Submitted to ASYNC 2001
Please do not redistribute

How to Achieve Worst-Case Performance

Mark R. Greenstreet and Brian de Alwis
Department of Computer Science
University of British Columbia
Vancouver, BC V6T 174
Canada
{mrg,bsd}@cs.ubc.ca

October 3, 2000

Abstract

“Average case performance” is an oft-cited moti-
vation for self-timed design. In self-timed designs,
computations proceed according to handshakes, and
these handshakes can reflect the actual time required
for operations rather than the worst-case time. The
intuitive argument is that this should lead to systems
whose performance reflects the average-case perfor-
mance of their components. This paper shows that
such intuition is often wrong.

This paper describes a connection between self-
timed circuits and percolation networks. Percolation
networks are a class of infinite graphs originally used
to model critical phenomena arising from fluid flows
in porous media. This paper shows how these tech-
niques can be used to show the frequent existence
of long chains of slow operations in self-timed de-
signs. These chains can give rise to performance that
is closer to worst-case than average-case.

This paper makes three contributions. First, it
describes a fundamental connection between perco-
lation networks and self-timed circuits. Second, it
presents novel methods for studying percolation net-
works that arise in the analysis of self-timed circuits.
Third, it gives examples of self-timed circuits whose
performance is limited by percolation phenomena.

Figure 1: A ring of self-timed processors

1 Introduction

Consider a self-timed ring of processors as shown in
figure 1. The C-elements in the figure represent the
control path of a typical self-timed pipeline. When a
stage is in the same state as its successor and in the
opposite state as its predecessor, then the stage is
enabled to change to the state of its predecessor. In
this paper, we are concerned with the rate at which
each C-element fires. We will assume that the time
between when a C-element is enabled and when it
fires i1s a random variable; that there is a separate
such random variable for each operation performed
by each C-element; and that these random variables
are independent and identically distributed. By the
symmetry of “bubbles” and “tokens” in the pipeline
(see [4]), the highest throughput is obtained when
the number of bubbles and tokens are equal.! In
particular, if there are N C-elements in the ring, then

I This assumes that forward and reverse latencies are ran-
dom variables with the same distribution. We will make this

stage stage stage stage stage stage stage stage
0 1 2 3 4 5 6 7

O O O O
t=0:
one
”””””””””””””””””””””””” time-unit
O O O O > later
t=1:
,,, > one
time-unit
O O O O |ater
t=2:

Figure 2: A Ring with C-elements with Unit Delay

maximum performance is obtained when there are
N/4 segments of adjacent C-elements whose outputs
are high separated by N/4 segments of adjacent C-
elements whose outputs are low. In the following, we
will assume that this balance of tokens and bubbles
holds.

The simplest timing model to analyze is one where
each C-element takes exactly one time unit to fire af-
ter it becomes enabled. Figure 2 shows this scenario.
Enabled processors are marked with a 0. Initially,
all of the even-indexed stages are enabled. One time
unit later, these stages fire, and all of the odd-indexed
stages become enabled. One more time unit later, the
odd-indexed stages fire, and the even-indexed stages
become enabled again. Thus, each stage has a cycle
time of two time units.

The performance of self-timed rings have been
studied in various contexts. For example, [14] ana-
lyzed various, regular arrays of self-timed processors,
assuming each processor has a fixed time for each
operation. Self-timed rings with exponentially dis-
tributed processing times were analyzed in [4], and
self-timed meshes in [11]. Xie and Beerel have devel-
oped tools that analyze general networks of self-timed
processors for general probabilistic models [15, 16].

