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Abstract

This document describes Version 1.1 of the Toolbox of Level Set Methods, a
software package for solving time-dependent Hamilton-Jacobi partial differential
equations (PDEs) in the MATLAB programming environment. Level set methods
are often used for simulation of dynamic implicit surfaces in graphics, fluid and
combustion simulation, image processing, and computer vision. Hamilton-Jacobi
and related PDEs arise in fields such as control, robotics, differential games, dy-
namic programming, mesh generation, stochastic differential equations, financial
mathematics, and verification. The algorithms in the toolbox can be used in any
number of dimensions, although computational cost and visualization difficulty
make dimensions four and higher a challenge. All source code for the toolbox is
provided as plain text in the MATLAB m-file programming language. The toolbox
is designed to allow quick and easy experimentation with level set methods, al-
though it is not by itself a level set tutorial and so should be used in combination
with the existing literature.

This document supercedes the documentation for Version 1.0 of the Toolbox
(UBC TR~2004-09).



Copyright

This Toolbox of Level Set Methods, its source, and its documentation are Copyright (©2007 by Ian M. Mitchell.
Use of or creating copies of all or part of this work is subject to the following licensing agreement.

This license is derived from the ACM Software Copyright and License Agreement (1998), which may be found

at:
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License

The Toolbox of Level Set Methods, its source and its documentation (hereafter, Software) is copyrighted by
Tan M. Mitchell (hereafter, Developer) and ownership of all rights, title and interest in and to the Software
remains with the Developer. By using or copying the Software, the User agrees to abide by the terms of this
Agreement.

Noncommercial Use: The Developer grants to you (hereafter, User) a royalty-free, nonexclusive right to ex-
ecute, copy, modify and distribute the Software solely for academic, research and other similar noncommercial
uses, subject to the following conditions:

. The User acknowledges that the Software is still in the development stage and that it is being supplied

“as is,” without any support services from the Developer. Neither the Developer nor his employers
make any representation or warranties, express or implied, including, without limitation,
any representations or warranties of the merchantability or fitness for any particular
purpose, or that the application of the software, will not infringe on any patents or other
proprietary rights of others.

. The Developer and his employers shall not be held liable for direct, indirect, special, incidental or

consequential damages arising from any claim by the User or any third party with respect to uses
allowed under this Agreement, or from any use of the Software, even if the Developer or his employers
have been advised of the possibility of such damage.

. The User agrees to fully indemnify and hold harmless the Developer and his employers from and against

any and all claims, demands, suits, losses, damages, costs and expenses arising out of the User’s use of
the Software, including, without limitation, arising out of the User’s modification of the Software.

. The User may modify the Software and distribute that modified work to third parties provided that:

(a) if posted separately, it clearly acknowledges that it contains material copyrighted by the Developer
(b) no charge is associated with such copies, (c) User agrees to notify the Developer of the distribution,
and (d) User clearly notifies secondary users that such modified work is not the original Software.

. Any distribution of all or part of the Software or modified versions must contain the above copyright

notice and this license.

. This agreement will terminate immediately upon the User’s breach of, or non-compliance with, any of

its terms. The User may be held liable for any copyright infringement or the infringement of any other
proprietary rights in the Software that is caused or facilitated by the User’s failure to abide by the
terms of this agreement.

. This agreement will be construed and enforced in accordance with the law of the Province of British

Columbia applicable to contracts performed entirely within that Province. The parties irrevocably
consent to the exclusive jurisdiction of the provincial or federal courts located in the City of Vancouver
for all disputes concerning this agreement.



Commerical or Other Use: Any User wishing to make a commercial or other use of the Software is
encouraged to contact the Developer at mitchell@cs.ubc.ca to arrange an appropriate license. Commercial
use includes (1) integrating or incorporating all or part of the source code into a product for sale or license
by, or on behalf of, the User to third parties, or (2) distribution of a compiled or source code version of the
Software to third parties for use with a commercial product sold or licensed by, or on behalf of, the User.
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Preface

It has been a little over two years since I made a beta release of Version 1.1 of the Toolbox.
I had intended to wait a few months to see if any other bugs appeared in my experiments
with the code, test all of the old examples to make sure that none had been broken by the
new additions, and then make the official release. My mistake. There was always some more
pressing task than performing those regression tests, and so the official release kept getting
delayed.

