CpSc 513: Course Overview

Mark Greenstreet

September 10, 2015

Outline:
@ What is verification?
@ A simple example: binary search
@ Course mechanics

» You will survive.
» You'll even have fun.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 1/38

What is verification?

@ We use mathematical methods, mostly mathematical logic, to
show that a hardware, software, or cyber-physical design has
some desired properties.

» Often, this is seen as “finding bugs.”

» Bug finding can be very important from a safety and/or cost
point of view.

» Formal methods also allow us to build more highly optimized
designs:

@ The kinds of techniques that we use:

» Boolean satisfiability (SAT)

» SAT augmented with decision procedures for other domains
(SMT)

» Reachability computation: model checking

» Abstraction, approximation, and refinement.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 2/38

The Big Picture

Theory, algorithms, Applications
& technology & examples
9 SAT and SMT intro Automatic Exploit Generation
& Symbolic Execution Automatic Test Generation
2 The DPLL algorithm
w
l

Binary Decision Diagrams
Model checking

Boolean program abstraction

How SMT works
Temporal logic

temporal propositional

~5 weeks

Linear Differential Inclusions
Interval arithmetic
Projectagons

continuous
~3 weeks

Advanced topics:

Digital circuit equivalence checking
Microprocessor verification (Intel)
Cache protocol verification

Software model checking (Microsoft)
More software analysis tools
Verifying fault tolerance (Amazon)

Cyber—physical systems: autonomous vehicles
Circuit verification
State—of—the—art SW verification

Interpolants, bounded model checking (BMC), Abstraction and refinement (e.g. CEGAR),
Statistical model checking, concolic execution, interactive theorem proving.

‘We probably won’t cover all of these, but I'll give half—hour intro and overviews along

with "for further reading” papers.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015

3/38

Binary Search

@ This example is from
“Programming Pearls: Writing correct programs”, J.L. Bentley,
CACM, Vol. 26 No. 12 (Dec. 1983), pages 1040-1045.
(non-UBC link).

@ Bentley had given courses for professional programmers at Bell
(now AT&T) and IBM.

@ Given an hour to solve the problem, ~ 90% of programmers
produced code that failed on a small set of test cases.

@ Bently wrote:

» “/ found this amazing: only about 10 percent of professional
programmers were able to get this small program right.”

» “This exercise displays many strengths of program
verification: the problem is important and requires careful
code, the development of the program is guided by verification
ideas, and the analysis of correctness employs general tools.”

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 4/38

http://cacm.acm.org.ezproxy.library.ubc.ca/magazines/1983/12/10583-programming-pearls-writing-correct-programs/abstract
https://en.wikipedia.org/wiki/Jon_Bentley
http://cacm.acm.org
http://cacm.acm.org/magazines/1983
http://cacm.acm.org/magazines/1983/12
http://dx.doi.org/10.1145/358476.358484

Binary Search: outline

This section is about 20 slides long. Here’s an outline (with links).

Original code, a test case, and a specification
Symbolic execution
overview and relationship to constraint solving.
Symbolic execution with the Z3 SMT solver
The first few lines of search
The while loop
When loop exits
The loop body
Unwinding the loop or using an invariant
Symbolic execution summary

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 5/38

Let's try it

search (key, A):search A for an instance of key.

A is a non-decreasing array of integers.
return the index of an element of A that matches key
or None if no such element exists.
def search(key, A):
lo =0

hi = len (A)
while(lo < hi):
mid = (lo + hi) /2
f(A[mid] == key): return mid
ellf([mld] < key): lo = mid
else: hi = mid
return None

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 6/38

Is it right?

@ We could try some test cases. For example:

def test_it () :
A= [-17, -3, 0, 1, 2, 4, 123456789]
if (search (2, A) == 4): print ’'Looks good.’
else: print ’'The test failed.’

@ Now, execute the test case(s):

>>> test_it () Looks good.

The test passed.
@ How do we know when we’ve performed enough tests?

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 7/38

Is it right?

A more formal/systematic approach:
@ We want to show:

P1: If search (A, key) returns i,thenA[i] =key.

P2: If A does not contain key, then search (A, key) returns
None.