In this paper, we focus on the case where the times
for operations are Bernoulli random variables [2]

assumption to simplify the analysis. Similar results apply with
asymmetric latencies.

average
cycletime

Actual cycletime
4.0 24 -,

3.8
3.6

Average-case
cycle-time

2.6
24—

22+

20474 = P
01 0.2 03 04 05 06 07 08 09 10
Figure 3: Cycle Time vs. p, (probability of slow op-
erations)

(suitably shifted and scaled): each processor has two
possible processing times, “fast” and “slow”, where
the probability of an operation being fast is py, and
therefore the probability of an operation being slow
is p; = 1—p;. The reader can think of this as flipping
a weighted coin each time the processor is enabled —
if the coin comes up heads, then the operation is fast;
if the coin comes up tails, then the operation is slow.
We are interested in how the performance varies with
ps-

As an example, consider the case where a fast oper-
ation takes one time unit and a slow operation takes
two time units. Figure 3 shows the average cycle time
as a function of p,, the probability that an operation
is slow. When p, = 0, all operations take one time
unit, and the average cycle time is two time units as
described above. Likewise, when p, = 1, all opera-
tions take two time units, and the average cycle time
becomes four time units. The dashed line shows the
cycle times that would be achieved if cycle time was
determined by the average delay of a C-element. The
solid curve shows the actual cycle times observed by
Monte-Carlo simulation.

This curve has three salient features:

1. The actual performance only matches the
average-case scenario for the deterministic pro-

cessing time scenarios. For most values of p;s, the
actual cycle time is much larger than predicted
by a simple, average-case model.

2. The curve reaches the maximum cycle time for
a value of ps; near 0.72. For p, above this value,
the cycle time is exactly the time that would
be observed if all processors were always slow.
In other words, decreasing the delay for up to
28% of the operations has no effect on the overall
performance! This is due to critical phenomena
in the behavior of the self-timed ring.

3. The curve is vertical at p; = 0.

In the remainder of this paper, we examine the causes
for these phenomena and explore their implications
for self-timed design.

2 Task Graphs and Percolation
Networks

This section presents the two modeling concepts be-
hind our analysis: task graphs and percolation net-
works. Task graphs model the precedence relations
between operations in parallel processes. Percolation
networks are infinite, random graphs, where the basic
question is whether or not the graph contains a con-
nected component of infinite extent. We show that
when the times for operations are Bernoulli random
variables, then we can view the resulting task graph
as a percolation network. If this percolation network
has an infinite, connected component, then the orig-
inal self-timed system operates with worst-case per-
formance.

2.1 Task Graphs

A task graph is a way of visualizing the operations of
a a parallel process [3]. The graph has one vertex for
each operation of each processor. In particular, let
vertex v; ; correspond to the j™ operation of proces-
sor ¢. Edges in the graph are directed, with an edge
from vertex v;, ;, to vertex v;, ;, if the §2t* operation
of processor i, depends directly on the j;™* opera-
tion of processor i;. For example, figure 4 shows the

Figure 4: Task Graph for a Self-Timed Ring

task graph for the self-timed ring depicted in figures 1
and 2. More generally, consider a ring with NV stages,
where N is even. The set of edges in the task graph
is:

{(vij,vie1,3), (vi g, vie 5)|i even, j > 0} U

) X)
{(vij,vie1,j41), (vij, vigr j41) i odd, j > 0}
where @ and & denote addition and subtraction mod-
ulo N.

With each vertex, v; ;, we associate ¢(v; ;), the time
at which the operation takes place, and §(v; ;) the
delay between enabling the process and performing it.
We also write ¢; ; and ; ; to denote ¢(v; ;) and §(v; ;)
respectively. The recurrence below relates these two
quantities to each other:

9i s i even, j =0
tij = dij + max(tic1 j_1,tigr,j—1), % even, j>0
b j +max(ticy j, tig1 j), i odd

2)
The first case with ¢ even and j = 0 describes the fir-
ing times of the processors that are initially enabled.
The other two cases state that a processor becomes
enable at the latter of receiving data from its pre-
decessor (tig1,...) and receiving an acknowledgement
from its successor (¢;g1, .., and that the processor fires
d; ; time units after becoming enabled.

For our particular problem, §; ; is derived from a
Bernoulli random variable. In particular, let §; be
the time for a “slow” operation and é¢ be the time
for a “fast” operation with §; > d¢. The time for

processor i to perform its j** operation is

tp+ (ts —t5)B(vi) (3)

where the #(v; ;)’s are independent Bernoulli random
variables that are one with probability ps and zero
with probability p; = 1 — p,. We also write 3; ; to
denote B(v; ;).

