CpSc 513 Homework 2 Due: Dec. 6, 2016, 11:59pm

Instructions

Please submit your solution by e-mail to mrg@cs.ubc.ca.

e Please submit a file called hw2 .txt or hw2.pdf that has your solutions to the problems that don’t involve
writing python code. Please submit add.py, stamps.py, and not3.py for your source code from problems 2
through 4. You can combine all of these into a . zip or . tgz file. Thanks.

The Questions

1. Finishing the interpolants from resolution proof proof. (45 points)
Let A and B be two propositional formulas represented as sets of clauses. Thus, we can write A A B to indicate
their conjunction, or, equivalently, A U B to indicate the union of the clause sets. Let Interp be the proposed
interpolant computed using the method described in “Interpolation and SAT-Based Model Checking”. In class,
we proved A = B. In this problem, you will prove that Interp A B is unsatisfiable. You can do this anyway
you like. However, the remainder of this problem statement sketches a proof that your are welcome (and even
encouraged) to follow.

The construction of Interp was based on a the graph representation of a resolution proof that A U B is unsatis-
fiable. The graph is a DAG with one root vertex for each clause of A U B, and one leaf vertex. Each vertex is
labled with a clause, c. The root vertices are labled with their clauses from A or B. Each non-root vertex, v, has
two parents, vy, and vs. The clause for v is the clause obtained by resolution of the clauses for vy and vo. From
now on, we will designate each vertex by its associated clause.

To construct Interp, each vertex, ¢, received an additional label p(c) as described in the paper. For my suggested
proof, we can add one more label, g(c). If ¢ € A, then gq(c) = T. If ¢ € B then ¢g(c¢) = c. If ¢ is a non-root
vertex with parents ¢; and ¢g, then g(c) = q(c1) A g(c2).

(a) (20 points) Show, by induction on the structure of the graph, that for each vertex, ¢, B — ¢(c).
(b) (20 points) Show, by induction on the structure of the graph, that for each vertex, ¢, (p(c) A ¢(c)) = c.

(c) (5 points) Let c.,q be the final (i.e. leaf) vertex of the DAG. By the assumption that A A B is unsatisfiable, ¢
is the empty clause, i.e., it represents the proposition false. The rest is simple. Show that p(cend) A q(Cend)
must be unsatisfiable. Noting that Interp = p(cenq), show that Interp A B must be unsatisfiable.

2. Equivalence checking (25 points) Figure |I| shows four implementations of a one-bit full adder. Two of them
are correct, and two are not. We can SAT solving to verify the correct adders and find counter-examples for the
others. For this problem, you will use Z3 as the SAT solver. To do so, I'm providing a module add.py. that
includes the function addCheck which prints ’proved’ if the adder is verified and otherwise prints a counter-
example. I give an example with the function test1 that tests the first adder. It passes. You can try changing
it, for example remove a Not, change an And to an Or, or similar, and show that you get a counter-example.

(a) (15 points) I just showed that circuit 1 is a correct, one-bit, full adder. Write python descriptions of circuits
2, 3, and 4, and add them to add.py. Identify the correct adders and the buggy ones. For the buggy ones,
report the counter-examples.

(b) (10 points) Should you believe my addCheck function? In Z3, you can convert boolean expressions to
integers using an if-then-else expression. The form is If (cond, then_expr, else_expr). Use
this to verify that if a, b, c_in, s, and c_out satisfy addCheck, then a + b + c.in == s +
2xc_out. Show your code.


http://www.cs.ubc.ca/~mrg/cs538g/2016-1/hw/2/add.py
http://www.cs.ubc.ca/~mrg/cs538g/2016-1/hw/2/add.py
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Figure 1: Four adder circuits (but only two work)

3. Postage (25 points)
Consider a problem of sending a letter or package that requires postage of p cents, and where the only stamps
for sale come in amounts of sg, sg, ...S,—1 cents. For example, if n = 2, s = 12 and s; = 17, then you can
buy exact postage for a letter that needs 99 cents of postage (four 12 cent stamps plus three 17 cent stamps), but
you can’t make exact postage for one dollar.

You can solve this problem analytically using a bit of number theory, but we won’t. Instead, write a python
module called stamps . py that uses Z3 to solve the following questions:

Given three stamp values 231 cents, 234 cents, and 238 cents,

e Can you produce exact postage of $58.23 (i.e. 5823 cents)?
e Can you produce exact postage of $67.00 (i.e. 6700 cents)?

e Show that you can produce exact postage of $579.17 but that this amount is not possible if you can only
use two of the three types of stamps.

e What is the largest infeasible postage when using stamps of 231, 234, and 238 cents?



4. Two inverters are as good as three (40 points)
This problem is intended to give you some experience with uninterpreted functions. Let’s say that you have a
collection of logic gates that has an unlimitted number AND-gates and OR-gates, but only two inverters. Let’s
say you need to build a circuit that has three inputs, x, y, and z, and three outputs, -z, -y and -z where —z is
the logical negation of x, and likewise for y and z. You can do it!

One solution is to think about it. This is likely to take a long time. The alternative that is required for this
problem is to write code instead. This still requires a little bit of thinking, but not too much.

First, note that we can use AND-gates and OR-gates to implement any monotonic function. f(z,y, z) is mono-
tonic, iff
Vry < x2, y1 <y2, 21 < 22 f(w1,91,21) = f(22,92, 22)

For boolean valued arguments, we treat False < True.

We can let f(z,y, z) be some monotonic function and let u; = —f(x, yz). That’s the first inverter. Note that the
first inverter can’t have any inputs that depend on the second inverter; so for any solution, there must be some
function f that only depends on z, y, and z whose output is the input to the first inverter.

Likewise, we can let g(x, y, z, u; ) be some monontonic function and let us = —g(x, y, z, u1). That’s the second
inverter. Finally, we need to find monotonic functions h, hy, and h, such that

h$(xay7zau1au2) =
hy(xaywzaulauQ) = Yy
hz(x,y7z,u1,u2) = 7z

Use Z3 to find solutions for the functions f, g, hs, hy and h,. You’ll need to include constraints to force these
functions to be monotonic and to get the negations of z, y, and z as the results.

Just for fun. Now that you’ve shown how to build three inverters out of two, you can also use Z3 to show that it
is impossible to build four inverters out of two.



