
A Minimal Source-Synchronous Interface

Ajanta Chakraborty and Mark R. Greenstreet
Department of Computer Science
University of British Columbia

Vancouver, BC, Canada�
chakra,mrg � @cs.ubc.ca

Domain 5 Domain 6

Domain 7 Domain 8

Domain 1 Domain 2

Domain 3 Domain 4

data

PLL

Figure 1. Multiple Clock Domains in a SOC

Abstract

We present a novel implementation of source syn-
chronous communication. Our design appears to the de-
signer as a latch with two clock inputs, one from the trans-
mitter and the other from the receiver. Our circuit is simple
and provides a skew tolerance of nearly two clock periods.
The analog dynamics of our circuit provide a simple ini-
tialization mechanism that maximizes the robustness of the
interface to skew variations.

1 Introduction

As shown in figure 1, large SOC designs are typically
partioned into multiple clock domains. Within each do-
main, clock skews are relatively small, allowing operation
at high clock rates. Between clock domains, skews may be
much larger. For example, in figure 1, domains 2 and 5 are
at separate leaves of the clock tree distribution network. Al-
though circuits in these two domains may be physically ad-
jacent, there may be large, unpredictable phase difference
between their clock signals [4]. Accordingly, compensa-
tion measures must be taken to compensate for these skews
when data is transferred between domains.

When the clocks for communicating domains are derived

. .. D Q D Q . ..

ΦT’

insert
data_in data_out

remove

FIFO

Φ

ΦT

unknown
delay

unknown
delay

ΦR

sender’s domain receiver’s domain

forwarded clk

data T’D

Figure 2. Source Synchronous Communica-
tion

from a single clock generator, source-synchronous signal-
ing can be used to compensate for clock skew [5, 3]. As
shown in figure 2, the transmitter forwards its clock along
with its data to a FIFO along paths with closely matched de-
lays. Because clocks ����� and ��� have exactly the same pe-
riod, the data insertion and data removal rates for the FIFO
are exactly matched as well. If the FIFO is initialized to
be roughly half-full, it will remain within one data item of
that and never underflow or overflow. Accordingly, a source
synchronous interface transfers data between the two clock
domains without the overhead of synchronization or flow
control.

We present a minimalist implementation of source syn-
chronous communication where the FIFO has a capacity
of a single data word. In this case, the FIFO consists of
a latch controller and a single data latch as shown in fig-
ure 3. The latch controller uses the transmitter’s forwarded
clock, ����� , and the receiver’s clock ��� to produce an in-
termediate clock, ��	 . The timing of this clock guarantees
that all set-up and hold requirements for the FIFO’s latch
and the receiver’s latch are satisfied. Our latch control cir-
cuit is a simple adaptation of a self-timed handshake circuit
and does not require critical delay matching.

Simlicity distinguishes our circuit from other approaches
for crossing clock domains such as pointer-FIFO based in-
terfaces or GALS (Globally Asynchronous Locally Syn-
chronous). This simplicity makes it practical to implement

1

latch-X latch-Rlatch-T
QD

RΦT

Φ

latch controller

X

QDdata_in QD data_out

Φ

Figure 3. A Minimalist Interface

our design as a special latch with two clock inputs with lit-
tle penalty in area, power, or latency compared with a tradi-
tional latch that cannot tolerate arbitrary skews. Our design
is further distinguished by the initialization technique de-
scribed in section 4 that exploits the analog dynamics of the
handshake circuit to provide a simple mechanism that ini-
tializes the interface for maximum robustness against fur-
ther variations in skew.

2 The Skew Tolerant Latch Controller

Figure 4 shows the timing constraints that must be satis-
fied by the latch controller. Vertical bars mark clock events,
and arrows indicate constraints between these events. For
simplicity, assume that the latch-T, latch-X, and latch-R
all have the same timing characteristics with set-up time���������	��

, hold time
��������

, and minimum and maximum
clock-to-Q propagation delay of

�
clk � Q,min and

�
clk � Q,max

respectively. For any latch the set-up and hold window must
be non-empty:

������������
���������������
. Let be the clock pe-

riod. We will now show that if

 ! "$# � ����������
 ��� ������ � # � clk � Q,max % � clk � Q,min &�&
then, the latch controller can output a � 	 that satisfies the
timing constraints.

