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Motivation

Analog and Mixed Signal Design
I “Linear Intent”
I A digital phase-locked loop
I The Rambus Oscillator
I An asynchronous pipeline (timed circuit)

Examples from our Machine-Learning Friends
I Formalizing vector spaces: The Cauchy-Schwartz Lemma
I Reasoning about convexity: Nesterov’s theorem
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Linear Intent

All big chips today include analog functions: clock multiplication
and generation, high data-rate serial links, power management,
support for sensors and actuators including video, RF, and audio.
Kim et al. [KJLH09] recognized that

I the circuits for analog and mixed-signal blocks are highly non-linear,
I the intended functionality is nearly always linear.
I there are very good, rigorous, mathematical methods for reasoning

about linear systems.
The global convergence problem:

I Linear models apply in a small neighborhood of the intended
operating region.

I What happens when the circuit is not in this neighborhood:
F E.g. at start-up or following a mode switch?
F Is the circuit guaranteed to converge to the desired operating region?
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Linear Intent Example: a simple phase-locked loop
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Φout should be periodic with n times the frequency as Φref and with a fixed
phase relationship.
Each component is highly non-linear at the SPICE-model level, but nearly
linear in the domains of interest.

I The voltage-controlled oscillator (VCO).
F Intent: a linear voltage-to-frequency converter.

I The divider – a digital circuit:
F Intent: a scalar multiplication in the frequency domain by 1/n.

I The phase comparator: an analog multiplier – how is that linear?!
F Intent: in the frequency domain, it outputs the sum and difference of the input

frequencies.

I The low-pass filter – finally, something that’s linear in the voltage domain.
F Intent: a linear integral-of-phase-to-voltage converter.
F Note: phase is the integral of frequency. Integration is linear.
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A modern, “digital” phase-locked loop (PLL)
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Mixed-signal design is the dominant paradigm.
Digital circuits replace analog ones wherever possible.
Low operating voltages, quirky transistors, and large
device-to-device variation make analog design difficult in
deep-submicron processes.
Digital circuits are reliable, reproducible, and programmable.
Digital circuits can be smaller than their analog counterparts

I E.g. a 24-bit digital accumulator can be smaller than the capacitor
needed for an analog integrator.
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A motivational tale: global convergence of a PLL
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The digital phase-locked loop (PLL) adjusts the frequency of the
digitally-controlled oscillator (DCO) to match N times the
reference, Fref .
Global convergence: will the digital PLL correctly converge to
the desired frequency from any start up condition?
Global convergence is important at initial start up, and when
changing clock frequency, operating voltage, restarting a
communication channel, etc.
Design from [CNA10].

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 6 / 57



A motivational tale: SpaceEx and Z3

Jijie Wei proved convergence of the digital PLL
using SpaceEx [WPYG13].

I Proof involves about 30 “reachability lemmas”.
I Fixed design parameters.

Yan Peng verified convergence using Z3:
I Simplified model, but parameters remain symbolic.
I Use Riccati equation to obtain a candidate

Lyapunov function.
I Use Z3 to verify that the proposed Lyapunov

function establishes convergence.
I It worked (yay!)
I But it fails with a time-out for more realistic models.

It’s easy to push an SMT solver off an
exponential cliff.

Z3

exp
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A motivational tale: Smtlink 1.0

Manual proof for the fully parameterized digital PLL model:
I It involves a recurrence (sum of a geometric series).
I “Clever” rearrangement of the sum yields the key inequality.
I A bunch of tedious algebra completes the proof.

Smtlink 1.0 [PG15]:
I Flatten non-recursive functions, add “hypotheses” to import facts

from ACL2 logical world.
I Use Z3 to discharge the flattened goal: A⇒ G Z3
I Soundness:

A ∨G, A⇒ G Z3, (A ∧G Z3)⇒ G
G

I It worked!
F So we tried bigger examples.
F Proving (A ∧ G Z3) ⇒ G (in ACL2) leads to time-outs.
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Global Convergence and beyond
Exploiting linear intent requires establishing global
convergence.

I Once global convergence has been shown, linear-systems theory
provides a mathematical formulation for reasoning about the
design.

I Still need to watch out for parametric failures, e.g. failure to model
interconnect resistance or coupling capacitance.

