2 Minimum Latency

When both transmitter-last and receiver-last modes
are feasible, the transmitter-last mode has a latency that
is one clock period less than that of the receiver-last
mode. For designs where latency is critical for per-
formance (e.g. [9, 16]), it may be desirable to select
transmitter-last whenever possible. The following ini-
tialization procedure achieves this behavior:

1. Start the interface running at full-speed (no need for
the speed adjustment used in section 5.1). The latch
controller will settle into one of its two modes.

2. Wait long enough to ensure that the probability of
metastability failures is insignificant.

3. Suppress one transmitter clock event. If the latch
controller had been in the transmitter-last mode, it
will now see two receiver events before the next
transmitter event and continue in transmitter-last
mode. On the other hand, had it been in the
receiver-last mode, the latch controller will see one
receiver event before the next transmitter event and
switch to transmitter-last. If δT ′R′ > η, then the
controller will remain in transmitter-last, otherwise
it will miss a receiver event when the controller’s
internal reset completes after the arrival of a rising
edge of ΦR′ and then resume operation in receiver-
last.

4. Allow adequate time for the resolution of metasta-
bility that can occur if the controller falls back into
receiver-last mode.

As described, this procedure make no guarantees of ro-
bustness when forcing the transmitter-last mode. To pro-
vide some robustness against skew drift clock jitter, the
latch controller can be operated with a slight slow-down
during this initialization and brought to full speed un-
der normal operation. Alternatively, section 7 describes
a (near-) miss detector circuit that can detect when the
controller is close to its limits; in which case, the con-
troller can be returned to the receiver-last mode by sup-
pressing a ΦR event.

6 Rational Clock Frequency Multiples

We now consider the situation depicted in figure 1.b:
the frequencies of the sender’s and receiver’s clocks are
pre-determined rational multiples of each other. Let PT

be the period of the transmitter’s clock and PR be the
period of the receiver’s clock. Let NR and NT be positive
and mutually prime with NR/NT = PT /PR (NT and NR

correspond to the frequencies of the respective clocks).

6

latch−X

ΦT ΦR

ΦU

latch controller

QD
tr

an
sm

itt
er

fr
om

nt
nr

data

valid_next

data

to
 r

ec
ie

ve
r

multiplier
rate

Figure 6. An Interface with Rational Clocks

We develop our designs assuming NR > NT and describe
the NT > NR case at the end of this section.

Figure 6 shows our design for NR > NT . By the as-
sumption that the receiver operates at a higher rate than
the transmitter, there will be receiver cycles for which
no new transmitted data is available. The rate multiplier
outputs NT pulses on node ΦU to the latch controller for
every NR cycles of the receiver’s clock as shown below:

sum := 0;
for each cycle of ΦR do

if sum ≥ 0 then
output a pulse on ΦU ;
sum := sum + NT − NR;

else sum := sum + NT ;
endif

od

By analogy with ΦR and Φ′
R, let ΦU ′ be the internally de-

layed version of ΦU in the latch controller, and let δT ′U ′

and δU ′T ′ be defined as δT ′R′ and δR′T ′ respectively. The
rate multiplier introduces periodic jitter into ΦU with a
period of NRPR = NT PT . Let δU ′T ′0 denote the time from
the rising edge of ΦU ′ produced by the (kNR)th rising
edge of ΦR to the next rising edge of ΦT ′ for any integer
k. It is straightforward to show:

min(δU ′T ′) = δU ′T ′0

max(δU ′T ′) = δU ′T ′0 +PR−
PR
NT

min(δT ′U ′) = PT −δU ′T ′0 −PR + PR
NT

max(δT ′U ′) = PT −δU ′T ′0

(3)

The cycle time constraints of the latch controller can be
satisfied if:

max(δU ′T ′0,PT −δU ′T ′0 −PR + PR
NT

) > η (4)

which holds for any value of δU ′T ′0 if:

PT − (1− 1
NT

)PR > 2η (5)

For designs where the latch set-up and hold require-
ments are the dominant constraints, similar bounds for
PT and PR can be derived. Thus, our one-stage FIFO
can be used to interface to synchronous domains operat-
ing at different, rationally related frequencies. Further-
more, the initialization methods described in section 5.1

Φ

U,1Φ

U,2

Φ

TΦ

R

2sum

1sum

−2 0 −2

BA

C

0 1

2 0

−202−1−2 1

−11 2

Figure 7. Exploiting periodic jitter

apply directly to the rational clocks case. Comparing
with equation 2 shows that the minimum clock period
has been increased by the jitter of ΦU created by the rate
multiplier.