Let ' � � be the time from an event of clock � � until
the next event of clock � � . First, consider the case when' � �(!)"$# � clk � Q,max

�*������������
 & time units before the next
event of clock ��� . This is the scenario depicted in fig-
ure 4. Then, the latch controller can produce a � 	 event�

clk � Q,max
�+���������	��

time units after the ��� event. This sat-
isfies the set-up requirements for latches latch-X and latch-
R. The time from a ��	 event to the next ��� event is

 % # � clk � Q,max
�,���������	��
 &! "-# ���������	��
��,��������.� # � clk � Q,max % � clk � Q,min &% # � clk � Q,max

�,���������	��
 &�&/ �������� % � clk � Q,min
� # ���������	��
��,������0� &� � ������ % � clk � Q,min

Thus, the hold-time requirement for latch-X is satisfied.
Likewise, the time from a ��� event to the next ��	 event

set-up+

thold tclk Q,min> −

thold tclk Q,min> −

> tclk Q,max t

> tclk Q,max tset-up+
ΦT

XΦ

RΦ

Figure 4. Timing Constraints

is

#1 � # � clk � Q,max
��������������
 &�&2% ' � �! "-# ���������	��
��,��������.� # � clk � Q,max % � clk � Q,min &�&� # � clk � Q,max

�,���������	��
 &% "$# � clk � Q,max
��������������
 &/ �������� % � clk � Q,min
� # ���������	��
��,������0� &� # � clk � Q,max % � clk � Q,min &� �������� % � clk � Q,min

Thus, the hold-time requirement for latch-R is satisfied as
well. Therefore, all set-up and hold requirements are satis-
fied when ' ��� !�"$# � clk � Q,max

��� ����������
 & .
Now consider the case when % ' � � !3"-# � ����0� %�

clk � Q,min & . Note that % ' � � is the time from an event
of � � until the next event of � � . For this case, the latch
controller can produce a � 	 event

�������� % � clk � Q,min time
units after the ��� event. Reasoning similar to that above
shows that all set-up and hold requirements are satisfied for
this case as well.

Finally, note that if ' ���*4�"$# � clk � Q,max
�5���������	��
 & , then % ' � �6!7"-# �������� % � clk � Q,min & . Therefore, one of the two

cases above always applies. For some offsets, both cases ap-
ply and the latch controller can operate according to either
case. It is this flexibility that gives the latch controller its
skew tolerance.

Figure 5 shows a finite state machine that implements
the operations described above. One event is output on � 	
each time it has received an event on � � and an event on
��� . For ' � �8!9"$# ������������
:�(� clk � Q,max & , the controller
starts in state 0. Upon receiving a ��� event, it moves to
state R. When the controller receives a � � event, it moves
to state TR. After a delay of

� ����������
 �*�
clk � Q,max, the con-

troller outputs a � 	 event and returns to state 0. Likewise,
to implement the case for % ' ��� !;"-# � ������ % � clk � Q,min & ,
the controller starts in state 0, moves to state T upon receiv-
ing a � � event, moves to state TR upon receiving a � �
event, and after a delay of

���������	��
��<�
clk � Q,max, outputs a

��	 event and returns to state 0.
Figure 6 shows five timing scenarios for the latch con-

troller for various phase relations between clocks � � and
��� . Each event is marked with a letter or number to indi-

0
T

R
TR

Φ

ΦT

ΦR ΦT

ΦR

X

Figure 5. Latch Controller State Diagram

cate the data value loaded into the corresponding latch by
that clock event, thereby showing how data flows through
the interface. In the first scenario, ' � � / "$# � ����������
 ��

clk � Q,max & . The controller generates a � 	 event
� �������	��
 ��

clk � Q,max time units after the � � event, and the data value
loaded into latch-T by a � � event is loaded into latch-R"-# � ����������
 �(� clk � Q,max & time units later. In this scenario,
the ��� event for datum � triggers the output of a ��	 event
and returns the controller to state 0. The � � for datum A
moves the controller to state R where it waits for the next
��� event. The ��� event for datum � moves the controller
to state TR, triggering another � 	 event and repeating the
cycle.