T'am happy to finally make this official release available. Over the intervening months since the
beta I have made a number of bug fixes, and added two small features that were not present
in the beta: a subcell fix in termReinit from [27] that significantly reduces the movement of
the interface during reinitialization, and a new routine gridnd2mesh that converts between
the Toolbox’s ndgrid-based grid definition and the meshgrid-based definition required by
several of MATLAB’s visualization routines. A full list of features added to the Toolbox since
Version 1.0 is given in section 4.

Not all of the code that I have written in the past two years is contained in this Version 1.1
release. Where possible—in other words, where the code is clean enough that somebody else
might be able to understand it—I have posted additional code at the Toolbox’s web site [14].
In particular, code to accompany [16] provides for additional explicit Runge-Kutta integrators
from [32] and a new motion by mean curvature approximation from [21]. Those features of
this additional code that prove generally useful or instructive will likely be incorporated into
the Toolbox kernel or example set in future versions. Keep checking the web site, because 1
plan to stick with this piecemeal policy for code pre-release in the future rather than risking
another beta release which celebrates multiple birthdays.

I would like to thank all of the users who have sent emails with questions, feature requests,
support and/or bug fixes over the past few years. Keep them coming! In particular, if you
publish articles or use the Toolbox in your business, please let me know. Your messages
not only encourage me to keep working on the Toolbox, but also add strength to my grant
proposals so that I can support students with whom I can add, test and document features
faster than I can alone.

Ian M. Mitchell,
Vancouver, Canada
May, 2007.



1 Introduction

Level set methods are a collection of numerical algorithms for solving a particular class of
partial differential equations (PDEs). They have proven popular in recent years for tracking,
modeling and simulating the motion of dynamic surfaces in fields including graphics, image
processing, computational fluid dynamics, materials science and many others. Rather than
an explicit representation in terms of edges (a one dimensional surface in R?) or faces (a
two dimensional surface in R? ), in level set methods the surface is represented implicitly
through a level set function ¢(x). The surface itself is the zero isosurface or zero level set
{z € R? | ¢(x) = 0}. Various types of surface motion can be described by PDEs involving
¢. Because of the implicit representation, these methods are sometimes also referred to as
dynamic implicit surfaces.

Although popularized under the name level set methods, the underlying PDE—a hyperbolic
PDE with first order time derivatives often called a Hamilton-Jacobi (HJ) PDE—appears in
many other branches of mathematics including optimal control, zero sum differential games,
mathematical finance and stochastic differential equations.

Level set proponents often claim that a primary advantage of level set methods is their ease of
implementation, a claim which we find overly optimistic. PDEs are rarely easy to implement;
for example, the base MATLAB installation includes only a PDE solver for one dimensional
parabolic-elliptic equations. For simple convective motion (including rigid body motion), it
is far easier to implement marker particle or Lagrangian methods for evolving an interface.
The advantage of level set methods, however, is that they can accomodate many types of
surface motion without any significant increase in theoretical or implementation complexity.
Among these capabilities are:

e [t is conceptually straightforward to move from two to three and even higher dimensions
(although computational cost is exponential in dimension).

e Surfaces automatically merge and separate.

e Geometric quantities are easy to calculate: surface normal, curvature, direction and
distance to the nearest point on the surface. Surface motion can depend on these
quantities.

In contrast, it is a significant undertaking to implement dynamic surfaces with marker par-
ticles in three dimensions with merging, separation and calculation of surface normals and
curvatures.

Much of the level set literature has grown out of the seminal paper [25], although dynamic
implicit surfaces and the HJ PDE date back much further. Readers interested in using level



set methods for their applications are encouraged to read both of the well written texts [28]
and [24]. They discuss the basic concepts in different but complementary ways, and then
proceed to cover a variety of additional topics, few of which overlap. In our (probably
biased) opinion, the strengths of the two books are their explanations of:

e Osher and Fedkiw [24]: high order accuracy methods, image processing, computational
physics.

e Sethian [28]: fast marching methods, unstructured grids, a wide variety of applications.

Because we work with time-dependent equations on structured grids, most of the algorithms
and examples in this version of the toolbox are taken from [24].