P3: For any A and key, search (A, key) eventually returns.

@ We assume:
A1: key is an integer.
A2: Every element of 2 is an integer.
A3:Forall0<i<j<len(h),A[i] <A[]].
@ Strategy:
» Write down a formula for what we know at each step in the
execution.
» Check to see if every execution satisfies P1 ...P3.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 8/38

Symbolic execution: the big picture

@ Use symbols for the parameters of search.

@ For each step of the execution, compute formulas in terms of
these symbolic parameters.

@ Check to see if these formulas satisfy the specification.
@ Simple example:

def simple(a, b):

code symbolic execution

x = atb # x = atb

y = a*b # y = axb

Z = X*X — 2%V # z = (atb)x(a+tb) - 2*(axb)

return z

» Does simple satisfy the specification simple (a, b) >07?
» We simplify the formula for z and get z =axa + bxb.
» If a and b are real-valued, then the specification is satisfied.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 9/38

Symbolic execution by constraint solving

@ We can view each statement of a program as adding constraints.
@ Each constraint restricts the set of possible executions.

@ A constraint solver can give us an example of an execution.

@ We can add a constraint: “...and the specification is violated.”

» If the constraint solver can find a solution to the constraints,
Then it's shown that the program has a bug (it can violate its
specification).

» If the constraint solver can show that there is no solution to
these constraints,
then all executions satisify the specification.

We have verified the program.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 10/38

Another way to think of constraint solving

@ It’s like a kid’s game:
* “I'm thinking of someone in this room.” (the domain)

% “This person has brown eyes.” (a constraint)
% “This person is shorter than 180cm” (another constraint)
*

@ The constraints are satisifiable if there is at least one person in the
room who satisfies all of them.

» When using constraints for program executions, it means that
execution path is possible.
@ If we add a constraint “and the specification is violated”

» Then a solution to the constraints is an example of a bug.
» If there is no solution, then all executions (for those
constraints) satisfy the specification.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 11/38

Symbolic execution with the Z3 SMT solver

get the z3 stuff

from z3 import =
s records constraints, finds solutions, etc.

s = Solver ()
You can download z3 from
https://github.com/z3prover/z3/wiki
Go to the github link for source code and continue. OSX users can follow the in-

structions for linux distros.

The solver object is an SMT solver. Here, I constructed one with the default configu-
ration parameters. This gives us a pretty rich set of theories. In the following code, I
will declare symbolic constants and then add symbolic constraints to the solver.

Mark Greenstreet CpSc 513: Course Overview

https://github.com/z3prover/z3/wiki

Symbolic execution with the Z3 SMT solver

from z3 import x # get the z3 stuff
s = Solver () # s records constraints, finds solutions, etc.

0: def search (key, A):
key = Int (’'key’) # declare a symbolic variable for key
A bit of explanation may help here. Note that where working with both z3 symbolic

constants and Python variables. The constructor, Int (” key’) creates a z3 symbolic
constant whose name is the string ” key’ . It’s a constant because for any propositional
formula, it has the same value in all occurrences in that formula. When we ask z3 if
a formula is satisfiable, it determines if there is a value for this constant (and all other
constants appearing in the formula) such that the formula is satisfied. We also have
the Python variable, key. It is a reference to the object returned by the z3 constructo,
Int ("key’). In this case, I'm using the same name for the z3 constant and the
Python variable. Sometimes, that’s the clearest approach. I’ll give some examples
later where we can have Python variables that correspond to z3 expressions.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 12/38

Symbolic execution with the Z3 SMT solver

from z3 import x # get the z3 stuff
s = Solver () # s records constraints, finds solutions, etc.
0: def search (key, A):
key = Int ('key’) # declare a symbolic variable for key

A = Array ('A’, IntSort(), IntSort()) # asymbolicarray
lenA = Int(’len(A)’) # we’ll add a variable for 1en (A)
s.add (lenA >= 0) # array lengths can’t be negative

Here, I had to decide how to represent Python’s built-in 1en function. I could proba-
bly make it an uninterpreted function from arrays to integers, but I don”t know enough
z3 to do that. Instead, I'm using my knowledge that array lengths are non-negative
integers, and creating a new variable with that property. In particular, for any ar-
ray we want to model, there is a value for 1enA such that lenA >= 0 and lena
= len(A). The method s.add (constraint) adds constraint to the set of con-
straints that the solver is trying to satisfy.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 12/38