The remaining scenarios show operation as clock � � ar-
rives progressively later relative to � � . In scenario 2, ��� is
later than in scenario 1, but the controller remains in the 0� R � TR � 0 cycle.

In scenario 3, the � � event is slightly later than the cor-
responding � � event, and � 	 events are now triggered by
the events of � � . This scenario starts in state 0 and moves to
state T with the ��� event for datum A. At this point, latch-
T holds datum � and latch-X holds datum

�
. The next � �

event loads datum
�

into latch-R, and the controller moves
to state TR, then outputs a � 	 event to load datum � into
latch-X, and the controller returns to state 0 to begin a new
cycle. Scenarios 4 and 5 show even greater delays.

The interface operates correctly for any phase offset be-
tween the one depicted in scenario 1 and the one for sce-
nario 5. The skew can change in this range without any
dropping or duplication of data or other failure. In scenario
1, the transmitter clock event occurs "$# � ����������
 � � clk � Q,max &
time units before the receiver event that loads the same
data value. In scenario 5, the receiver clock event occurs"-# � ������ % � clk � Q,min & time units before the transmitter event
that is two cycles later than the one that produced the datum
being loaded into the receiver latch.

Let '�� denote the width of the skew tolerance window.
The analysis above yields:

'�� 4 "-#� % # ������������
��6������0� & %# � clk � Q,max % � clk � Q,min &�& (1)

In other words, the skew tolerance is two clock periods mi-
nus the overhead of the latch set-up and hold window and
uncertainties in the latch propagation delay.

tset-up thold

0

tclk Q,max tclk Q,min

0
5:

4:

3:

2:

1:

A0

B C

A

0

A

A

B C

A

A

A

B

B

B

B C

A

A

B

C

A

A

B

A

B C

B

B

A

B

C

A

C

A

B C

C

X

Φ
Φ

R

X

TΦ

−

TΦ

ΦT

ΦX

Φ
Φ

ΦR

R

ΦT

R

ΦR

ΦX

+

Φ
XΦ
TΦ

))) + (2(Ρ − (

Figure 6. Five Timing Scenarios

At the extremes of the skew tolerance window, the latch
controller must complete a cycle in response to an event
on � � (resp. � �) before the event on � � (resp. � �) for
the next cycle. Let � denote the time for the controller to
traverse the path from state R (resp. T) to state 0 in response
to an event on � � (resp. � �). We note that operation for
case 1 above requires ' � � !�� , and operation for case 2
requires % ' � �,!�� . This places a second bound on '�� :

'�� 4 "-#� % � & (2)

In practice, this tends to be the constraint that determines
the actual skew tolerance.

Note that our design has maximum skew tolerance when
��� and ��� are nearly coincident. This is precisely the sit-
uation that leads to timing failures for a traditional latch.
Because a traditional latch has a non-empty set-up and hold
window during which its input data must be stable, the skew
tolerance of such a latch must be less than a full clock perod.
Our interface avoids this problem by clocking the interme-
diate latch safely after the coincident clock events. From
this scenario, the two clocks may drift in relative phase in
either direction for nearly a full clock period. This gives our
design a skew tolerance of nearly two clock periods. As de-
scribed in section 4, this allows our interface to work prop-
erly with any intial skew between the sender and receiver.

RaΤa

b ΤbΤ

ΦX

ΦRΦT

c

Figure 7. The Latch Control Circuit

3 A Self-Resetting Implementation

Figure 7 shows our implementation of the latch con-
troller. We designed the controller for positive edge trig-
gered latches, thus clock events are rising edges. Our de-
sign is a self-resetting CMOS circuit [2] similar to GasP
handshaking circuits [6]. State 0 of the state machine from
figure 5 corresponds to a state where nodes a � , a � , and c
are high, and nodes b � , b � , and � 	 are low. A rising edge
on ��� causes node a � to drop, and a rising edge on ���
causes node a � to drop. When both are low, nodes b � , b � ,
go high; node c goes low, and � 	 goes high. The delay of
the path from a rising edge of clock ��� or ��� to a rising
edge of ��� is sufficient to satisfy the set-up and hold re-
quirements described in section 2. The low value on node c
initiates the self-reset, bringing the circuit back to the state
described at the beginning of this paragraph.