An alternative way to write equation 2 is as a max-
imum over all paths from an initial vertex. Let I'; ;
be the set of all paths from an initial vertex (i.e. one
with 7 even and j = 0) to vertex v; ;:

J

i =

Vi g, t1even, j =0
s-vi 5, SE (Fielyj_luri@l,j—lm
I;; = ieven, j >0 (4)
s-vij, $€ (Tig1;UTlig1;),
iodd,j >0

Using I, equation 2 can be rewritten written as:

max d(v)
s€li; VES

tij =

(5)
For the case where ¢ is defined as in equation 3,
ti; = (2%i4 (j mod?2))ds + sr&gﬁ%[)’(v)

(6)
In English, this says that the time at which proces-
sor 1 completes is determined by the path from an
initial vertex through v; ; with the maximum num-
ber of slow operations. In the next section, we will
show that for p; greater than a critical value, the
probability that for every j there exists some i such
there is a path from an initial state through vertex
v; ; where every vertex on the path is slow. This gives
rise to worst-case performance.

2.2 Percolation Networks

Percolation networks [6] are “crystalline lattices”:
graphs that are formed by repetition of a finite pat-
tern graph. With each edge or vertex of the pat-
tern graph, there i1s a probability given for whether
or not that edge or vertex is present in any particu-
lar instance of the pattern graph in the entire graph.
For example, figure 2.2 shows a percolation network

Figure 5: A Percolation Network

based on a square mesh where each possible vertex
has a 0.5 probability of inclusion in the network. In
this figure, included vertices are drawn shaded with a
solid boundary; non-included vertices are drawn with
a dotted boundary. Likewise, edges between two in-
cluded vertices are as drawn solid arrows, and edges
that have one or both endpoints an a non-included
vertex are drawn dotted.

Percolation theory originally arose in the study of
the flow of coal dust particles through gas masks and
the study of fluid flows through porous rocks [7],
hence the name “percolation.” Percolation models
are characterized by whether they are “site models”
in which the probabilities apply to the vertices of the
pattern graph, or “bond models” in which the proba-
bilities apply to the edges. Furthermore, a distinction
is made between oriented models in which edges are
directed, and non-oriented models in which they are
not. Non-oriented, bond models have been the most
intensely studied (see [5]).

Percolation networks are characterized by phase
transitions. Let p be the probability that a site (or
bond) is present in a percolation network. What is
the probability that there is a connected component
spanning the network? For the fluid flow problems
mentioned above, the presence of a bond models an
open pore in a rock. A spanning network of open
pores indicates that fluid can seep through the rock.
In particular, we can study this question in the limit
that the size of the network goes to infinity assuming
that the network grows in all dimensions at roughly

the same rate. In this limit, percolation networks
are characterized by a critical probability, p., whose
value depends only on the pattern. The probability
of a connected component that spans the network 1is
zero for p < p. and one for p > p..

Critical probabilities have been published for a va-
riety of percolation networks. The most relevant such
results to our current work are Kesten’s famous proof
of a critical probability of 0.5 for a non-oriented, bond
model on a square, two-dimensional mesh [9], and
Ziff’s numerical derivation of a bound of & 0.5927460
for a non-oriented, site model network on the same
square mesh [17]. Kesten used arguments based on
the graph and its dual, noting that both are square
meshes. Ziff’s used hull-walking techniques to gener-
ate Monte-Carlo estimates and to derive coefficients
for renormalization methods. For a summary of some
recent results in percolation theory, Stauffer [13] pro-
vides a short and excellent survey.