I Still need to watch out for residual non-linearities
I I believe that the formal methods community can contribute here as

well: We can deal with non-deterministic models.
Global convergence is important beyond analog design:

I Control theory for robotics has its own challenges in reasoning about
Lyapunov functions, i.e. continuous ranking functions convergence
proofs.

I Machine learning uses numerical optimization algorithms, often
variations on gradient descent, where convergence is an issue.

The focus of this tutorial:
I Using interactive theorem proving with SMT solvers for proving

global convergence properties.
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Outline

◦ Motivational Tale
ü Smtlink: integrating Z3 into ACL2
• Architecture – flexible and extensible
• Soundness – a pragmatic approach
• Reflection & metaprogramming – make the common case
easy

• Examples
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Smtlink 2.0

Adds support for user defined data types: lists, alists, products,
. . . .
Uses ACL2’s comprehensive support for reflection and
metaprogramming to perform correct-by-construction
transformations of the user’s claim to a formula in the theories of
the SMT solver.

I Any auxiliary sub goals returned to ACL2 are “small”.
I We determine when they are “small enough” by a combination of

F Simple “big-O” reasoning on the size of the term.
F Identify bottlenecks in real proofs.

Ongoing improvements to the user interface.
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Smtlink Architecture
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VCP = “verified clause processor”
I Replaces a clause with zero or more clauses.
I Smtlink developer proves within ACL2:

(implies (my-eval replacement-clause)
(my-eval original-clause))

TCP = “trusted clause processor”
I NO CORRECTNESS PROOF
I “Trust-tag” required – essentially adds (sound TCP) as an implicit

hypothesis to any theorem with the trust tag.
Comp. hint = “computed hint” examines current goal and applies hint.

I Hints allow the user guide the ACL2 proof engine.
I Does not affect soundness.
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Smtlink Architecture
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VCP0: The user gives ACL2 the Smtlink “clause processor” hint.
I VCP0 parses the user’s hint to provide a hint-object for subsequent steps of

transforming the ACL2 goal into an SMT goal.
The computed-hint↔ VCP I loop:

I The goal is “tagged” with a hint that specifies what transformation step to apply
next.

I The computed hint reads the tag, and applies the ACL2 “hint” to invoke the
requested clause processor.

I The verified clause processor performs a correct-by construction transformation
of the goal, and replaces the hint tag with a hint specifying the next step.

F These transformations may generate additional subgoals for ACL2.
I The framework is flexible and extensible.

The final step is to send the transformed goal to the SMT solver.
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Outline

◦ Motivational Tale
• Smtlink: integrating Z3 into ACL2
◦ Architecture – flexible and extensible
ü Soundness – a pragmatic approach

+ Verified clause processors are sound.
+ Correspondence of ACL2 and Z3 models.
+ Types
+ Reals vs. Rationals
+ Functions
+ Proof construction (Smtlink doesn’t)

• Reflection & metaprogramming – make the common case
easy

• Examples
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Smtlink Soundness
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Let G be the original goal, G′ be the transformed goal that is set to
TCP, and G Z3 be G′ as transliterated into the Z3.py API.
The translation of G to G′ is sound, because

I All transformations are performed by verified clause processors.
I We trust ACL2.

The transliteration from G′ to G Z3 is a very small, simple, lisp
function. We subject it to intense code review and inspection.
Smtlink queries Z3 for a satisfying assignment for (not G Z3)

I Does the absence of a counter-example to G Z3 ensure that G′

and thus G are theorems?
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Soundness Sketch

Key Idea: If G′ is not a theorem, then there is a model of ¬G′ in
the logic of ACL2.

I We show that there is a model of ¬G Z3 in the logic of Z3, i.e. ¬G Z3
is satisfiable.

I Construct the model of ¬G Z3 from the model for ¬G′ by induction
on the structure of the formula of G′.