The timing requirements for our latch controller are
fairly simple. The delay through the chains of three in-
verters for the edge catching circuits for � � and ��� must
be long enough to ensure that nodes a � and a � complete
their downward transition in response to a rising input clock
edge. The delays of the chain must also be small enough to
ensure that nodes the pull-down paths for nodes a � and a �
are disabled when node c goes low. The delays for upward
transitions on nodes a � and a � must not be so badly mis-
matched that one rises and resets c to high before the other
rises. In practice, these conditions are easily satisfied.

4 Initialization

The previous sections described how our interfaces func-
tion in steady state. Here, we consider how to initialize an
interface into an acceptable steady state cycle. For example,
scenarios 1 and 3 of figure 6 have the same value for ' ��� .
Scenario 1 has lower latency; however, after initialization
the relative clock phases may change due to power supply
noise, temperature variations, etc. Wherease, scenario 3 can
tolerate substantial changes of the skew in either direction,
scenario 1 will fail with any further advance of � � relative
to ��� . Typically, scenario 3 will be the prefered initializa-

tion. Similarly, scenarios 2 and 4 have the same ' � � . Sce-
nario 2 is slightly more robust to later skew variations and
will be the prefered initialization for many designs. In typ-
ical designs, the drift in skew under operation could be just
as much of an advance as of a retard (note: one domain’s
advance is another domain’s retard). With this assumption,
the most robust initialization is the one that tolerates the
greatest variation in either direction.

The analog dynamics of our circuit provide a simple
mechanism for initializing the latch controller to the most
robust operating point. With our method, the internal de-
lays of the latch controller are modified during initializa-
tion. We start with a slow controller and gradually bring
it up to full speed. We do this in our implementation by
using a separate ground signal for the latch controller con-
nected to an internal voltage reference. This voltage sweeps
from 1.8V (equal to Vdd) down to 0V (normal operation).
The controller speeds up during this sweep according to the
well-known relationship between power supply voltage and
speed.

When the controller is sufficiently slow, it cannot cycle
as fast as the clocks. Under these conditions, nodes a � and
a � will still go low in response to their respective clock in-
puts, and when both go low, the controller will generate a
��	 event and return to state 0. However, it may miss in-
coming clock events that occur before the reset is complete.

Assume that ' �����8 % ' ��� as in scenarios 1 and
3, and consider operation at a time during the initialization
when the controller takes time time ' � � to traverse a path
from state TR to state 0. If the latch controller reaches state
TR in response to a � � event, then it will return to state
0 in time for the next � � event and will continue to cycle
correctly. On the other hand, if the controller reaches state
TR in response to a � � event, then it will return to state
0 after the next � � event. It will remain in state 0 until
the next ��� event and transition to state T. With the next
��� event, the controller will move to state TR and continue
to cycle properly from there. This corresponds to scenario
3, the more robust initialization as noted above. Having
reached this cycle, the controller will continue to complete
all transitions on time with further reductions of its internal
delays. Thus, it will remain in the preferred cycle.

Metastable behaviour [1] is possible if ' ����� �� " . In
this case, the controller can settle to either of two scenar-
ios that are nearly equally robust to future variations in the
skew. As with other metastable situations, the probability
of remaining in an indeterminate state decays exponentially
with time. Accordingly, our circuit can be initialized very
reliably, and no metastability can occur after successful ini-
tialization.

5 Implementation

We have designed a proof-of-concept chip for our inter-
face which we are fabricating using the TSMC

���������
pro-

cess through CMC, the Canadian Microelectronics Corpo-
ration. Our chip consists of an LFSR to generate pseudo-
random data from the transmitter, our interface circuit with
the dynamic initialization technique described in section 4,
and an LFSR checker in the receiver. In this section, we
briefly summarize additional issues that we addressed in our
design.