2.3 The Connection between Task
Graphs and Percolation Networks

Consider again the task graph for a ring of self-timed
processors as illustrated by figure 4. We construct
a site-model, oriented percolation network from this
graph in the obvious way: sites of the percolation net-
work correspond to vertices of the task graph; bonds
correspond to edges; and a site is included if the cor-
responding operation is slow. Note that the task-
graph has cylindrical topology; thus, our percolation
network is a square mesh on a cylinder. Because we
are concerned about the limits as the size of the net-
work goes to infinity, the distinction between a mesh
on a plane and a mesh on a cylinder is insignificant.
In the next section, we examine this network and es-
timate its critical probability, p..

If ps, the probability of a processor being slow is
greater than p., then the probability of the existence
of a path that spans the network and consists of only
slow processors goes to one as the size of the ring goes
to infinity. Let N be the number of processors in the
ring, and GG be the number of generations considered.
Note that the width of the task graph is N/2 and the
height 1s 2G. The existence of a path of all slow pro-
cessors says that with high probability there is some

processor in generation G that completes its opera-
tion at time 2Gd;. Note that every task in generation
G depends on every task in generation G — N/2. If
G/N is large but bounded (e.g., 1,000,000),% then
with high probability no task in generation G com-
pletes before (G — N/2)d, + (N/2)é¢. Thus, the per-
formance of the ring is very close to worst-case per-
formance.

3 The Critical Probability

In this section, we present two methods for estimat-
ing the critical probability of a site model, oriented,
percolation network. First, we present an analytical
approach where we construct Markov chains that ap-
proximate the behavior of the percolation network.
Second, we make an estimate based on Monte Carlo
simulations. The Monte Carlo simulations give a
more accurate estimate. The Markov chain approach
has the advantage that the estimates it provides are
strictly lower bounds.

3.1 A Markov Chain Approach

Consider again the task graph from figure 4. To start
our analysis, 1t 1s helpful to relabel the tasks. Let

u(i,j) = v(2xi+1—7, [§/2]) (7)

With this relabeling, the edges of the task graph from
figure 4 become

(6,3, 05,4), (061,04 1 o ,54-)

8
Figure 6 shows the relabelled task graph. We view
each row in figure 6 as a generation. We will say
that a task i1s “critically slow” if the task is slow and
either the task is in the first generation, or the task
has at least one predecessor that is critically slow.
If a task in generation j is critically slow, then it
completes its operation at time jd;. We are interested
in the probability of finding an arbitrarily long path
of critically slow processors.

2The requirement that G/N be bounded prevents scenarios
where G is exponentially larger than N (e.g. (u/pf)N) for some
u > 0, in which case the network is spanned with probability

at most e ™%,

Figure 6: Relabelled Task Graph

We associate with each generation a configuration
column vector: an element of this vector is "1’ if the
task in the corresponding position in the task graph
is critically slow; otherwise the element is ’0’. The
process that goes from the state vector for one gener-
ation to the state vector for the next is a Markov pro-
cess [2]. Let M be transition probability matrix for
this process. In the limit as N goes to infinity, M has
an uncountable number of states. To compute lower
bounds on the critical probability, we approximate
this Markov process with a finite one. To describe
this approximation, we first introduce the notions of
equivalent and canonical states.

Let z, x1, z2, and z’ be configurations. Let
rotate(z, k) be the configuration obtained by rotat-
ing the elements of z by k positions to the right. Let
reverse(z) the the configuration obtained by revers-
ing the order of the elements of z. The following

Configuration canon(Configuration x) {
if(x = 0%) return(0%);
while(x[0] # 1) x = rotate(x, 1);
x = fill(x);
if(x > reverse(x)) x = reverse(x);
return(x);

}

Figure 7: A function for computing canonical states

equalities are straightforward to prove:

P{z — z'} = P{rotate(z, k) — rotate(z’, k)}
P{z1101zs — 2'} = P{x11llzy = 2’}
P{z — z'} = P{reverse(z) — reverse(z')}

(9)
where P{z — '} is the probability that z’ is the
next configuration given that z is the current con-
figuration. These equalities say that configurations
can be rotated, reversed, or filled without changing
the probability of the existence of a path of critically
slow processors. We write fill(z) to indicate the state
obtained from z by replacing every occurrence of the
substring 101 with the substring 111.