Symbolic execution with the Z3 SMT solver

from z3 import x # get the z3 stuff
s = Solver () # s records constraints, finds solutions, etc.
0: def search (key, A):
key = Int ('key’) # declare a symbolic variable for key
A = Array (’A’, IntSort(), IntSort()) # asymbolicarray
lenA = Int(’len(A)’) # we’ll add a variable for 1en (A)
s.add (lenA >= 0) # array lengths can’t be negative
Now, I'll add the constraint that A is non-decreasing
i, = Ints(("1’, "3j’)) +# extra variables for the analysis
s.add (ForAll ((i, 7J), # A is non-decreasing

Implies (And(0 <= i, 1 <= j,
A[i1] <= A[J])))

j < lenhd),

73 provides incomplete support for the quantifiers ForAl1l and Exists. For many
formulas (including this example), z3 can just spot places where the quantified expres-
sion is relevant. Z3 then creates the particular instance for that term. This is a rather
hand-waving explanation. The technical term is “model-based quantifier instantia-

tion”.

Mark Greenstreet CpSc 513: Course Overview

Sept. 09, 2015

12/38

Symbolic execution with the Z3 SMT solver

from z3 import x # get the z3 stuff
s = Solver () # s records constraints, finds solutions, etc.
0: def search (key, A):
key = Int (’'key’) # declare a symbolic variable for key
A = Array(’A’, IntSort(), IntSort()) # asymbolic array
lenA = Int(’len(d)’) # we’ll add a variable for Len (2)
s.add (lenA >= 0) # array lengths can’t be negative
Now, I'll add the constraint that A is non-decreasing
i,j = Ints(("1", "3")) # extravariables for the analysis
s.add (ForAll ((i, 7J), # A is non-decreasing

Implies (And(0 <= 1, 1 <= 3J, j < lenAh),
Ali] <= A[31)))

1:1o = 0

lo = Int("1lo")
s.add (lo == 0)

2:hi = len(R)
hi = Int("hi’")
s.add (hi == lenA)

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015

12/38

Now that I've filled a slide with code
Let’s try it:

>>> # the stuff from the previous slide
>>> s.check ()

sat

>>> s.model ()

[lenA = 0,

lo = 0,

hi = 0,

A= [0 -> 0, else -> 0],
k!l = [0 —> 0, else —> 0]]
>>>

So far, so good. The particular solution has:
A is an empty array;
thus, 10 and hi are both 0;

and the ForaAl1l holds vacuously.
I’'m guessing that x ! 1 is a “Skolem function” for the Forall.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 13/38

The while loop

@ Now, we encounter the loop: while lo < hi.
@ There are two cases to consider:

» The loop condition is satisfied; the loop body is executed; and
the loop condition is tested again.
» The loop condition is not satisfied; and the exits immediately.

@ We can create two subproblems to analyse, according to the loop
condition.

» This leads to the path explosion problem (see the next slide).
» We’'ll examine various ways to tame path explosions in this
class.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 14/38

The path explosion problem
Not(lo < hi) o lo < hi

A[mid] == key
Almid] < key

Not(A[mid] < key)
return None
return mid

@ Each test of the while loop condition splits the path into two
subpaths.

@ Each comparision of A [mid] with key creates three subpaths.

@ The number of paths grows as 2% where k is the number of loop
iterations.

@ Brute-force approaches quickly become intractable.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 15/38

Constraints for the while loop

We can clone our solver for the two cases.
@ First case, the while loop exits immediately:

After the while loop, zero executions of the body

make a new solver

clone the constraints
we’ve exited the loop
sOx.push () # we can back out if we make a mistake
check for an error

sOx = Solver ()
sOx.add(s.assertions ())
sOx.add (Not (lo < hi))

sOx.add (Exists (i, A[i] == key))
print sOx.check ()

@ |tried it and z3 reported sat.
@ What went wrong?