Issues:
I The logic of ACL2 is untyped, the logic of Z3 is many-sorted.
I The rational numbers in ACL2 formulas are represented by real

numbers in Z3.
I The formula for G′ can include recursive functions that can’t be

represented in Z3.
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Soundness Example

(defthm bogus
 (implies (and (rationalp x) (< x 5))
          (< (* x x) 17)))

(not G’): (not (implies (and (rationalp x)(< x 5)) (< (* x x) 17)))
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Soundness Example
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(defthm bogus
 (implies (and (rationalp x) (< x 5))
          (< (* x x) 17)))

(not G’): (not (implies (and (rationalp x)(< x 5)) (< (* x x) 17)))
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Soundness Example

# returns sat
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(defthm bogus
 (implies (and (rationalp x) (< x 5))
          (< (* x x) 17)))

(not G’): (not (implies (and (rationalp x)(< x 5)) (< (* x x) 17)))

Not(Gz3): x = Real(’x’)
          s = Solver()
          s.add(Not(Implies(x < 5, x*x < 17))
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Now, we’ll look at types, reals, and functions.
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Soundness: Types
While ACL2 is untyped, it does have type-recognizer functions,
e.g. integerp, consp, . . . , my-user-type-p.
The TCP checks that every free-variable in G′ has a
corresponding type-hypothesis.
If G′ is not a theorem in ACL2, then ¬G′ has a model.

I All of the hypotheses of G′ must be satisfied in the model.
F Thus, this model assigns values of the “right” sort to each free

variable in G′.
I Inductively, all of the subterms of the model of ¬G′ must have the

right types for Z3.
F Note: we assume that ACL2 functions satisfy type-theorems that

correspond to the typing rules of Z3 for basic types.
F Example: the sum of two integers is an integer.

While we trust TCP to make sure all terms are
properly typed, this is in practice a “convenience”
for the user. If TCP produces an improperly typed
G Z3, Z3 will fail with a user-hostile error message.
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Soundness: Rationals vs. Reals

Smtlink translates variables that satisfy rationalp to Z3 reals.
Should be OK, because this just means that Z3 has models that
ACL2 does not.

I e.g., in ACL2, we can prove
(thm (implies (rationalp x)

(not (equal (* x x) 2))))
I Our translation into Z3 produces (roughly):

x = Real(’x’)
prove(Not(x*x == 2))

and the proof fails: x =
√

2 is a counter-example.
Soundness is preserved

I Smtlink may fail to prove a valid theorem. I.e. Smtlink is
incomplete.

I But it won’t prove a non-theorem. I.e. Smtlink is sound.
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Soundness: quantifiers

Note: Smtlink does not support ACL2’s quantifier functions, e.g.
forall and exists.

We could try to prove:
(defun-sk square-p (x)

(exists r (equal (* r r) x)))
(defthm 2-is-a-square

(square-p 2)
:hints(("Goal" :smtlink ...)))

But Smtlink will refuse to translate the goal because it doesn’t
have translations for defun-sk or exists.
Could quantifiers be supported by Smtlink?

I Future work – but only if we encounter motivating examples.
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Soundness: Functions – how they are translated

ACL2 has recursive functions.
I Z3 only has uninterpreted functions.

Non-recursive functions: Smtlink flattens calls.
Recursive functions:

I Expand to a user-specified depth.
I Represent remaining calls with an uninterpreted functions.
I Smtlink requires recursive functions to have a type signature

F function guard gives argument types.
F a “returns-theorem” gives the result type.
F the user can specify other constraints, justified by corresponding

theorems they have already proven in ACL2.
F currently, Smtlink only supports polymorphism for a few built-in

functions e.g. cons, car, cdr, acons, and assoc.

Is this sound?

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 21 / 57



Soundness: Functions – why this is sound

G′ (the ACL2 term) can have recursive functions, and thus a
model for ¬G′ can be countably infinite.
¬G Z3 (the Z3 term) corresponds to a finite “cap” of ¬G′.

I Z3 can bind values for the uninterpreted function calls to match the
values from a model for ¬G′.

I Of, course, Z3 can find other models for ¬G Z3 as well, that assign
values for the results of uninterpreted functions that don’t match the
actual recursive function.

I Again, Smtlink is sound, but not complete.

I’m an engineer; so, I’m OK with this justification.
Matt Kaufmann is a mathematician.

I He’s warned us about non-standard models, but believes it all
works.

I Yan Peng wants to graduate – I’m sure she’ll come up with a proof.
,
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Soundness: What about Proof-Reconstruction?
We see this as an orthogonal issue.

I In principle, the final, trusted-clause processor could be replaced by
a verified clause processor that uses proof reconstruction.

I We would use the same (or similar) chain of verified clause
processors to translate the user’s goal, G, into a form that is
amenable for the SMT solver, G′.