Using this equalities, we define the notion of a
canonical configuration. Let canon be defined as
shown in figure 7. A configuration, z is canonical
if # = canon(z). Two states, z, and z’, are equiv-
alent if canon(z) = canon(z’). We write z ~ 2’ to
indicate that and 2’ are equivalent. Using canon-
ical states significantly reduces the size of the state
space. For example, with N = 4, there are a total of
16 configurations, but only six canonical ones: 0000,
0001, 0011, 0111, 1001, and 1111. With N = 12,
there are a total of 4096 configurations, but only 265
are canonical.

To approximate the percolation network for the
self-timed ring, we chose a set of canonical config-
urations, W. We assume that W D {0%, 1}. Let W’
be the set of all successors, not necessarily canonical,
of configurations in W, and let My be the |[W'| x ||
transition probability matrix from states in W to
states in W', Tt is straightforward to show that there
are configurations in W whose canonical equivalents
are not in W; therefore |W'| > |W/|, which means

that My is not square. We handle these trouble-
some successors that don’t have representations in W
by decomposing each such configuration into two con-
figurations, each with its canonical version in W. We
then treat these two configurations independently.

One can think of these decompositions as a game
against an adversary. Our goal is to drive all config-
urations to the 0% configuration, thus showing that
their are no contiguous components spanning the per-
colation network. To do this we create a Markov
chain whose states are the elements of W. When a
successor of a configuration in W is outside of W,
we break the successor into two configurations, and
hand one of these pieces to the adversary who can
put 1t anywhere in the successor generation. The ad-
versary’s goal is to maximize the probability of there
being a chain of critically slow sites that span the
network. To do this, the adversary places the piece
that we relinquished arbitrarily far from any other
slow sites. This minimizes the likelihood of a two
critically slow paths from meeting and merging.

Now, we’ll restate the previous paragraph more for-
mally. We create a |W| x |W’| matrix, Qw- to map
configurations in W' back to canonical configurations
in W. For each configuration, w' € W' such that
canon(w’) ¢ W, we choose two configurations, wj
and wh such that w' = wjw) and canon(w}) € W
and canon(w}) € W. We now consider wj and w} in-
dependently. We set the entries in column w by the
rule:

Qw:(z,w') = [wy ~z[+|wy ~2z[(10)

where |i = j| is one if i = j and zero otherwise. For
w' € W' such that canon(w') € W, we simply set
Qw (canon(w'), w’) to one, and all other entries in
column w to zero.

As an example, let W be the set of all canoni-
cal configurations that can be represented in a win-
dow of width nine. Let w = 111001111; w 1s a
configuration in W. The set of successors of w are
wj = 1111011111 and any configuration that can
be obtained by replacing a 1 element in wj with a
0. For example, w’ = 1011001001 is a successor of
w. canon(w') = 1001001111 is not in W (it requires
a window of width 10). Let wj = 110100100 and

1
wy = 1.

w bound | w bound
2 0.5825 | 9 0.6580
4 0.6258 | 10 0.6612
6 0.6438 | 11 0.6639
8 0.6542 | 12 0.6663

Table 1: Lower bounds for the critical probability for
various window sizes

To obtain the canonical configuration for w{ we ro-
tate w] to places to the left to obtain 1101001. Next,
we replace 101 substrings with 111 to obtain 1111001.
Finally, we note that 1111001 > 1001111. Thus,
the canonical configuration for 110100100 is 1001111.
The canonical configuration for 1 is 1. Both of these
canonical configurations are in W. Using this decom-
position for 1101001001, Qw: (1, 1101001001) = 1
and Qw- (100111, 1101001001) = 1.