As noted above, the jitter introduced by the rate mul-
tiplier is periodic. We can exploit this predictability to
increase the robustness of the interface. For every NR

consecutive cycles of the receiver’s clock, the variable
sum takes on each value in {NT −NR, . . . ,NT − 1} ex-
actly once. The initial value of sum is arbitrary, and we
can use this freedom to increase the skew tolerance of
our design.

Figure 7 shows the operation of our interface where
the transmitter clock frequency is 3/5 that of the re-
ceiver. The traces for sum1 and ΦU,1 show the worst-
case sequence for sum: with this choice η < P/2 must
hold for proper operation. In particular, if the ΦU event
generated when sum1 transitions from 2 to 0 triggers
the latch controller to produce a ΦX event, then the self-
reset cycle must complete in time for the rising edge of
ΦT that occurs PR/2 later (indicated by the arrow labeled
A in the diagram). On the other hand, if this ΦU event
does not trigger the latch controller, then the subsequent
ΦT event must, and the resulting self-reset cycle must
complete in time for the next ΦU event, again PR/2 later
(indicated by the arrow labeled B in the diagram).

The traces for sum2 and ΦU,2 show the optimal se-
quence for sum for the same transmitter and receiver
clocks. For this scenario, the critical timing occurs when
the rising edge of ΦU that is produced when sum2 goes
from 2 to 0 triggers a ΦX pulse. The self-reset of the
latch controller must complete prior to the next ΦU pulse
PR time units later. Thus, with this choice of the sum se-
quence, the latch controller can operate at half the rate as
required by the worst-case sequence. We first derive the
constraints on PT and PR that ensure proper operation for
any phase difference between the two clocks assuming
the optimal sum sequence. We then describe how our
initialization technique from section 5.1 can be adapted
to find this sequence.

Regardless of how the sum sequence is chosen, the
ΦU clock has a jitter of (1−1/NT)PR with respect to an
evenly spaced clock with period P. The maximally ro-

7

bust sequence for sum centers the ΦU jitter interval as
closely as possible on the ΦT clock. The interval may
be off center by as much as gcd(PR,PT) = PR/NR due to
the discrete set of choices for the sum sequence. From
these observations, the smaller of the time from a rising
edge of ΦT ′ that triggers the latch controller to the next
rising edge of ΦU ′ or vice-versa is PT −PR/2. It is also
possible that a rising edge of ΦU ′ triggers the latch con-
troller and have the next input event for the controller
be the next rising edge of ΦU ′ . The minimum time be-
tween two such rising edges is bNR/NT cP. Combining
these two constraints yields that there is a feasible se-
quence for sum such that the cycle time constraints of
the latch controller are satisfied as long as:

PT −max
(

1
2 , NR mod NT

NT

)

PR > η (6)

Comparing with equation 5 we see that choosing the
optimal sum sequence can greatly relax the cycle time
requirement for the latch controller, or, equivalently,
greatly increase the robustness of the interface. For ex-
ample with PR = 1ns and PT = 1.2ns, equation 5 (fixed
choice for the sum sequence) requires η < 0.1ns. With
the optimal choice for the sum sequence, equation 6 re-
quires η < 0.7ns, a reduction in the speed required by a
factor of 7 for this example.

The optimal sum sequence can be selected as part
of the initialization of the interface. We base our ap-
proach on two observations. First, the optimal sequence
works with a larger value of η than any other sequence.
Second, we can shift from one sequence to another by
adding NT + 1 (resp. NT − NR + 1) to sum instead of
NT (resp. NT −NR). Generalizing the initialization tech-
nique described in 5.1, we start with a large value for η
and gradually decrease it. Each time the latch-controller
fails to reset in time for the next ΦT ′ or ΦU ′ event, we
shift to the next sum sequence. When η is small enough
that the latch controller can operate with the optimal
sum sequence, but not the others, then the rate multi-
plier will switch from one sequence to the next until it
reaches the optimal one. At this point, the latch con-
troller will successfully reset after each cycle in time for
the next ΦT ′ and ΦU ′ events, and the rate multiplier will
remain with the optimal sequence.