Advantages of proof construction:
I The moral argument: if we only trust a minimal theorem prover

core, then we minimize the risk of unsoundness.
I The engineering argument: trusted code is painful to write. Verified

code requires less paranoia.
Advantages of a little bit of trust

I Adding new decision procedures is straightforward.
I Avoids proof-reconstruction performance bottleneck.
I The property that doesn’t get verified is more likely to break a

design than the one that was verified with a trusted SMT solver.
Proof-reconstruction is “future-work” when there’s a compelling
use case:

I E.g. Merijn Heule’s proof for Boolean Pythagorean triples.

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 23 / 57



Outline

◦ Motivational Tale
• Smtlink: integrating Z3 into ACL2
◦ Architecture – flexible and extensible
◦ Soundness – a pragmatic approach
ü Reflection & metaprogramming – make the common
case easy

+ User-defined types
+ Function expansion: lessons learned

• Examples
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Types

So far, we’ve looked at the “built-in” types: booleanp, integerp,
rationalp, and realp (if you use ACL2(r)).
Users can define their own types.

I Smtlink 2.0 supports the ACL2 FTY package [SD15]: typed lists,
typed alists, product types, tagged sums, etc.

I Current work generalizes this to let the user define their own types
without FTY

F We keep the “it just works” interface for FTY.
F But the in-progress version doesn’t trust FTY.

In progress:
I Type-inference with a verified clause processor.
I Independent of FTY – we support FTY, but we don’t blindly trust it.
I Discovering that many common lisp idioms can be translated to

clearly typed equivalents automatically and efficiently.

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 25 / 57



Comparison with other integrations (always perilous)

Isabelle/HOL Sledgehammer with SMT doesn’t appear to provide
such support (e.g. [BBP13]).
CoqSMT seems to require the user to simplify their goal into
something that directly corresponds to the SMT solver, i.e. the
equivalent of our G′ (based on the CoqSMT tutorial).
We found that being able to work directly with goals stated using
user-defined types is a huge productivity boost.
Similar observations apply for function expansion.
ymmv
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Types Can Be Tricky

;; ACL2
(fty::deflist integer-list
elt-type integerp)

// Z3.py
IntegerList =
Datatype(’IntegerList’)

IntegerList.declare(’cons’,
(’car’, IntSort()),
(’cdr’, IntegerList))

IntegerList.declare(’nil’)
IntegerList =
IntegerList.create()

In ACL2, (car nil) is nil,
But in Z3, IntegerList.car(IntegerList.nil) is an unspecified
integer.

∴ A direct translation is unsound.
I Smtlink 2.0 returns subgoals that the argument of each car is non-nil.
I Discharging these subgoals can be a bottleneck, especially if the goal is

huge after function expansion.
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More Troubles with Types

In ACL2, cons, car, and cdr are polymorphic,
but in Z3, we need to use the specific version according to the
type of the list.

I In Smtlink 2.0, the user must wrap terms with fixing functions to let
the TCP know which Z3 function to use.

I This works, but it clutters function definitions and theorem
statements.

I Discharging these subgoals can be a bottleneck, especially if the
goal is huge after function expansion.

Smtlink solves these problems, and many more, by using clause
processors with reflection and metaprogramming.
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A bit about clause processors

Clause-processor provide a flexible mechanism for metaprogramming in ACL2.

Clause processors operate on quoted terms.
We can introduce an evaluator for these quoted terms (in a given
environment).
The clause processor returns a list of clauses.
The evaluation a list of clauses is the conjunction of the evaluation of each
clause.
In any environment, the result of evaluating the list of clauses returned by
a clause processor must imply the result of evaluating of the original
clause.

I For a verified clause processor, vcp, this implication is proven within
ACL2.

I Once verified, ACL2 can run the processor on a clause and use the result.
I This provides a very fast and flexible mechanism for handling common proof

patterns.
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An example

A clause processor can use previously established facts in the ACL2
logical world. Consider:

;; What the user wrote
(define sum ((x integer-listp))
:measure (len x)
:returns (s integerp)
(let ((xx (integer-list-fix x)))

(if (endp xx) 0
(+ (car xx) (sum (cdr xx))))))

How can we translate the body of sum to an SMT formula?
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Typing Sum (work in progress, 1 of 4)

Using reflection, a clause processor gets the meta-fact:
’(equal (sum x)

(if (endp (integer-list-fix x)) 0
(+ (car (integer-list-fix x))

(sum (cdr (integer-list-fix x))))))

I This fact is returned from the ACL2 function
meta-extract [KS17].