1.1 Toolbox Objectives

The goal of this toolbox is to provide a collection of routines which implement the basic
level set algorithms in MATLAB* for any number of dimensions. In using MATLAB we seek
to minimize not execution time, but the combination of execution and coding time. In
our experience, the visualization, debugging, data manipulation and scripting capabilities of
MATLAB make construction of numerical code so much simpler, when compared to compiled
languages like C+4 or Fortran, that the increase in execution time is quite acceptable.
Readers interested in faster implementations should note that for the restricted class of
problems that we consider in the toolbox the execution time penalty is relatively small. It is
only for more complex problems on unstructured, adaptive or localized grids that a compiled
implementation will run significantly faster.

In the jargon of the level set literature, this toolbox provides routines to solve time-dependent
Hamilton-Jacobi and related equations on fixed, structured Cartesian grids in any number of
dimensions. More concretely, the PDE to be solved is of the form

Digp(z,t) + H(z,t,¢, Ve, D2¢) = 0 for z € R™, ¢ > 0. (1)

subject to initial conditions
d(x,t) = ¢po(x) for £ € R"™. (2)

In this PDE, z € R" is the state space, ¢ : R® x R — R is the level set function, D;¢ is the
partial derivative of ¢ with respect to the time variable ¢, V¢ = D, ¢ is the gradient of ¢p—the
vector of partials of ¢ with respect to the state space variables z—and D2¢ is the Hessian
matrix of second partial derivatives with respect to the state space variables. The initial

*MATLAB is a product and trademark of The Mathworks Incorporated of Natick, Massachusetts. For more
details see http://www.mathworks.com/products/matlab/. The level set toolbox described in this document
was developed by the authors of this document, and is neither endorsed by nor a product of The Mathworks.
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conditions ¢y should be bounded and continuous and H should satisfy the monotonicity
requirement [8]

H(z,t,r,p,X) < H(z,t,s,p,Y), whenever r < s and Y < X, (3)

where X and Y are symmetric matrices of appropriate dimension. Since the initial condi-
tions (2) may not satisfy (1), they are the limit as ¢ — 0 of the solution ¢(z,t). This PDE is
also sometimes called first order hyperbolic (if there is no D2¢ term) or degenerate parabolic
(if the term involving D2¢ is not of full rank). Unless H is linear and of full rank in the high-
est order derivative which is present, even with smooth initial conditions ¢ may not remain
differentiable and hence (1) will have no classical solution. The algorithms of the toolbox are
designed to approximate the viscosity solution [6], which is the appropriate weak solution for
many problems that lead to equations of the form (1), although it is not the only possible
weak solution.

A key feature of the viscosity solution of (1) is that under suitable conditions ¢ remains
bounded and continuous for all time. This property may not hold for other types of HJ PDE,
such as the stationary (time-independent) equations arising in minimum time to reach prob-
lems (see section 2.7). The algorithms in the toolbox make use of the continuity assumption
to achieve improved accuracy. The terms presently implemented in the toolbox, and the
assumption made about their properties—essentially boundedness and (usually Lipschitz)
continuity—are designed to maintain this assumption.

1.2 Contents of the Toolbox

General schemes for solving the potentially nonlinear (1) are difficult to implement and
often sacrifice speed, accuracy and/or ease of use to achieve convergence. Furthermore, few
practical problems require the full generality of this equation. Consequently, the current
toolbox implements only a variety of special cases:

0 Dt¢($at) (4)
+o(z,1) - V(z, 1) (5)

+ a(z,1)[|[Vé(z, 1) (6)

+ sign(¢(z,0))([Vo(z,t)|| — 1) (7)

+ H(z,t,¢$, V) (8)

— bz, 1)k (x,1)[[V(z, 1) (9)

— trace[L(z, t) D2¢(x, t)R(x, t)] (10)

+ Az, t)p(x, t) (11)

+ F(x,t, ¢), (12)
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subject to constraints

Dt¢($7 t)
$(z,1)
Note that the time derivative (4) and at least one term involving a spatial derivative (5)—(10)

must appear, otherwise the equation is not a time-dependent HJ PDE. Numerical approxi-
mations for each type of term are provided.

