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1 Overview
I’ll add something here about downloading the package, running it on UBC CS department machines, etc.

2 Class SymBool
Class SymBool provides symbolic boolean operations using BDDs. It is build on the JavaBDD package and provides
symbolic operations in Jython.

2.1 Using the Class
To import the class, give the Jython statement:

import SymBool
This assumes that everything is set up properly on your CLASSPATH which hopefully I’ll describe in Section 1. To
create a new symbolic boolean variable, use the Jython statement:

a = SymBool(”a”)
The parameter to SymBool is the name that will be used when printing symbolic expressions. To make sure that I
can “make-up” names for array elements, anonymous variables, etc., I’ve restricted the names for symbolic variables
to consist only of upper and lower case letters, digits, and underscores, and not start with a digit. Of course, there’s
no requirement that the Jython variable have the same name as the symbolic variable that you create. You could say

cat = SymBool(”dog 42”)
Of course, if you get yourself confused by doing this, that’s your problem, not mine.

For the rest of this section, I’ll assume that you’ve created three symbolic boolean variables:

>>> import SymBool
>>> a = SymBool("a")
>>> b = SymBool("b")
>>> c = SymBool("c")

2.2 Overloading of Jython Operators
The Jython logical operators are overloaded. In particular:

Bitwise-logical operators: & (and), | (or), ∼ (not), and ∧ exclusive-or.
These do what you would expect. For example,

>>> a & b
a&b
>>> a ∧ b
∼a&b | a&∼b
>>> a | ∼a
True

Furthermore, Jython booleans and integers can be used as operands as well. Booleans are handled in the obvious
way. An integer is treated as True if its least significant bit is a 1 and as False if its least significant bit is a 0.
I’ll give my rationale for how integers are treated in Section 3 about symbolic integers. Some more examples:
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>>> a & True
a
>>> a ∧ True
∼a
>>> a | True
True

Comparisons: ==, <, <=, !=, >=, and >.
These are defined using the inequality that False < True. Note that these are evaluated symbolically: they
produce the symbolic expression that describes when the comparison holds. For example:

>>> a|b == a∧b
∼a | ∼b

Because a|b is equal to a∧b when either a or b (or both) is false, and otherwise they are different. If you want
to determine whether or not two expressions are logically the same expression, then use the equals method as
described in Section 2.3. For now, here’s a quick example:

>>> (a|b).equals(a∧b)
False
>>> ((a&b) | (b&c) | (a&c)).equals((a|b) & (b|c) & (a|c))
True

Arithmetic: +, -, <<, and >>.
A SymBool acts like a one-bit, unsigned, binary integer – in other words, it has a value of 0 or 1. These
operations produce the least significant bit of the result:

Binary + and - are equivalent to exclusive or: a + b = a-b = a ∧ b.

unary - is the identity operation: -a = a.

a << b and a >> b are both equivalent to a & ∼b.

These probably aren’t very useful, but there versions for multi-bit symbolic integers, SymUInts, are very useful.
I’ve included the SymBool versions for completeness so there won’t be unnecessary UnsupportedOperationExceptions.

2.3 Additional Symbolic Operations
2.3.1 Methods for additional binary operations

The JavaBDD provides a few other operations that aren’t part of Jython/Python. These are available as methods for
SymBool objects:

biimp is “bi-implication” (if and only iff). For SymBool objects, a.biimp(b) is equivalent to a == b.

equals tests to see if two symbolic expressions are logically equivalent. It returns either True or False.

imp is implication. Note that a.imp(b), ∼a | b, and a <= b are all logically equivalent, but a.impb is
probably easier to read if what you intended was implication.

ite is an if-then-else. The expression a.ite(t, e) means “if a then t else e”.
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2.3.2 The methods that overload Jython operations

SymBool objects provide the following methods which overload Jython operators as described in Section 2.2 in the
(hopefully) obvious way:

and, eq, ge, gt, le, lt, ne, neg, not, shl, shr, and xor.