I For any such fact, (my-eval fact) is logically true, where
my-eval is any evaluator.

I Thus, a verified clause processor can add (not fact) to the list
of disjuncts of a clause without weakening the clause.

I Furthermore, the clause-processor can perform verified
simplifications using these facts.
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Typing Sum (work in progress, 2 of 4)

From

’(equal (sum x)
(if (endp (integer-list-fix x)) 0

(+ (car (integer-list-fix x))
(sum (cdr (integer-list-fix x))))))

The clause processor obtains

’(if (integer-listp x)
(equal (sum x)

(if (endp (integer-list-fix x)) 0
(+ (car (integer-list-fix x))

(sum (cdr (integer-list-fix x))))))
t)

Because fact implies (if p fact t) for any p.

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 32 / 57



Typing Sum (work in progress, 3 of 4)

Constructing path conditions, and using meta-extract to instantiate
integer-list-fix-when-integer-listp and similar theorems,
the clause processor establishes:

’(if (integer-listp x)
(equal (sum x)

(if (equal x (integer-list-nil)) 0
(+ (integer-list-car x)

(sum (integer-list-cdr x)))))
t)

The car and cdr functions from the original function definition have
been replaced with integer-list-car and integer-list-cdr
which are translatable to operations on Z3 datatypes.
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Typing Sum (work in progress, 4 of 4)

The clause processor looks for an existing hypothesis to establish
(integer-listp x).

With such a hypothesis, the definition of sum can be simplified to
’(equal (sum x)

(if (equal x (integer-list-nil)) 0
(int-int-+ (integer-list-car x)

(sum (integer-list-cdr x)))))

This is fully type-specific, and ready for the transliteration to the
Z3.py API.
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User-Defined Types: Principles of Translation

We found that representing ACL2 types in Z3 was a fruitless task.
I The rampant polymorphism in Lisp precludes covering all the case.

Representing Z3 types in ACL2 is straightforward.
I And that’s (usually) what the user intended anyway.

Approach:
I Transform the user’s types into “close-enough” types that have Z3

equivalents.
I Prove that the transformation is sound

F Mostly by clause processors that handle common lisp idioms –
automatic and fast.

F As a last resort, return a subgoal to ACL2 to prove that the
transformation was safe.
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User-Defined Types: What we assume about Z3

Algebraic data-types:
I If a destructor is applied to a term with a matching constructor, e.g.

IntegerList.car(IntegerList.cons(2, foo))

then the value from the constructor (e.g. 2) is returned.
I If a destructor is applied to any other term, e.g.

IntegerList.car(IntegerList.nil)

then an arbitrary value of the appropriate type is returned.

Other type constructors (e.g. arrays) have similar rules.
Smtlink checks that the type-specific constructor and destructor
functions exist (in ACL2) and that they satisfy the properties given
above.

I These requirements are discharged automatically if the names of
the relevant theorems are given.

I This process is (in progress) automated when using the FTY
package.
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User-Defined Types: Summary

ACL2 is untyped, and users employ a rich set of custom
type-recognizers.
Verified clause processors can derive types for terms and replace
untyped functions with typed ones.

I If the type of a term can’t be determined, and error is reported.
I If a side condition can’t be established (e.g. (consp x)), then a

subgoal is returned to ACL2.
I This is work-in-progress, but so far, everything is very fast, and

Smtlink supports a wide-range of the most common lisp idioms.
Smtlink supports list, alist, product, tagged-sum, symbol, array,
and uninterpreted types.

I Smtlink 2.0 trusts FTY. FTY types are effectively built-in to the
trusted core of Smtlink 2.0.

I Smtlink-in-progress will provide macros to “import” FTY types into
Smtlink, including all soundness checks. No trust assumptions
about FTY are needed.
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Functions: Overview

Transformation of terms implemented with verified clause
processors using meta-extract. Very much as with types.
Recursive functions are translated to uninterpreted functions.

I Don’t expand in place!
I Instead, add constraints of the form

(equal function-call
function-body-instantiated-with-actuals)
for calls to a user specified depth.

I This avoids exponential blow-ups in the size of the formula.
I It also makes it much easier to discharge goals under an induction

proof.
In progress: type check each function when defined, and prove
“SMT-typing” theorem.