The set-up and hold times for our latches are roughly
150ps and 90ps respectively. These times are much shorter
than the delays though the latch control circuitry. We
widen the skew tolerance window by delaying the clocks
for latches latch-T and latch-R. With this padding, the skew
tolerance of the interface is determined by the minimum cy-
cle time of the latch controller. This cycle time is 340ps.
Thus, the skew tolerance window has width " %	� � ��
� .
The skew window is wider than the clock period for a clock
period of 1400MHz or lower. Under these conditions, the
interface can operate with an arbitrary fixed skew.

Initially, the self-resetting latch controller generated nar-
row pulses on ��	 that were marginal for triggering our
latches. We did not want to modify the latch controller as
this would increase its cycle time and decrease its skew tol-
erance. Instead, we used a self-resetting buffer to generate
��	 and widened the pulse by including sufficient delay in
the reset path for the buffer.

6 Conclusions

We have presented a novel source synchronous interface
for crossing between clock domains within chip. Our de-
sign consists of a standard latch and a simple circuit for
deriving the required clock signal; it requires little area;
and it adds minimal latency to communication paths. These
“lightweight” properties of our interface offer the designer
opportunities to partition a design into clock domains to
simply the clock distribution network, reduce the number
of global timing constraints, and increase clock frequency.
Exploiting the analog dynamics of the self-resetting latch
controller, our interface automatically determines its ideal
latency according to the actual skews encountered during
initialization. We have designed a proof-of-concept chip to
demonstrate our interface and are currently fabricating it in
a
���������

CMOS process.
While our proof-of-concept design is full-custom layout,

our latch controller circuit could be included in a standard
cell library and used in typical ASIC design flows. Such a
cell would appear to the designer as a latch with two clock
inputs as depicted in figure 8. One clock input is for the
interface to the transmitter of data and the other for the

ΦT

DT

ΦR

Q QRD
init

init

Figure 8. A Clock-Domain Crossing Latch

receiver. While we used a dynamic, self-resetting design,
static implementations are possible for less stout-hearted
designers who require less performance.

Our current design requires the sender’s and receiver’s
clocks to be exactly matched in frequency. We are currently
exploring variations for interfaces where the two clock fre-
quencies are rational multiples of one another, or where the
two frequencies are closely but not exactly matched. We
believe that the simplicity of the circuit presented here will
make it the method of choice when exact frequency match is
possible. We anticipate extensions to this simple approach
will provide a comprehensive set of solutions for communi-
cation between clock domains within a SOC.

������������������� ��!"���#�$

Jo Ebergen of SUN Microsystems pointed out the simi-
larities between our controller and GasP handshaking cir-
cuits. Roozbeh Mehrabadi, Roberto Rosales, and Brian
Winters have provided valuable suggestions during the de-
sign of our chip. This work has received support from
NSERC and CMC.

References

[1] T. Chaney and C. Molnar. Anomalous behavior of synchro-
nizer and arbiter circuits. IEEE Transactions on Computers,
C-22(4):421–422, Apr. 1973.

[2] T. I. Chappell, B. A. Chappell, et al. A 2-ns cycle, 3.8-ns ac-
cess 512-kb CMOS ECL SRAM with a fully pipelined archi-
tecture. IEEE Journal of Solid-State Circuits, 26(11):1577–
1585, Nov. 1991.

[3] W. J. Dally and J. W. Poulton. Digital Systems Engineering.
Cambridge University Press, 1998.

[4] A. L. Fisher and H. Kung. Synchronizing large VLSI proces-
sor arrays. IEEE Transactions on Computers, C-34(8):734–
740, Aug. 1985.

[5] M. R. Greenstreet. STARI: A Technique for High-Bandwidth
Communication. PhD thesis, Department of Computer Sci-
ence, Princeton University, Jan. 1993.

[6] I. Sutherland and S. Fairbanks. GasP: A minimal FIFO con-
trol. In Proceedings of the Seventh International Symposium
on Advanced Research in Asynchronous Circuits and Systems,
pages 46–53, Apr. 2001.