Figure 8 shows our circuit that reports when a rising
edge of ΦT or ΦU arrives at the latch controller prior to
the completion of the controller’s internal reset. We call
such an event a “miss” and call our circuit a “miss de-
tector.” A miss occurs if a rising edge is received while
the c signal of the latch controller (see figure 4) is still
low. Noting that ΦX is an inverted version of c, we use
the ΦX signal in the series stacks of transistors that de-
tect such events. The delay of the inverter that produces
ΦX gives our circuit a little extra margin: it also reports

ΦX

ΦX ΦX

ΦU

Φ

ΦT

Q

miss

Sync D

R

y

x

Figure 8. A Miss Detector

“near misses.” We use this feature in the next section.
When a (near) miss occurs, node x goes low and node y
goes high. These transitions occur asynchronously with
respect to ΦR. The synchronizer provides a delayed ver-
sion of y in the receiver’s clock domain. The synchro-
nizer is only active during initialization and does not
contribute to the latency of data transfers under steady-
state operation, accordingly, the synchronizer can have a
large latency and correspondingly minuscule probability
of failure.

In the designs shown in this section, the rate multi-
plier tells the receiver when it can take data from the
interface. In other words, the interface takes the active
role in flow control. It is straightforward to convert these
designs to ones where the interface is passive and the
receiver is active by adding a FIFO and a little control
logic. This FIFO and control logic function entirely in
the receiver’s clock domain and add only the delay of a
multiplexer to the latency of the interface.

This section has shown how our simple interface
based on a one-stage, self-timed FIFO can be used in
designs with multiple, rationally related clock frequen-
cies. We have focused on the case where the receiver
clock frequency is greater than that of the transmitter. If
the transmitter has the higher clock frequency, equiva-
lent designs can be used with the rate multiplier in the
transmitter’s clock domain.

7 Plesiochronous Interfaces

We now consider the designs with multiple clock do-
mains with independent clocks that are closely matched
in frequency; these are called “plesiochronous” inter-
faces (see [23]). Such designs occur, for example, when
the sender and receiver are physically separated (e.g.
networks), or when separate clock generators are used
to avoid introducing a single point of failure into the de-
sign. Typically, the clock frequencies will be matched to

8

within a few parts per million, a tolerance that is easily
achieved with crystal oscillators.

With close frequency matching, the relative timing of
clock edges at the latch interface changes very slowly.
We can modify the miss detector circuit from figure 8 to
provide an output indicating when a rising edge from
ΦT shortly after the latch controller completes its re-
set, and another output that indicates when the timing
of ΦR is close to the margin. If these signals indicate
when only 0.1P of margin remains, thousands of cycles
remain before an error could actually occur. Thus, we
can synchronize these signals to the transmitter and re-
ceiver clocks with extremely high reliability, and use the
synchronized versions to take appropriate corrective ac-
tion. For example, if a rising edge of ΦR occurs less
than 0.1P after the latch controller completes its reset,
then the receiver can skip clocking the latch controller
on a subsequent cycle. This will switch the interface
from operating with the rising edge of the transmitter’s
clock arriving much after the corresponding edge of the
receiver’s clock to operation where the receiver edge
arrives slightly after the transmitter edge. Likewise,
if a rising edge of ΦT occurs less than 0.1P after the
latch controller completes its reset, then the transmitter
can skip sending data and clock on a subsequent cycle.
Such protocols are commonly implemented using “stuff
bytes” [9], and are easily implemented in the framework
of our latch controller and miss detector.

Although synchronizations are required during oper-
ation, the latency of these synchronizations is not critical
for the latency of the data path. The data latency for our
interface is always less than 2P. By adding an arbiter to
detect when the latch controller is in receiver-last mode
with enough margin to be able to safely switch to trans-
mitter last, the worst-case data latency can be reduced to
slightly greater than P with an average latency slightly
greater than P/2.

8 Arbitrary Clock Frequencies

We now consider the case where the transmitter and
receiver operate with independent clocks at arbitrary fre-
quencies. Initially, it might seem that such a design
requires the overhead of synchronizing buffers as de-
scribed in section 2.2. However, we can take advan-
tage of the fact that in nearly all synchronous designs the
clock frequencies are extremely stable. We can exploit
this stability even if the frequencies aren’t known in ad-
vance. We combine our designs from the previous two
sections to support communication with arbitrary clock
frequencies.