I This allows type inference to be done on smallish pieces of code.
I Fast. More predicatable for the user. Better error messages.
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Induction Example (1 of 2)

Let
(define sum-of-nats ((n natp))
:returns (s natp)
(if (zp n) 0

(+ n (sum-of-nats (1- n)))))

(defthm closed-form-for-sum-of-nats
(implies (natp n)

(equal (sum-of-nats n)
(/ (* n (1+ n)) 2))))

closed-form-for-sum-of-nats is easily proven in ACL2
without Smtlink, but let’s look at using Smtlink for the induction
step anyway.
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Induction Example (2 of 2)
The “interesting” induction-step goal:
(implies (and (integerp n)

(<= 0 n)
(equal (sum-of-nats (+ -1 n))

(+ (* 1/2 (+ -1 n))
(* (+ -1 n) 1/2 (+ -1 n))))

(equal (sum-of-nats n)
(+ (* 1/2 n) (* n 1/2 n))))

If the clause processor expanded for both occurrences of sum-of-nats
in place, we’d just get a similar goal, relating (sum-of-nats (- n 1))
and (sum-of-nats (- n 2)). This isn’t very helpful.
OTOH, by making sum-of-nats uninterpreted (in Z3) and adding
constraints equating (sum-of-nats n) and (sum-of-nats (- n
1)) to their respective instantiations of the function body, Z3 easily
discharges the claim.
Conclusion: Describing function instantiation as constraints on
uninterpreted functions is “better” than performing in-place function
expansion because it lets the SMT solver “see” more of the problem.
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Outline

◦ Motivational Tale
◦ Smtlink: integrating Z3 into ACL2
ü Examples
• Smtlink 1.0: global convergence for digital phase-locked loop
• Smtlink 2.0: verification of timed, asynchronous pipeline.
• Smtlink-in-progress: Cauchy-Schwartz lemma
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The Digital PLL: will it converge?
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Model by non-linear recurrence: updates circuit state at rising
edge of Φref .

Non-linearity from fdco =
1 + αv
1 + βc

f0 .
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The Digital PLL: the recurrence

c(i + 1) = min(max(c(i) + gc sgn(φ), cmin), cmax)
v(i + 1) = min(max(v(i) + gv (ccenter − c(i)), vmin), vmax)
φ(i + 1) = wrap(φ(i) + (fdco(c(i), v(i))− fref )− gφφ(i))

fdco(c, v) = 1+αv
1+βc f0

wrap(φ) = wrap(φ+ 1), if φ ≤ −1
= φ, if −1 < φ < 1
= wrap(φ− 1), if 1 ≤ φ

The Digital PLL has a mode switch based on the sign of φ.
Within a mode, we can solve for c(i) and φ(i).
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The Digital PLL: proof strategy
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Key observation (in the green, diagonal band):
Successive crossings of the c axis converge towards c = 0 until
the crossing has |c| ≤ 3.
Proof (sketch):

I The Digital PLL has a mode switch based on the sign of φ.
I Solve for φ(i) for c one step closer to ceq than the previous change,

and show that φ has already changed sign.
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The Digital PLL: the key inequality
Let

c
ccenter cmaxcmin

vmin

V

vmax

fdco
= f ref

vhi

vlo

c0(v) satisfies fdco(v , c0(v)) = Nfref .
∆c = size of a step in the c control of the VCO.
Kt = time-gain of linear-phase path. 0 < Kt < 1.
µ = f0

Nfref

The key inequality shows that (given a bunch of constraints on α, β, ∆c , Kt , and
µ) that for any h ≥ 3:

(1− Kt )
−hfdco(v , c0 − (1− h)∆c)

+ (1− Kt )
h−2fdco(v , c0 − (h − 1)∆c)

< −9
8(1− Kt )

−3−h β∆c
µ(1+αv)

Proving the inequality, using Smtlink 1.0, takes about 1 minute.
The full proof has 75 lemmas, 10 discharged by Smtlink 1.0.
We expect a simpler proof in the current Smtlink.
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Verifying Timed Asynchronous Circuits

R
C

S R
C

S
C

goFulli+2

fulli+2

goFulli goEmptyi+1

fulli fulli+1 emptyi+1emptyi

goEmptyi goFulli+1

emptyi−1

goEmptyi−1

fulli

Asp* pipelines [MJ+97] are simple, fast, and can be synthesized
using the cells in standard libraries.
They also have timing dependencies:

I When stage[i+1] is empty (i.e. not full) and stage[i] is full (i.e.
not empty), they are enabled to concurrently change.

