
Practical Formal Verification
using

BDDs & SAT 

Carl Seger

September 21, 2016



Formal Verification in Theory

• Reference model 
verification:

– Create an abstract state 
representation

– Define an abstract next-state 
function

– Define a mapping from 
abstract state to circuit state

– Verify commutativity:
For every instance in time 
and for every possible value 
in the machine, if the signal 
values match the mapped 
“before” state, then they will 
also match the “after” state. 

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

=

Op



Global

Assumes

Formal Verification in Practice

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1 Op

Stack

RF

lip

Flags: CVLGZ P[3:0]

A-1 D-1

Induction

Hypothesis



Real Life Example of State

• Register file: 
– 32 registers, 32 bit wide

• Bypass state: 
– Last register write address (if any)

– Last data written/about to be written into register file

• Call stack
– Stack pointer

– 16 entries of 20bit addresses

• Logic instruction pointer
– 20 bit instruction pointer

• Memory
– RAM, ROM and IO space (1 distinct address in each selected by “control register”)

• Flags:
– C: (unsigned) carry/overflow

– V (signed) overflow

– L: less-than-or-equal to zero

– G: greater-than-or-equal to zero

– Z: equal to zero

– P[3:0]: flags for parallel byte-wide operation



Specification: What Instruction Does

• Specification derived from C++ reference model

– Translated specification very similar to C++ code

– C++ microcode simulator: ~4k lines

– FL specification: ~5k lines

– Bugs in fl spec pointed directly to bugs in uc.cpp

– Some minor translation bugs did creep in but were easy to find.

• Evaluation speed very good:

– Complete ISA next state function for any uop: ~40 seconds

– Complete ISA next state function for a particular uop: ~6 seconds



Example of Specification

• C++ run function: • FL specification:



Induction Hypothesis

• Predicate that essentially says: “machine is ready for next 
instruction”

• Almost 200 signals.
– Most deal with redundant uopcode decoding.

– See next slide

– A mixture of manually derived and automatically computed using 
backwards simulation.

• The correctness is ensured by checking it as part of the 
verification of each uop

• NOTE: this predicate is potentially very fragile if major 
changes of the control parts of the machine is needed 
due to timing, area or power requirements.



Inefficient Logic in RTL

• The same instruction is often decoded in more than one 
pipestage.

• Due to clock gating (different clocks) synthesis is unlikely to 
remove the redundancy.

• For example:

• There are > 60 cases of this type of duplicated logic



Actual Formal Verification

• The abstract state is made fully symbolic

• The “distinct” memory addresses are made fully symbolic

• The abstract next state is computed by evaluating the fl
program using “run_instruction” on the symbolic state

• The mappings are defined using STE’s verification engine

• The circuit is then symbolically simulated using either 
BDDs or SAT.

– BDDs uses a manually defined (“obvious”) variable order.

– First attempts are (usually) SAT based since it is far faster for 
weeding out silly mistakes.

– Final verification is (usually) BDD based.

• Total number of Boolean variables: >1500



Finding a Needle in a Haystack vs 
Finding a HW bug

vs.
Finding a single pair of values for

a double precision floating point

divide operation that fails.

For probability to be the same,

how big should the haystack be?

(Assume half-sphere haystack)

Answer: Radius ~550 light years!



Snapshot Example of Results

• Total verification time for one uop typically ~5 
minutes

– This includes creating the specification property

• Complete regression takes ~4 hours on ~30 
machines each with 24 threads and 256GByte of 
memory.



Bug Analysis Summary

• 60 tickets/bugs filed:
– 34 bugs in uc.cpp

– 37 bugs in RTL

– 8 bugs in EAS

• At least one ticket caused a change in all three models!

• It appears 2-3 bugs were already present in existing HW!

• Most bugs related to setting of flags and/or missing assumptions, but a few 
affected main results.

• All filed tickets have been fixed
– Some required more than one spin to get right.

• Most complex bug required a program with 71 instruction and carefully 
selected program layout to split cache lines + suitable cache misses

– “Friday the 13th bug”

0

10

20

30

40

50

60

70

4/18 5/18 6/18 7/18 8/18 9/18 10/18 11/18 12/18 1/18



Questions?



14

Quiz 1 – Small Numbers

Order the following in order of size (smallest first)

Influenza A virus Transistor in

microprocessor

as of June 2015

Water molecule Resolution of

optical 

microscope



15

Answer Quiz 1

Order the following in order of size (smallest first)

Influenza A virus Transistor in

microprocessor

as of June 2015

Water molecule

~100nm ~14nm ~0.3nm ~300nm

123

Resolution of

optical 

microscope

4



Quiz 2 – Large Numbers

16

Order the following in order of size (largest first)

Number of

light bulbs

in the world

Number of

transistors

in a 2014

cell phone

Number of

atoms in the

Empire State

Building

Number of

patterns needed

to simulate all 

possible inputs to

one AVX instruction

(two 256-bit inputs)



Answer Quiz 2

17

Order the following in order of size (largest first)

Number of

light bulbs

in the world

Number of

transistors

in a 2014

cell phone

Number of

atoms in the

Empire State

Building

Number of

patterns needed

to simulate all 

possible inputs to

one AVX instruction

(two 256-bit inputs)

4 32 1

~1010 ~1011~1031 ~10154