Mark Greenstreet CpSc 513: Course Overview

Sept. 09, 2015

16/38

Look at the counter-example

>>> print sOx.model ()
[lenA = 0,

lo = 0,

hi = 0,

A = [else —> 2],

ills5 =1,

key = 2,

k!'1l6 = [else —> 2]]

In English:

[lenA = 0:Ais an empty array.

A = [else —> 2]:A[i] is 2 for any choice of i.

key = 2:keylis 2.

il15 = 1:iis1.
Ah ha! | forgot to constrain i and the counter-example is an array
bounds violation.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015

17/38

Try again

s0x.pop () # restore the solver
sOx.add (Exists (i, And(0 <= i, i1 < lenA,
A[i] == key)))

print sOx.check()

@ This time, z3 reports unsat — it proved the desired property.

@ We’ve now shown that if the while-loop executes 0 times (i.e. 2 is
empty), then search returns the right answer.

@ Now, let’s look at when the loop body is executed.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 18/38

The loop body
We start with

3:while(lo < hi):

s0b = Solver () # the solver for the loop body

sO0Ob.add (s.assertions ())

sOb.add (lo < hi) # theloop test passed

4:mid = (lo + hi)/2
mid = Int ('mid’)

s0b.add (mid == (lo + hi)/2)
5:1f (A[mid] == key): return mid
sOr = Solver () # solver for the 'return’ case

sOr.add(s.assertions ())
sOr.add (A[mid] == key)

Now, we just need to add a constraint that we are returning the wrong

answer and check for unsatisfiability:

>>> s0r.add (Not (A[mid] == key))
>>> print sOr.check()
unsat

Yay! We passed another test.

Mark Greenstreet CpSc 513: Course Overview

Sept. 09, 2015

19/38

The A[mid] < key case

@ How do we model 1o = mid?

» We need a fresh, z8 symbolic constant.
> Letscallit 10$1.
» We'llneedahisl as well.

@ We now get:

s0b.add (Not (A[mid] == key)) # condition for 15 if is false
lo_next, hi_next = Ints((’lo$l’, 'hi$l’))
sO0b.add(lol == If(A[mid] < mid, mid, lo))

sOb.add (hil == If(A[mid] < mid, hi, mid))

@ We've made it to the end of the first loop body execution. How do
we continue?
» The “right” answer is “invariants”.
» We'll get there, but ...

It's much easier to write an invariant if you already know what
it should be!

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 20/38

Unwinding the loop

@ Strategy: write Python code to execute the loop a small number of
times (e.g. 5).
» If len (2) is small enough (e.g. 1en (2) < 8) the code should
exit. We can show this by showing that the final version of the
solver for continuing the loop body precludes 1ena < 8.

» Code in
http://www.cs.ubc.ca/~mrg/cs513/2015-1/notes/09.10/src/bf0.py.

@ The termination test fails:

key: has the value 6927.
A:is an array of 6 elements, all of which have the value 6926.

lo: startsat 0, goes 3,4, 5,5,

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 21/38

http://www.cs.ubc.ca/~mrg/cs513/2015-1/notes/09.10/src/bf0.py

Pause to think (but not too much)

@ We're using 1o and hi to bracket the part of the array that might
hold an element that matches key.
@ In more detail, we consider A[1] for 1o < i < hi.
» But whenwe set 1o = mid we set 1o to an index that is
definitely lower than any one that could have key.
» We should set 1o = mid+1 instead.
@ What about hi?
» Setting hi to mid seems OK.
> A[mid] is greater than key, but
» A[mid-1] could match.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 22/38

Revised code

search (key, A):search A for an instance of key.

A is a non-decreasing array of integers.
return the index of an element of A that matches key
or None if no such element exists.
def search(key, A):
lo =0

hi = len(A)
while(lo < hi):
mid = (lo + hi)/2
if (A[mid] == key): return mid
elif (A[mid] < key): lo = mid+1 # < changed this line
else: hi = mid
return None

@ | created bf1.py by changing:
s.add (lonext == If(A[mid] < key, mid, lo)) # seeslide 20
to
s.add(lomnext == If(A[mid] < key, mid+l, lo))
@ | re-ran with the revised code, and all the tests passed.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 23/38

http://www.cs.ubc.ca/~mrg/cs513/2015-1/notes/09.10/src/bf1.py

Invariants

@ How can we reason about:

0: preamble

1: while (condition) :
2: loop—-body

4: epilogue

@ We find an invariant, 1nv, such that:

» Tnv holds after executing preamable (need to show).