2.3.3 Quantifiers, composition, and relations

compose(oldVars, newExprs) function composition.
oldVars is a symbolic boolean variable, a symbolic a list of SymBool objects. Likewise, newExprs is a
symbolic boolean expression, a SymUInt For example,

>>> d = SymBool("d")
>>> e = SymBool("e")
>>> m = a&b | b&c | a&c
>>> m.compose([a,b], [d&e, ∼d&∼e])
c&∼d&∼e | c&d&e

Note that all of the substitutions are done “simultanously”. For example,

>>> f = a & (b | c)
>>> f
a&b | a&c
>>> f.compose([a,b,c], [b,c,a]) b&c | b&a

but

>>> f.compose(a,b).compose(b,c).compose(c,a)
a

Try the compose operations one at a time if this isn’t clear.

exist(vars) existential quantification.
x.exists(v) evaluates to ∃v. x. v can be a SymBool variable, an array of SymBool variables, or a
SymUInt variable. To make this clear, consider

>>> m.exist(a)
b | c
>>> m.exist([a,b])
True
>>> f = a&d
>>> m.exist(f)
Traceback (most recent call last):
...
...vars[0] is not a variable

If x is a SymUInt, then each element of x is existentially quantified over the variable of v.

forAll(vars) universal quantification.
x.forAll(v) evaluates to ∀v. x. Same comments about v being a SymBool variable, an array of SymBool
variables or a SymUInt variable apply here as described above for existential quantification. Likewise, if x is
a SymUInt, then each element of x is universally quantified over the variables of v. Continuing our previous
example:
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>>> m.forall(a)
b&c

relprod(r2, vars) relational product.
r1.relProd(r2, v) is logically equivalent to (r1 & r2).exist(v) but apparently executes much
faster. Now, a few words about relations. Consider domains X , Y , and Z each represented by four-bit
SymUInts:

>>> import SymUInt
>>> x = SymUInt("x", 4)
>>> y = SymUInt("y", 4)
>>> z = SymUInt("z", 4)

To make a simple example, I using the SymUInt type. If you want, skip ahead and read Section 3 and then
come back to these examples. To express a relation over these domains (i.e. R1 ⊆ X × Y ) let r1 be the
predicate that is true iff the values of x and y are such that (x, y) ∈ R1. Writing it this way makes it sound much
more complicated than it really is. For example, I could define

R1 = {(x,y) | ((x is even) & (x > y))|((x is odd) & (x < y))}

In Jython, I would write

>>> r1 = (∼x[0] & (x > y)) | (x[0] & (x < y))

Now, let R2 ⊆ Y × Z be the relation with

R2 = {(y,z) | (z = y+ 4) & (z ≥ 4)}

(the z ≥ 4 clause is to avoid wrap-around issues because + is modulo 16 because x, y, and z are 4-bit unsigned
integers). The relational product of R1 and R2 is written mathematically as R1 ◦R2 where

R1 ◦R2 = {(x, z) | ∃y. ((x, y) ∈ R1) & ((y, z) ∈ R2)}

In Jython, we write this as

>>> r2 = (z == y+4) & (z >= 4)
>>> r12 = r1.relProd(r2, y)

Now, we can do various membership checks in these relations:

>>> r1.compose(x, 4).compose(y,2)
True

This says that (4, 2) ∈ R1 which is true because 4 is even and 4 > 2. We could be tempted to try

>>> r1.compose([x, y], [4, 2])
Traceback (most recent call last):
...
...vars[0] is not a variable

This is because I didn’t allow the variable to be a list of SymUInt variables. Basically, this is because I couldn’t
think of a tidy way to match up the widths of the variables and the widths of expressions. Of course, this could
be a nuisance if you need simultaneous composition over several SymUInt variables. I’ll describe how to do
this in Section 3.2.4.

Continuing with our example,
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>>> r1.compose(x, 0)
False # x is even an no y is < 0
>>> r12.compose(x, 5).compose(z, 6)
True # consider y = 2

2.3.4 Operations that are specific to BDDs

high() return the “high” (i.e. topVar() == True) descendant of this BDD.

low() return the “low” (i.e. topVar() == False) descendant of this BDD.

topVar() return a SymBool object for the variable associated with the top-node of this BDD. If the BDD repre-
sents the constant True or False, then topVar returns None.