Let Aw = Qw' Mw. Matrix Aw is [W|x |W|. Let
w € RY be a vector, such that w(i) is the expected
number of independent local occurrences of 7 in the
current global configuration. Then, Aw w is a vec-
tor whose elements are an upper bound on expected
number of independent local occurrences of the con-
figurations in W of the successor of w. The config-
uration Ox is a sink: P{0x — 0%} = 1. Therefore,
Aw has an eigenvalue of 1 whose eigenvector corre-
sponds to this configuration. If all other eigenvalues
of Aw have magnitudes less than 1, then all configu-
rations in our approximate system lead almost surely
to the 0% configuration. Since our approximate sys-
tem overestimates the number of critically-slow sites,
this provides a bound for the original percolation net-
work. In particular, we find the largest value of p,
such that all eigenvalues of Ay other than the one
for 0% have magnitudes less than one. This value of
ps 1s a lower bound for p..

We considered sets for W that consisted of all
canonical configurations that could be represented in
a window of width w sites. If a successor configura-
tion exceeded this window, we split of the leftmost 1
as a separate configuration. Table 1 shows the esti-
mates we obtained for various window sizes.

3.2 Monte Carlo Simulations

In addition to our analytical approach described
above, we estimated the critical probability using
Monte Carlo simulations. Simulating a ring with
1000 processors for 4000000 time steps with various
values of p, we conclude that p. & 0.72. The Monte
Carlo estimate is certainly more accurate than the
lower bound computed above. We see the two meth-
ods as complementary. The analytical approach pro-
vides a proven bound and provides some insight into
the behavior of the percolation network. Our Monte
Carlo simulations provide a more accurate estimate
but no guarantees.

4 Other Distributions

The Bernoulli type distributions that we considered
in the earlier sections are very simplistic. It is natural
to ask if these results apply to other processing time
distributions as well.

A simple result is that if a regular array of proces-
sors has a corresponding percolation network with
critical probability p., and #g 1s chosen such that

(11)

then the array operates no faster than it would if all
operations take constant time #g.

The propensity of slow operations to dominate per-
formance shows up for other distributions as well. For
example, figure 8 shows the distribution function for
the maximum carry chain length in additions per-
formed by the ALU of an ARM microprocessor exe-
cuting the Dhrystone benchmark.

We simulated an eight processor ring where pro-
cessing times were independent and had the same
distribution as the carry chain lengths for the ARM,
i.e. a carry chain length of & corresponds to a pro-
cessing time of k£ time units. The average delay for
such a processor is 21.0 time units, which would give
rise to a cycle time of 42.0 time units if average case
delay determined performance. Simulation indicates
that the actual delay is 54.9 time units which is 30%
lower than predicted by the average case values. The

P{processor delay > to} > pe

worst-case value of 64 time units per cycle is a more

° ° ° ° o o
by @ > 2 ® ©
T T T T T

P{longest carry chain < c}

F(c) =

Figure 8: Distribution of length of longest carry chain
for an ARM ALU executing the Dhrystone bench-
mark

accurate estimate of the actual performance than the
estimate based on the average adder delay.

Figure 9 shows the sensitivity of the eight proces-
sor ring described above to the distribution of carry
chain lengths. We computed the sensitivities by per-
forming Monte Carlo simulations for 32 distributions
that were linearly independent, small perturbations
of the distribution shown in figure 8. We then solved
for the cycle time sensitivities for each carry chain
length. For example a sensitivity of —1.4 for length ¢
indicates that increasing the distribution function by
€ at for carry chains of length ¢ decreases the cycle
time by 1.4¢ time units. If performance were deter-
mined by the average adder delay, then the sensitivity
would be the dotted line shown in the figure. Instead,
we observe that the fast cases contribute very little
to performance, while carry chains of lengths from 25
to 32 have a very strong effect. For example consider
an alternative design where all operations with carry
chains of length up to sixteen take nearly zero time,
but carry chains of lengths twenty-five or longer take
the full 32 time units. With this change, the average
processing time decreases by 8%, but the average cy-
cle time for processors in the ring increases by 3.6%.
As this shows, there can be design changes that lower
performance by decreasing the average delay of the
components.