» From any state where 1nv and condition hold before
executing 1oop-body, Inv will hold after executing
loop-body (need to show).

» We use And (Inv, condition) as the condition that holds
after exiting the loop (i.e. just before executing epi1og).

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 24/38

Mark Greenstreet CpSc 513: Course Overview

An invariant for binary search

@ From the previous examples, we see that a key property is that
whenever we test the condition of the while loop, then if there is an
element of 2 that matches key, then there must be such an
element with an index in the range [1o, hi).

@ Our proposed invariant:

Implies (Exists (i, And(0 <= 1, i1 < lenA, A[i] == key))
Exists(j, And(lo <= j, j < hi, Alj] == key)))

» If we try this, it fails:

» We need to add a clause that A remains non-decreasing.
» We need to add a clause that 0 < 1o <hi < lenA.
@ Our revised invariant:
And (non_decreasing(A), 0 <= lo, lo <= hi, hi <= lenA,
Implies (Exists (i, And(0 <= i, i < lenA, A[i] == key))
Exists(j, And(lo <= j, J < hi, A[j] == key))))
» This invariant passes.

> See http://www.cs.ubc.ca/~mrg/cs513/2015-1/notes/09.10/search_invariant.py.

Sept. 09, 2015 25/38

http://www.cs.ubc.ca/~mrg/cs513/2015-1/notes/09.10/search_invariant.py

In the z3 code

@ To do list:
» Check termination: add check that hi — 1o is always
non-negative and decreases with each iteration.
» Check array bounds.
» Check with bit-vector arithmetic.
@ Remarks about automation:
» | manually wrote the constraints for this program.
» The constraints describing what each program statement
does can be generated automatically.
» Check for array bounds violations and many other common
errors can be generated automatically.
» Humans are still needed to add annotations that require
understanding the algorithm.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 26/38

Binary Search: summary

@ Seemingly simple code can be prone to errors because humans
aren’t good at handling lots of corner-cases.

@ Symbolic execution handles all of the cases systematically.

@ Constraint solvers such as Z3’s SMT solver make symbolic
execution practical.

@ Issues like path explosion remain a concern.

@ This simple example illustrates, in a small code fragment, many of
the topics that we’ll cover this semester.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 27/38

Course mechanics

@ We’'ll cover roughly one paper per lecture.

» The reading list is at
http://www.cs.ubc.ca/~mrg/cs513/2015-1/reading/ReadingList.html

» Starting Sept. 17, you will be expected to write a short
summaries for the papers. See slide 30.

@ Each person will present one paper: see slide 31.
@ There will be 4 + 1 homework assignments: see slide 33.
@ There will be a project: see slide 34.

» Should take ~ 40 hours to your time.
» The final output is a M.Sc. thesis proposal (or equivalent).
They are fine choices for papers to present.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 28/38

http://www.cs.ubc.ca/~mrg/cs513/2015-1/reading/ReadingList.html

Grading

@ 10% paper summaries. You need to do 15 summaries to get full
credit.

@ 15% class presentation.
@ 30% homework
@ 45% course project.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 29/38

Paper summaries

@ Each summary should address each of the questions below:

1. What problem does the paper address?

2. What is the key insight/idea in the paper’s solution to this problem?

3. What did the authors do to demonstrate their claims? (e.g. implement a tool,
present a proof, run simulations, etc.)

4. Is the support for the claims convincing? Why or why not?

5. What are your questions or other comments about the paper?

@ You can address each point with 1-3 sentences. These summaries should be
short: at most one page.

@ Paper summaries are due at 10am of the day that the paper is covered in class.

» Submit your summaries by e-mail.
» Plain text is preferred. PDF is acceptable.

@ If you found a paper too hard to read:

» Write a description of where you got stuck.
» Write some questions that would help you understand the paper.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 30/38

Paper Presentations

@ Each person will present one paper.