Firstly, the transmitter and receiver forward their
clocks to each other. Each uses a counter to produce
an initial estimate of the clock frequency of the other.

This assumes that each can implement a counter that
operates at least as fast as the other clock. Since we
are focusing on single-chip designs, this seems reason-
able, and we note that with frequency prescaling, this
assumption could be removed. These estimates provide
a rational approximation of the ratio of two clock fre-
quencies. If the nominal clock frequencies are known in
advance, this step can be skipped.

Secondly, if the receiver’s clock frequency is higher
than that of the transmitter, it uses a rate-multiplier to
create an approximation of the transmitter’s clock. Like-
wise, the transmitter uses a rate multiplier if the trans-
mitter has the higher clock frequency. We operate the
latch controller with the (possibly rate-multiplied) clock
provided by the transmitter and receiver.

Because the frequency values that we have for the
two clocks are only approximations, albeit very accurate
ones, the FIFO will be prone to occasional underflow or
overflow. We use separate “near-miss” signals for ΦT

and ΦR and forward near miss events to the client with
the faster clock, i.e. the one using the rate-multiplier.
This client updates its estimate of the other client’s clock
frequency thus changing the rate of events output by its
rate multiplier. This is a second-order control system,
and a little bit of care is needed to ensure stability. A
simple approach is that the client with the faster clock
uses a counter to measure the time between near miss
events and uses this information to update its estimate
of the other client’s clock frequency. This process is
quadratically convergent and stable. At the same time
as updating the frequency estimate, a first-order correc-
tion can be applied by adding an offset to sum to bring
the latch controller back to a point near the center of its
safe operating region. If the near miss was for the clock
of the client with the faster clock, then this offset should
be positive, otherwise it should be negative.

As for the plesiochronous interface described in the
previous section, synchronizations are required during
operation. Again, the latency of these synchronizations
is not critical for the latency of the data path. These
synchronizations are infrequent; their rate is determined
by the resolution of the rate-multiplier and the drift rate
of the clock frequencies.

9 Conclusion

We have presented a very simple design for source-
synchronous communication. It is based on a self-timed,
ripple FIFO with a single stage. Whereas a single stage
pointer FIFO provides no skew compensation (such a
pointer FIFO is simply a latch clocked by the transmit-
ter), the single-stage ripple FIFO provides nearly two
clock periods of skew tolerance and can operate cor-
rectly for any initial phase offset between the transmitter

9

and the receiver of the channel. The simplicity of the
single-stage FIFO enables simplifications and optimiza-
tion, thus taking good advantage of self-timed design.
We presented a design consisting of a self-resetting,
edge-triggered C-element that generates a clock inter-
mediate to the clocks of the transmitter and receiver.
This intermediate clock strobes a latch that conveys data
from the transmitter to the receiver. The timing of this
clock signal ensures that the set-up and hold require-
ments of the receiver and the intermediate latch are all
satisfied. Our design can be initialized to provide max-
imal robustness against clock jitter and skew drift by
adjusting the speed of the self-resetting C-element dur-
ing its initial operation. Alternatively, the interface can
be initialized for minimum latency by deliberately sup-
pressing a transmitter clock event to the latch during ini-
tialization.

Sections 6 through 8 showed how this design can be
adapted for more generalized clocking scenarios includ-
ing clocks with rationally related frequencies, closely
matched clocks, and arbitrary clocks. In all of these
designs, any synchronization is carried out on a path
whose latency does not impact the data path. Thus, our
designs can achieve latencies that are at most slightly
more than one clock period and typically about half that.
To achieve this performance, we exploit the medium to
long-term frequency stability of clocks in synchronous
designs.

In general, the overheads of synchronization and
handshaking are only needed to address timing issues
that cannot be resolved statically. When the clocks of
the transmitter and receiver are identical in frequency,
then only the relative phase needs to be resolved, and
this can be done by a simple handshaking circuit such as
our latch controller shown in figure 4. When the clocks
are rationally related, the client with the faster clock can
use a rate multiplier to construct an approximation of the
other client’s clock. There are numerous isomorphic se-
quences of events that can be generated by the rate mul-
tiplier, and we use synchronization during initialization
to determine the optimal sequence. When the clocks are
closely matched in frequency, only the long-term drift
needs to be identified. The synchronizer that detects this
drift can have high latency without impacting the data
path latency. Finally, when arbitrary clock frequencies
are used, we can still exploit the frequency stability of
these clocks. Again, synchronization is only needed to
detect long-term drift, and this does not impact the data
path latency.