4.5

-d(cycle time)/d(F(c))
b e B e & s

N

0.5

0 I I I I
0 5 10 25 30 35

15 20
c: longest carry chain length

Figure 9: Sensitivity of performance to the distribu-
tion of the longest carry chain length

5 Two-Dimensional Processor
Meshes

This section extends the ideas of the previous sections
to networks with more complicated interconnection.
In particular, we consider the two-dimensional mesh
described in [11]. Figure 10 shows this mesh. Each
processor communicates with its north, south, east,
and west neighbours. To avoid boundary conditions,
we embedded the mesh on a torus. When a processor

e O 1 2 ng — 1
J
ny—lﬁﬁ{b{?ﬂﬁ»

piies

Figure 10: A four-connected mesh

I

01234567

Direction
of band
propagation

n
W+e
S

Figure 11: Bands on the four-connected mesh

OFrR, NWMOUUIO N

is in the same state as its north and east neighbours
and in the opposite state as its south and west neigh-
bours, it is enabled to change state. This protocol is
delay-insensitive.

If we north-south, east-west,
northwest-southeast pairs in the same state as con-
tiguous, then we can identify maximal contiguous re-
gions of processors in the same state. As figure 11
shows, these contiguous regions form bands around
the torus that correspond to the segments of one-
dimensional pipelines. In [11] we showed that the
highest throughput is achieved when these bands are
on average two processors wide, the situation shown
in figure 11.

consider and

The task graph for the two-dimension mesh looks
like a stack of checker boards. On even numbered lay-
ers, there is a vertex for each black square, and on odd
numbered layers, there is a vertex for each red square.
There are four directed edges from each vertex to its
four nearest neighbors on the next layer down. This
structure gives rise to a three-dimensional, oriented,
site-model percolation network. Monte Carlo simu-
lations indicate that the critical probability for this
percolation network is roughly 0.345. This means
that if just over a third of the operations are slow,
the overall throughput of the mesh is the same as if
all operations were slow.

Figure 12 shows the average cycle time for the two-
dimensional mesh as a function of the fraction of the
processors that are slow. As in figure 3, a fast oper-
ation takes one time unit and a slow operation takes
two. Qualitatively, the curve has the same overall
shape as that for the ring. Quantitatively, the degra-

cycletime

0 Actual performance

3.8
3.6

Average case

34 performance

52
3.0 ;
2.8 —
26 ;

2.4 —

2.2+

2.0 +—
0

= P
1.0

i :
09

i :
08

i :
07

i :
06

i :
05

i :
04

i :
03

i :
02

0.1

Figure 12: Cycle Time vs. p; for a two-dimensional
mesh

dation of cycle time when just a few slow operations
are added is quite severe. For example, if roughly
80% of the operations are fast, the overall cycle time
is only 14% of the way from the all-slow performance
to the all-fast performance.

This mesh example shows that increasing the de-
gree of connectivity in a self-timed design decreases
the critical probability in the corresponding perco-
lation network. This is not surprising. With more
dependencies in the task graph, critically slow paths
have more opportunities to propagate. Conversely,
introducing FIFO buffers between nodes in a mesh or
other high-degree interconnect will lower the critical
probability. Determining optimal rules for inserting
FIFOs is a topic for future research.

6 Conclusions

We have described a connection between the timing
behavior of self-timed circuits and percolation net-
works. In particular, networks of self-timed elements
can display critical phenomenon where long chains of
slow operations determine the performance of the de-

10

sign. In this case, the overall performance tends to
closely match the worst-case performance when every
operation takes its maximum amount of time.

We explored the relationship between self-timed
rings and two-dimensional, site-model, oriented per-
colation networks. These networks are characterized
by a critical probability: if the probability of an oper-
ation being slow is greater than this probability, then
worst case behavior results. The critical probability
for the two-dimensional, site-model, oriented network
does not appear to have been studied in the main lit-
erature on percolation networks. We obtained an es-
timate of 0.72 through Monte Carlo simulation, and
a lower bound of 0.6663 by analytical methods.