2.4 Other Operations
logSatCount() returns the logarithm (base 10) of the number of satisfying assignments for this BDD. If this

BDD is unsatisfiable, -inf is returned.
See also: satCount().

nodeCount() return the number of BDD nodes for this BDD. Note that if x and y, then the total number of BDD
nodes needed to represent both x and y can be less than x.nodeCount() + y.nodeCount() because
they may share nodes. See SymUInt.nodeCount() for a way to get totals that take into account the effects
of node sharing.

satCount() return the number of satisfying assignments for this BDD. Note that this number includes all variables
that you have declared, even if they aren’t involved in your BDD. For example (from a fresh Jython session):

>>> import SymBool
>>> a = SymBool("a")
>>> b = SymBool("b")
>>> (a & b).satCount()
1.0 # a&b
>>> c = SymBool("b")
>>> (a & b).satCount()
2.0 # a&b&∼c and a&b&c

Also, note that satCount() returns a double. This is because a BDD may have a large number of satisfying
assignments, more than can be represented by a Java int or long. Of course, Jython integers can be arbitrarily
large, but to exploit that, I’d have to rewrite some portions of the JavaBDD code, and I don’t want to do that.
See also: logSatCount().

satOne() return one satisfying assignment. The return value is a BDD that is a conjunction of variables and
complemented variables. For example:

>>> m = a&b | b&c | a&c
>>> m.satOne()
∼a&b&c
>>> (a & b).satOne()
a&b
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The return values reflect the structure of the BDD. m.satOne() included ∼a in the conjunction even though
a&b&c is a satisfying assignment, and thus b&c is a conjunction that implies m. The ∼a term was included
because the top node of m is a

>>> m.topVar()
a

The code for satOne() chose the low branch and continued. In contrast, (a & b).satOne() doesn’t
include a conjunct for c or ∼c along the path that satOne() traversed from the top node to True (for that
example, there is only one such path).

toString(), toString(maxCubes) write a string representation of a SymBool. This is what is printed by
Jython for an expression that evaluates to a SymBool value.

• toString() prints the boolean expression as a “sum-of-products” (a.k.a. disjunctive normal form). This
is not the internal BDD representation. In particular, the printed form can be exponentially larger than the
BDD.

• To prevent an output that goes on for centuries, or longer, toString() prints at most 100 “cubes” where
a cube is a conjunction of variables or their negations.

• If you want to change the limit, use the form toString(maxCubes)which will print at most maxCubes
cubes.

• I try to simplify the expression. For example, if the traversal of the BDD produces the cubes a&b&c and
a&∼b&c, then they will be merged to the simpler cube a&c. The simplified form is not the smallest
possible sum-of-products form in all cases. Furthermore, if the maxCubes limit is reached, then the
simplification may be incomplete.

• I’ve thought of adding options to provide other simplifications, for example, allowing product-of-sums
form for subtrees, using exclusive-OR, etc., but that’s a low-priority (for now).

• Likewise, SymUInt values are printed by giving values for the bits of the integer, and these are bits
are interleaved over the SymUInt variables of the BDD. I’ve thought of gathering the bits for a single
SymUInt together and printing the integer value (or perhaps a Jython/Python style “slice”). I may do that
eventually, but not soon.

2.5 Missing Features
• I should exclude True and False as variable names, but I haven’t done that (yet). Nothing breaks in the code

if you use those names, but the printed versions of symbolic expressions will be confusing.

• I should provide a way for users to specify the variable ordering. Most of the hooks for this are actually lurking
in the code, but there are still a few technical and interface issues that I haven’t worked out.

• I don’t provide div and mod operations. They’re pretty useless for one-bit quantities, and I haven’t figured out
how to sensibly handle div by a symbolic expression that can evaluate to zero.

• The itemethod for SymBool objects should be extended to support SymUInt, boolean, and int operands.

• I didn’t overload the Jython/Python and and or operators because the language regards them as control-flow
operations (due to short-circuit evaulation) and Jython and Python don’t allow overloading of control-flow op-
erations. /

• I’ve considered making some improvements to toString() to make it print cubes in a more “sensible” order
(in fact, I’m not sure why it doesn’t), to print the varibles in a cube in a more sensible order (keeping the
elements of each SymUInt together), printing assignments to SymUInt objects as integers or integer ranges,
more aggressive simplification, etc.
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3 Class SymUInt
This class implements symbolic, unsigned, binary integers.

3.1 Constructors
SymUInt(name, width) where name is a string and width is an integer creates a symbolic, unsigned integer

with width bits. Each bit is a SymBool object, where bit i has name name[i] for 0 ≤ i < width.

SymUInt(n, width) where n is an integer and width is an integer creates a SymUInt object where each bit
is the constant True or False corresponding to the bit of n.

SymUInt(v, width)where v is an array of SymBool or boolean values (or a mix) creates a SymUInt object
with len(v) bits where each bit has the value of the corresponding element of v.