We have designed a proof-of-concept chip in the
TSMC 0.18µ CMOS process for our design for clients
operating at identical clock frequencies and it is cur-
rently in fabrication. We are currently designing a chip
to demonstrate our interfaces based on miss-detectors

and will fabricate it in 2003.

Acknowledgments

Jo Ebergen of SUN Microsystems pointed out the
similarities between our controller and GasP handshak-
ing circuits. Roozbeh Mehrabadi, Roberto Rosales, and
Brian Winters have provided valuable suggestions dur-
ing the design of our chip. This work has received sup-
port from NSERC and CMC.

References

[1] K. Bernstein, K. M. Carrig, et al. High Speed CMOS
Design Styles. Kluwer, 1999.

[2] K. A. Bowman, S. G. Duvall, and J. D. Meindl. Impact
of die-to-die and within-die parameter fluctuations on the
maximum clock frequency distribution for gigascale inte-
gration. IEEE Journal of Solid-State Circuits, 37(2):183–
190, Feb. 2002.

[3] A. Chakraborty and M. R. Greenstreet. A minimalist
source-synchronous interface. In Proceedings of the 15th
IEEE ASIC/SOC Conference, pages 443–447, Sept. 2002.

[4] T. Chaney and C. Molnar. Anomalous behavior of syn-
chronizer and arbiter circuits. IEEE Transactions on
Computers, C-22(4):421–422, Apr. 1973.

[5] D. M. Chapiro. Globally-Asynchronous, Locally-
Synchronous Systems. PhD thesis, Department of Com-
puter Science, Stanford University, Oct. 1984. Tech. Re-
port STAN-CS-84–1026.

[6] T. I. Chappell, B. A. Chappell, et al. A 2-ns cycle,
3.8-ns access 512-kb CMOS ECL SRAM with a fully
pipelined architecture. IEEE Journal of Solid-State Cir-
cuits, 26(11):1577–1585, Nov. 1991.

[7] T. Chelcea and S. M. Nowick. Robust interfaces
for mixed-timing systems with application to latency-
insensitive protocols. In Proceedings of the 38th
ACM/IEEE Design Automation Conference, pages 21–
26, June 2001.

[8] B. Davari. CMOS technology: Present and future. In
Proceedings of 1999 Symposium on VLSI Circuits, pages
5–10. IEEE, June 1999.

[9] L. R. Dennison, W. J. Dally, and D. Xanthopoulos. Low-
latency plesiochronous data retiming. In Proceedings of
the Sixteenth Anniversary Conference on Advanced Re-
search in VLSI, pages 304–315, 1995.

[10] S. Furber, D. A. Edwards, and J. D. Garside. AMULET3:
a 100 MIPS asynchronous embedded processor. In Pro-
ceedings of the 2000 International Conference on Com-
puter Design, pages 329–334, Sept. 2000.

[11] S. Geissler, D. Appenzeller, et al. A low-power RISC
microprocessor using dual PLLs in a 0.13µ SOI technol-
ogy with copper interconnect and low-k BEOL dielectric.
In Proceedings of the 2002 International Solid-State Cir-
cuits Conference, pages 148–149, Feb. 2002.

[12] M. R. Greenstreet. STARI: A Technique for High-
Bandwidth Communication. PhD thesis, Department of
Computer Science, Princeton University, Jan. 1993.

10

[13] M. R. Greenstreet. Implementing a STARI chip. In Pro-
ceedings of the 1995 International Conference on Com-
puter Design, pages 38–43, Austin, Texas, Oct. 1995.

[14] D. Harris and S. Naffziger. Statistical clock skew mod-
eling with data delay variations. IEEE Transactions on
VLSI Systems, 9(1):888–898, Dec. 2001.

[15] G. Hinton, M. Upton, et al. A 0.18µ CMOS IA-32 pro-
cessor with a 4-GHz integer execution unit. IEEE Journal
of Solid-State Circuits, 36(11):1617–1627, Nov. 2001.

[16] A. Iyer and D. Marculescu. Power-performance evalua-
tion of globally asynchronous, locally synchronous pro-
cessors. In Proceedings of the 29th International Sym-
posium on Computer Architecture, pages 158–168, June
2002.