The asynchronous community has had a long-
standing fondness for “average case performance”
(e.g. [12, 10, 1, 8]). As we have shown, actual per-
formance often corresponds much more closely to the
worst-case performance of the components than to
the average-case. In fact, it is possible to “optimize”
components in ways that decrease the average-case
delay of the component while decreasing system per-
formance. In many cases, performance is largely de-
termined by the slowest 10-20% of the processing
time distribution of the components. Thus, “make
the common case fast” may not be as important as
“make the slow case fast.”

The critical behaviors that we’ve described arise
because of handshake protocols that we use: when
a component waits for all of it’s inputs to be avail-
able, the it must wait for the last one. This gives slow
events an opportunity to propagate through large ex-
panses of the underlying percolation network. There
may be opportunities to overcome these limitations
by using protocols that don’t wait for all inputs to ar-
rive. Of course, this introduces a need for arbiters to
decide when to proceed, and the overhead of arbitra-
tion is unacceptable in many fine-grained pipelined
applications. There clearly remains much to discover
about how to obtain optimal performance in self-
timed systems.

Acknowledgements

We are grateful to Nick Pippenger and Claire Kenyon
for enlightening conversations.

References

(1]

[10]

[11]

[12]

[13]

W. chun Chou, P. A. Beerel, et al. Average-case
optimized technology mapping of one-hot domino
circuits. In Proceedings of the Fourth International
Symposium on Advanced Research in Asynchronous
Clircuits and Systems, pages 80-91, San Diego, Cal-
ifornia, Apr. 1998. IEEE.

W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. John-Wiley and Sons,
1950.

E. Gelenbe. Multiprocessor Performance. John Wi-
ley and Sons, 1989.

M. R. Greenstreet and K. Steiglitz. Bubbles can
make self-timed pipelines fast. Journal of VLST and
Signal Processing, 2(3):139-148, Nov. 1990.

G. R. Grimmett. URL:

Percolation.

http://www.statslab.cam.ac.uk/~grg/papers/USopt.ps.

G. R. Grimmett. Percolation. Springer, second edi-
tion, 1999.

J. Hammersley and D. Welsh. Origins of percolation
theory. Annals of the Israel Physical Society, 5:47—
57, 1983.

K. W. James and K. Y. Yun. Average-case optimized
transistor-level mapping of extended burst-mode cir-
cuits. In Proceedings of the Fourth International
Symposium on Advanced Research in Asynchronous
Clircuits and Systems, pages 70-79, San Diego, Cal-
ifornia, Apr. 1998. IEEE.

H. Kesten. The critical probability of bond perco-
lation on the square latice equals % Mathematical
Physics, 74:41-59, 1980.

S. M. Nowick, K. Y. Yun, et al. Speculative com-
pletion for the design of high-performance asyn-
chronous dynamic adders. In Proceedings of the
Third International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages
210-223, Eindhoven, The Netherlands, Apr. 1997.
IEEE.

P. B. Pang and M. R. Greenstreet. Self-timed meshes
are faster than synchronous. In Proceedings of the
Third International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages
30-39. TEEE, Apr. 1997.

C. L. Seitz. System timing. In Introduction to VLSI
Systems (Carver Mead and Lynn Conway), chap-
ter 7. Addison Wesley, 1979. See the adder example
in section on pages 251-252.

D. Stauffer. Minireview: New results for old perco-
lation. Physica A, 242(1-2):1-7, Aug. 1997.

11

[14]

[15]

[16]

L. Thiele. On the analysis and optimization of self-
timed processor arrays. INTEGRATION, 12(2):167—
187, Dec. 1991.

A. Xie and P. A. Beerel. Symbolic techniques for per-
formance analysis of timed systems based on aver-
age time separation of events. In Proc. International
Symposium on Advanced Research in Asynchronous
Clircuits and Systems, pages 64-75. [EEE Computer
Society Press, Apr. 1997.

A. Xie, S. Kim, and P. A. Beerel. Bounding average
time separations of events in stochastic timed Petri
nets with choice. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, pages 94-107, Apr. 1999.

R. M. Ziff. Spanning probabilty in 2D percola-
tion. Physical Review Letters, 69(18):2670-2673,
Nov. 1992.