I Either one changing disables the action for both.
I Must show that the difference in the transition times for the RS

latches is less than the delay of the NAND gate (labeled C).
I A few other constraints as well.
I This is a simple and useful example to illustrate asynchronous

circuits and timing dependencies.
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Verifying Timed Asynchronous Circuits: Example
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Verifying Timed Asynchronous Circuits: Example
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Verifying Timed Asynchronous Circuits: Example

0

RS RS

0 1

1

0 1

1

empty empty 00

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 47 / 57



Verifying Timed Asynchronous Circuits: Example
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Verifying Timed Asynchronous Circuits: Example
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Verifying Timed Asynchronous Circuits: Example
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Modeling Timed Asynchronous Circuits

We use a trace-based approach. [Dil88]
A trace is a sequence of states.
Each state is a mapping from signal-identifiers to signal values.

I A signal-identifier is a hierarchical path name.
Components are trace recognizers

I A component must accept any behaviour of its inputs.
I A component recognizes a trace if it allows the behaviour of its

outputs.

Timing constraints are modeled by including time in the state
space. [AL92].
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The correctness proof

env-invariant-step
(2.88s)

env-invariant-trace 
(0.24s)

env-hazard-free-
step (5.05s)

env-hazard-free-
trace (0.06s)

asp-pipeline-cdr-
invariant (0.02s)

asp-pipeline-
invariant-step (0.07s)

asp-pipeline-
invariant-trace (0.04s)

asp-pipeline-hazard-
free-lemma (24.79s)

asp-pipeline-hazard-
free-step (0.55s)

asp-pipeline-hazard-
free-trace (0.12s)

asp-ring-invariant-
step (0.01s)

asp-ring-invariant-
trace (0.14s)

asp-ring-hazard-
free-step (0.01s)

asp-ring-hazard-
free-trace (0.16s)

One theorem for each key inductive result.
Many of these theorems have one support lemma for the induction
step.
These support lemmas are proven with Smtlink with no further
assistance.

Smtlink handles nearly all of the details – proofs are fun!
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The Cauchy-Schwartz Lemma

〈u, v〉2 ≤ 〈u,u〉〈v , v〉
With equality iff u and v are co-linear

If the range of the inner-product provides square-root, then

|〈u, v〉| ≤ ‖u‖‖v‖

A widely used theorem from linear algebra.
We needed it for reasoning about convex functions for machine
learning.
Proof (by Carl Kwan) without Smtlink.
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Cauchy-Schwartz: a key lemma

A key lemma:
(defthm cs1-when-v-not-zero
(implies (vector-compatible u v)

(let ((uu (inner-prod u u))
(uv (inner-prod u v))
(vv (inner-prod v v)))

(<= (* uv uv) (* uu vv))))
:hints(("Goal" ...)))

Proof without Smtlink has nine supporting lemmas to walk the
theorem prover through the derivation
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Cauchy-Schwartz meets Smtlink

The proof with Smtlink consists two theorems
I The top-level theorem handles the (vector-compatible)

hypothesis. ACL2 proves this theorem without Smtlink.
I The main lemma is proven using Smtlink.

F Eight user-added “hypotheses” to give Z3 the facts it needs about
vector operations.

This is in-progress. We’re making the interface easier to use
I Automatically extract type-signatures for functions that are defined

using define.
I Simplify “hypothesize” hints to support just stating the theorem

name and the bindings for free variables.
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What’s a “hypothesize” hint

Recall that it’s easy to push an SMT solver over an exponential
cliff.

I It’s tempting to tell the SMT solver everything you know and see if it
will solve the problem.

I ACL2 knows a lot about the functions you’ve defined – telling the
SMT solver everything is a bad idea.

OTOH, some of existing theorems may be required to prove the
current one.
Smtlink provides a “hypothesize” hint to convey facts from the
ACL2 logical world to the SMT solver:
:hypothesize (

(fact1) ;; fact1 added as hypothesis for Z3
;; and returned as subgoal to ACL2

(fact2
:hints(:use((:instance some-theorem

(x (+ (* 2 a) b))
(y (- a (* 2 b))))))))
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Live Code

Some simple examples from the on-line tutorial:
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____TUTORIAL

I Polynomial inequalities.
I User-defined types: products, lists, and lists

The Cauchy-Schwartz Inequality
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Summary

Smtlink integrates the Z3 SMT solver into ACL2.
I Supporting other solvers such as Yices or CVC4 should be

straightforward, esp. support for SMT-LIB.
I Currently, using the Python bindings of Z3.py provides a flexible

interface for prototyping.