3.2 Overloading of Jython Operators
These operators are overloaded so a SymUInt can be combined with a SymBool, boolean, or int. If two
SymUInt objects of different widths are in an expression, then the shorter one is extended with bits set to the constant
False to make them compatible. Likewise, a SymBool object or a boolean is treated as a one-bit SymUInt and
extended accordingly. An int is converted to a SymUInt with the same width as the SymUInt operand.

3.2.1 Bitwise logical operators:

& (and), | (or), ∼ (not), and ∧ exclusive-or.

3.2.2 Arithmetic operators:

+ and, -.
I haven’t implemented shifts or multiplication (yet). I might eventually implement division and remainder, but I need
to think of a way to handle division by zero.

3.2.3 Comparisons:

==, <, <=, !=, >=, and >.
These work as expected. The comparison applies to the word (i.e. the unsigned binary interpretation of the SymUInt
objects), and the result is a SymBool object.

3.2.4 Arrays:

• For the most part, a SymUInt can be treated as a Jython array or list. If x is a SymUInt then x[j] is
the jth element of x. Assignments and slicing are supported. Constructions such as for v in x: or [
expression for v in x] work as expected.

• For the most part, a SymUInt can be treated as a SymUInt objects implement + as binary addition instead of
list concatenation. Someday, SymUInt objects will probably implement * as binary multiplication, but they do
not and will not (in my current plans) implement * as list repetition. If you want these list operations, you can
convert a SymUInt to an array using the toArray() method, and usual Jython semantics will apply to the
array. You can convert the result back to a SymUInt by using the SymUInt constructor.
Returning to the example for relational product from Section 2.3.3, we can set x to 5 and z to 6 with a single
application of compose as shown below:
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>>> r12.compose(x.toArray() + z.toArray(), SymUInt(5, len(x)) + SymUInt(6, len(z)))
True

• Assignments are a bit messy because we have no way to “forget” variables. So, if you give the commands:

>>> import SymBool
>>> import SymUInt
>>> a = SymBool("a") >>> x = SymUInt("x", 4)
>>> print [xx for xx in x]
[x[0], x[1], x[2], x[3]]
>>> x[2] = a
>>> print [xx for xx in x]
[x[0], x[1], a, x[3]]

Then, it might seem hard to find a reference to x[2] ever again. Don’t worry, the restore method will give
you the original value again (without modifying the current value).

• Concatenation: if x, and y are SymUInt objects, then

3.3 Other operations
Of course, there are methods corresponding to the overloaded Jython operations. Note that the methods and, or, xor
and the comparison operations can be applied to an object without any arguments to “reduce” the SymUInt object to
a SymBool. The compose, exist, and forAll methods apply the operation to each bit of the SymUInt.

4 Other Classes
• AlreadyDeclaredException – the Java Exception class for declaring a SymBool or SymUInt when

there is already a symbolic variable of that name.

• JavaSlice – a class that provides a Java representation of Jython slices.

• SymBDD – the super-class of SymBool and SymUInt. If other symbolic types are created later; they’ll prob-
ably be subclasses (directly, or indirectly) of SymBDD. For example, someday, I may create a class for signed,
twos-complement integer, SymInt which would be a subclass of SymUInt.

The SymUInt class provides the methods for overloading Jython operators. Because these operators can be
applied to many different types of operands, each these methods comes in many different versions.

• SymFactory – the BDD package works with factories. This is the interface to those factories. The map that
matches names to SymBDD objects is here. If you clobber a symbolic variable, you can get it back with the
method SymFactory.find(String name).

Variable ordering is handled in SymFactory. I’d like to provide a way for the user to specify variable orders.
If I do, it’s likely to involve adding some methods to this class.

The JavaBDD package allows there to be multiple SymFactory objects in use at the same time. I haven’t seen
a need for this, but it would be easy to make this functionality accessible if there’s a need for it.

• SymOp – a Java enumeration. This provides a mapping of Jython operations to method names in class SymBDD.

8


	Overview
	Class SymBool
	Using the Class
	Overloading of Jython Operators
	Additional Symbolic Operations
	Methods for additional binary operations
	The methods that overload Jython operations
	Quantifiers, composition, and relations
	Operations that are specific to BDDs

	Other Operations
	Missing Features

	Class SymUInt
	Constructors
	Overloading of Jython Operators
	Bitwise logical operators:
	Arithmetic operators:
	Comparisons:
	Arrays:

	Other operations

	Other Classes