[17] H. Johnson and M. Graham. High-Speed Digital Design:
A Handbook of Black Magic. Prentice Hall, 1993.

[18] G. K. Konstadinidis, K. Normoyle, et al. Implementa-
tion of a third-generation 1.1-GHz 64-bit microprocessor.
IEEE Journal of Solid-State Circuits, 37(11):1461–1469,
Nov. 2002.

[19] G. Kornaros, D. Pnevmatikatos, et al. ATLAS 1: Im-
plmenting a single-chip ATM switch with backpressure.
IEEE Micro, 19(1):30–41, Jan/Feb 1999.

[20] A. Kowalczyk, V. Adler, et al. The first MAJC micropro-
cessor: A dual CPU system-on-a-chip. IEEE Journal of
Solid-State Circuits, 36(11):1609–1916, Nov. 2001.

[21] N. A. Kurd, J. S. Barkatullah, et al. Multi-GHz clocking
scheme for Intel R© Pentium R© 4 microprocessor. In Pro-
ceedings of the 2001 International Solid-State Circuits
Conference, pages 404–405, Feb. 2001.

[22] A. J. Martin, A. Lines, et al. The design of an asyn-
chronous MIPS R3000 microprocessor. In Proceedings
of the 17th Conference on Advanced Research in VLSI,
pages 164–181, Sept. 1997.

[23] D. G. Messerschmitt. Synchronization in digital system
design. IEEE Journal on Selected Areas in Communica-
tions, 8(8):1404–1419, Oct. 1990.

[24] S. Moore, G. Taylor, et al. Point to point GALS inter-
connect. In Proceedings of the Eigth International Sym-
posium on Advanced Research in Asynchronous Circuits
and Systems, pages 62–68, Apr. 2002.

[25] J. Mutterbach, T. Villiger, and W. Fichtner. Practical
design of globally-asynchronous, locally-synchronous
sytems. In Proceedings of the Sixth International Sym-
posium on Advanced Research in Asynchronous Circuits
and Systems, pages 52–59, Apr. 2000.

[26] K. Olukotun, B. A. Nayfeh, et al. The case for a single-
chip multiprocessor. In Proceedings of the Seventh In-
ternational Symposium on Architectural Support for Par-
allel Languages and Operating Systems, pages 121–132,
Oct. 1996.

[27] P. J. Restle, T. G. McNamara, et al. A clock distribu-
tion network for microprocessors. IEEE Journal of Solid-
State Circuits, 36(5):792–799, May 2001.

[28] P. Riocreux, L. Brackenbury, et al. A low-power self-
timed viterbi decoder. In Proceedings of the Seventh In-
ternational Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 15–24, 2001.

[29] T. Seceleanu, J. Piosila, and P. Liljeberg. On-chip seg-
mented bus: A self-timed approach. In Proceedings of the
15th IEEE ASIC/SOC Conference, pages 216–220, Sept.
2002.

[30] J. N. Seizovic. Pipeline synchronization. In Proceed-
ings of the First International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages
87–96. IEEE Computer Society Press, 1994.

[31] A. E. Sjogren and C. J. Myers. Interfacing synchronous
and asynchronous modules within a high-speed pipeline.
IEEE Transactions on VLSI Systems, 8(5):573–583, Oct.
2000.

[32] I. Sutherland and S. Fairbanks. GasP: A minimal FIFO
control. In Proceedings of the Seventh International Sym-
posium on Advanced Research in Asynchronous Circuits
and Systems, pages 46–53, Apr. 2001.

[33] S. Tam, S. Rusu, et al. Clock generation and distribution
for the first IA-64 microprocessor. IEEE Journal of Solid-
State Circuits, 35(11):1545–1552, Nov. 2000.

[34] A. J. Winstanley, A. Garivier, and M. R. Greenstreet. An
event spacing experiment. In Proceedings of the Eigth
International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 42–51, Manch-
ester, UK, Apr. 2002.

[35] E. Yeung and M. A. Horowitz. A 2.4 Gb/s/pin si-
multaneous bidirectional parallel link with per-pin skew
compensation. IEEE Journal of Solid-State Circuits,
35(11):1619–1628, Nov. 2000.

[36] K. Y. Yun and R. P. Donohue. Pausible clocking: A first
step toward heterogeneous systems. In Proceedings of
the 1996 International Conference on Computer Design,
pages 118–123, Oct. 1996.

11

