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Formal Verification in Theory

• Reference model 
verification:

– Create an abstract state 
representation

– Define an abstract next-state 
function

– Define a mapping from 
abstract state to circuit state

– Verify commutativity:
For every instance in time 
and for every possible value 
in the machine, if the signal 
values match the mapped 
“before” state, then they will 
also match the “after” state. 
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Real Life Example of State

• Register file: 
– 32 registers, 32 bit wide

• Bypass state: 
– Last register write address (if any)

– Last data written/about to be written into register file

• Call stack
– Stack pointer

– 16 entries of 20bit addresses

• Logic instruction pointer
– 20 bit instruction pointer

• Memory
– RAM, ROM and IO space (1 distinct address in each selected by “control register”)

• Flags:
– C: (unsigned) carry/overflow

– V (signed) overflow

– L: less-than-or-equal to zero

– G: greater-than-or-equal to zero

– Z: equal to zero

– P[3:0]: flags for parallel byte-wide operation



Specification: What Instruction Does

• Specification derived from C++ reference model

– Translated specification very similar to C++ code

– C++ microcode simulator: ~4k lines

– FL specification: ~5k lines

– Bugs in fl spec pointed directly to bugs in uc.cpp

– Some minor translation bugs did creep in but were easy to find.

• Evaluation speed very good:

– Complete ISA next state function for any uop: ~40 seconds

– Complete ISA next state function for a particular uop: ~6 seconds



Example of Specification

• C++ run function: • FL specification:



Induction Hypothesis

• Predicate that essentially says: “machine is ready for next 
instruction”

• Almost 200 signals.
– Most deal with redundant uopcode decoding.

– See next slide

– A mixture of manually derived and automatically computed using 
backwards simulation.

• The correctness is ensured by checking it as part of the 
verification of each uop

• NOTE: this predicate is potentially very fragile if major 
changes of the control parts of the machine is needed 
due to timing, area or power requirements.



Inefficient Logic in RTL

• The same instruction is often decoded in more than one 
pipestage.

• Due to clock gating (different clocks) synthesis is unlikely to 
remove the redundancy.

• For example:

• There are > 60 cases of this type of duplicated logic



Actual Formal Verification

• The abstract state is made fully symbolic

• The “distinct” memory addresses are made fully symbolic

• The abstract next state is computed by evaluating the fl
program using “run_instruction” on the symbolic state

• The mappings are defined using STE’s verification engine

• The circuit is then symbolically simulated using either 
BDDs or SAT.

– BDDs uses a manually defined (“obvious”) variable order.

– First attempts are (usually) SAT based since it is far faster for 
weeding out silly mistakes.

– Final verification is (usually) BDD based.

• Total number of Boolean variables: >1500



Finding a Needle in a Haystack vs 
Finding a HW bug

vs.
Finding a single pair of values for

a double precision floating point

divide operation that fails.

For probability to be the same,

how big should the haystack be?

(Assume half-sphere haystack)

Answer: Radius ~550 light years!



Snapshot Example of Results

• Total verification time for one uop typically ~5 
minutes

– This includes creating the specification property

• Complete regression takes ~4 hours on ~30 
machines each with 24 threads and 256GByte of 
memory.



Bug Analysis Summary

• 60 tickets/bugs filed:
– 34 bugs in uc.cpp

– 37 bugs in RTL

– 8 bugs in EAS

• At least one ticket caused a change in all three models!

• It appears 2-3 bugs were already present in existing HW!

• Most bugs related to setting of flags and/or missing assumptions, but a few 
affected main results.

• All filed tickets have been fixed
– Some required more than one spin to get right.

• Most complex bug required a program with 71 instruction and carefully 
selected program layout to split cache lines + suitable cache misses

– “Friday the 13th bug”
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Questions?
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Quiz 1 – Small Numbers

Order the following in order of size (smallest first)

Influenza A virus Transistor in

microprocessor

as of June 2015

Water molecule Resolution of

optical 

microscope
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Answer Quiz 1

Order the following in order of size (smallest first)

Influenza A virus Transistor in

microprocessor

as of June 2015

Water molecule

~100nm ~14nm ~0.3nm ~300nm

123

Resolution of

optical 

microscope

4



Quiz 2 – Large Numbers

16

Order the following in order of size (largest first)

Number of

light bulbs

in the world

Number of

transistors

in a 2014

cell phone

Number of

atoms in the

Empire State

Building

Number of

patterns needed

to simulate all 

possible inputs to

one AVX instruction

(two 256-bit inputs)



Answer Quiz 2
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Order the following in order of size (largest first)

Number of

light bulbs

in the world

Number of

transistors

in a 2014

cell phone

Number of

atoms in the

Empire State

Building

Number of

patterns needed

to simulate all 

possible inputs to

one AVX instruction

(two 256-bit inputs)

4 32 1

~1010 ~1011~1031 ~10154