@ There are many “For further reading” papers proposed on the
reading list. They are fine choices for papers to present.

@ Or you can present a paper related to your project.
@ Or you can present another paper.
@ Claim a paper by sending e-mail to me:

» Tell me what paper and what date.

» The first person to claim a paper gets it.
» I'll send you a confirmation and update the reading list.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 31/38

Presentations Guidelines

@ A presentation should take about 20 minutes and be like a
conference talk.
@ An effective conference talk is an advertisement for the paper:
» State why the problem matters.
» State the main contributions.
» Sketch how the contributions are validated — focus on one or
two interesting points about what they did.
» Add your own comments, questions, and criticisms. Connect
the paper with other papers that we’ve studied in class.

@ You can prepare slides and/or use the whiteboard.
» | strongly recommend giving a practice run of your talk to
another student.
@ Note: I'll make a few presentations like this to touch on some of
the “advanced topics” (see slide 3) that we won’t have time to
cover in detail.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 32/38

Homework

@ There will be 4 + 1 homework assignments.
@ Homework problems include:

» Trying something with real, formal verification tools.
» Some “pencil-and-paper” problems to complement the
programming.
@ The first assignment should go out on Sept. 17.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 33/38

Projects

The goal of the project is to produce a Master’s thesis proposal
including:

@ A statement of what problem you are addressing.

@ A review of relevant research (at least five papers)

@ A simple experiment (e.g. write some code) to show that your idea
will probably be feasible.

@ A timeline for the thesis research and write-up.
@ Identify the any resources you would need:

» Special equipment.
» Access to proprietry data.
» Anything else

@ |dentify where the risks are in the research and how you plan to
handle them.

» If you knew the results ahead of time, it wouldn’t be research.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 34/38

Project ideas

@ I'm very happy to see projects for any aspect of formal verification.
@ | also like projects that connect formal verification with other areas.

@ See
http://www.cs.ubc.ca/~mrg/cs513/2015-1/project.html
for some project ideas.

@ | prefer individual projects, but I'll consider a proposal for a group
project if:
» A clear reason is given for why the project should be done as
a group and not as separate projects.
» Clear criteria are given for evaluating each member’s
contribution to the project.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 35/38

http://www.cs.ubc.ca/~mrg/cs513/2015-1/project.html

Project Deadlines

@ October 29: proposals due.

» State the problem you plan to address.

» State what approach you expect to use to address the
problem.

» List at least three papers that you plan to include in your
literature survey.

@ December 3: intermediate report due.

» List the papers that you have read.

» Describe what the progress you have made on evaluating the
feasibility of your idea. For example, if you're writing a
program, describe what the status of developing that code.

» Describe any issues that have come up that could impact the
project.

» This report should be 1 or 2 pages long plus short summaries
of the papers that you've read.

@ December 14: Final project report due.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 36/38

Project Grading

< 80: You didn’t do what you proposed, and you didn’t try to revise
the project goals if you encountered some unforeseen difficulty.
Note that you can always check with me to revise the project
proposal if you need to.

80 — 84: You did what you proposed, but you didn’t demonstrate that
you explored the topic in a way so that you learned something
significant in the process.

85 — 89: You clearly learned something significant by doing the
project. Make sure that your report clearly states what you
learned by doing the project.

90 — 94: | learned something significant by reading your report.

95 — 100: This work is worthy of writing a paper that | expect to be a
landmark in the field.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 37/38

Will | survive this class?
Yes.

@ Formal verification spans many areas of computer science and other fields
including:

» Mathematical logic, programming languages, digital logic design,
computational complexity, computer architecture, temporal logic, robotics,
differential equations, optimization.

@ | expect that most of these will be new to most students in the class

» Lectures will include many tutorials.
» | will emphasize showing the connections between what you already know
and other branches of computer science.

@ The goals of the course are:

» Give you an introduction to formal methods so you can do research in the
area if you want to.

» Give you a background so you can see how these methods are useful in
other areas where you may end up doing your thesis research or working
after you graduate.

» Have fun exploring how formal methods solve challenging, real-world
problems.

Mark Greenstreet CpSc 513: Course Overview Sept. 09, 2015 38/38