Reflection and metaprogramming are powerful mechanisms for
transforming the goal the user wants to prove into a formula that
the SMT solver can discharge.
Support for user-defined data types means SMT is for more than
just numbers.
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Future Work

Short to Medium Term
Complete the current Smtlink.

I Add counter-example generation with user-defined types.
I Add symbolic simulation.
I When we encounter a tedious proof, we almost always respond:

There’s a metaprogramming solution for that!.
Circuits and Robots

I Automatic differentiation for fixpoint algorithms.
I Integrate interval verification algorithms into SMT framework.
I Analyse and verify interesting designs.
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Thanks

This work has benefitted from my wonderful graduate students
and many others including: Itrat Akhter, Chris Chen, Leo de
Moura, Ian Jones, Matt Kaufmann, Ian Mitchell, Yan Peng, Your
name goes here, Justin Reiher, Mark Schmidt, Margo Seltzer,
Jijie Wei, Chao Yan, and Suwen Yang.
This work would not have been possible without the financial
support of NSERC, Intel, Oracle, and ICICS UBC.
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Outline

◦ Smtlink: integrating Z3 [MB08] into ACL2
ü Current and recent hardware verification research

Interval Verification Algorithms
• Future work and wild ideas

M.R. Greenstreet Integrating SMT with Theorem Proving Oct. 22, 2019 58 / 57



The Rambus Ring-Oscillator (RRO)

Will it start−up reliably?

Generates multiple, evenly spaced, differential phases.

Easily modified to produce a VCO.

Can operate at high−frequencies:
2−stage version has 4 inverter−delay period.
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The Rambus Ring-Oscillator (RRO)
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The Rambus Ring-Oscillator (RRO)
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The Rambus Ring-Oscillator (RRO)
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The Rambus Ring-Oscillator (RRO)
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The Rambus Ring-Oscillator (RRO)
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The Verification Challenge

Proposed by Jones et al. [JKK08].
Once the oscillator is running

I It is easy to show that the oscillation mode is stable
(dynamical systems theory, eigenvalue analysis).

Will the oscillator start from all initial conditions?
I Failures have been observed for real chips in spite of extensive

SPICE simulation before fabrication.
I Known to depend on the transistor sizes in the inverters.
I What transistor sizes guarantee proper start-up?
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Oscillator Start-up: Solution

Find all DC equilibria points and check each for stability.
I Pencil-paper-and-Matlab solution in [GY08].
I First fully automated solution in [ARG19].

Approach: Krawczyk’s operator, an interval arithmetic verification
algorithm (see [Rum99]).

I Use Newton’s method to estimate solution starting from center of
hyper-rectangle.

I Use inverse of Jacobian as pre-conditioner matrix (not interval),
and then compute interval bounds for next.

I Relationship of current and next hyper-rectangles determines the
existence of a unique solution or no solution in the hyper-rectangle,
or provides a smaller hyper-rectangle to search.

Results: solved ring-oscillator problem with a state-of-the-art
transistor model (MVS [RA15]).

I dReal and Z3 time out on all test cases.
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Outline

◦ Smtlink: integrating Z3 [MB08] into ACL2
◦ Current and recent hardware verification research
ü Future work and wild ideas
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Wild and crazy ideas
Machine learning (with Mark Schmidt)

I Convergence arguments for the optimization algorithms used in
learning are very similar to those for AMS circuits.

F Can we mechanize these proofs?
F With confidence in the proofs, can we make more aggressive

algorithms?
F Can we make the proof process as “easy” as writing up the informal

arguments in latex?
I “Tending α to 1. . . ”

F A remark by Nesterov in a proof about convex functions that Carl
Kwan proved using ACL2.

F Can we use remarks like this to obtain useful priors for a
machine-learning based proof search?

Operating systems (with Margo Seltzer)
I Can we model OS functions in a language like Unity (guarded

commands)?
I Can we prove the OS correct?
I Can we synthesize efficient code?
I Can we we design an OS that is distributed, parallel,

heterogeneous, and secure from the start?
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