0, Dyp(z,t) <0, (13)
b(x,1), Pz, t) 2 p(z, 1), (14)

IN IV

e The time derivative (4) is approximated with an explicit total variation diminishing
Runge-Kutta integration scheme with order of accuracy between one and three [24,
chapter 3.5]. Because it is an explicit integrator, CFL conditions restrict the size of
each timestep. An example is given in section 2.1 and a description of the toolbox
routines in section 3.5.

e Motion by a velocity field (5), also called advection or convection. The user provides
the velocity field v : R” x R — R"™, and the gradient V¢(z,t) is approximated with
an upwind finite difference scheme with order of accuracy between one and five [24,
chapter 3]. An example is given in section 2.1, a description of the toolbox routines
for upwind finite difference approximations in section 3.4.1, and a description of the
toolbox routine for approximating constant velocity flow fields in section 3.6.1.

e Motion in the normal direction (6). The user provides the speed of the interface a :
R*" xR — R, and V¢(z,t) is approximated with an upwind finite difference scheme [24,
chapter 6]. An example is given in section 2.3.2 and a description of the toolbox routine
in section 3.6.1.

e The reinitialization equation (7). This term is identically zero for signed distance
functions, and can be applied to implicit surface functions in order to transform them
into signed distance functions [24, chapter 7.4]. A Godunov scheme for its solution can
be found in [12, appendix A.3], which allows this term to be stably approximated with
a minimum of artificial dissipation. A subcell fix from [27] is optional but is used by
default on nodes adjacent to the interface to keep the interface from moving during
reinitialization. Note that the initial conditions are used inside the signum function
in (7). Examples are given in sections 2.2.1 and 2.10 and a description of the toolbox
routine in section 3.6.1. Reinitialization is usually applied as an auxiliary step by itself;
a helper routine for this process is described in section 3.7.4.

e A general Hamilton-Jacobi term (8) can treat a variety of applications, including
optimal control and differential games. The user provides the analytic Hamiltonian
H:R" xR xR x R" — R. Note that if H depends on ¢, the user must ensure that it
satisfies the monotonicity requirement (3). Upwind finite difference approximations of
V(z,t) are provided, and Lax-Friedrichs is used to stably approximate the H(z,t,r, p)

12



function (with various options for the degree of localization when calculating the arti-
ficial dissipation coefficient) [24, chapter 5]. An example is given in section 2.2.2 and a
description of the toolbox routines in section 3.6.2.

Motion by mean curvature (9). The user provides the speed b : R" x R — R™, while
the mean curvature k(z,t) and gradient V¢(z,t) are approximated by centered second
order accurate finite difference approximations [24, chapter 4]. An example is given in
section 2.3.1, a description of the toolbox routines for centered finite difference approx-
imations in section 3.4.2, and a description of the toolbox routine for motion by mean
curvature in section 3.6.3.

Motion by the trace of the Hessian (10), which arises from the Kolmogorov or Fokker-
Planck equations when working with stochastic differential equations [13,22]. The user
provides the matrices L, R : R" x R — R"™*" while the Hessian matrix of mixed second
order spatial derivatives D2¢(x,t) is approximated by centered second order accurate
finite difference approximations. This feature has not yet been implemented, but will
be available in future releases.

Discounting terms (11), which arise when solving some types of optimal control prob-
lems [2] or stochastic differential equations [22] (in which context they relate to the
“killing” process). The user provides the discount factor A : R" x R — R. This feature
has not yet been implemented, but will be available in future releases.

Forcing terms (12), which the user provides F' : R” x R x R — R. If F' depends on ¢,
the user must ensure that it satisfies the monotonicity requirement (3). This feature
has not yet been implemented, but will be available in future releases.

Constraints (13) that the implicit surface should not grow or should not shrink. An
example is given in section 2.2 and a description of the toolbox routine in section 3.6.4.

Constraints (14) that the implicit surface should not enter or should not exit another
implicit surface. The user provides 1 : R* x R — R defining the other implicit sur-
face. Unlike most other terms, this constraint is handled in an indirect manner using
the postTimestep option of the time integration routines. The option is discussed in
section 3.5.3, and an example is given in section 2.2.3.

This collection of terms covers most of the cases arising in applications, although the toolbox
is organized so that adding more types of terms is relatively straightforward.

1.3 Using the Toolbox

Running the Toolbox requires MATLAB Version 6.5 or later. Only the base MATLAB is
required; no additional MATLAB toolboxes are used by the kernel code or by any of the
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examples in this manual. Assuming that MATLAB is operational on your system, the steps
to using the Toolbox of Level Set Methods are to download an archive of the most recent
version of the Toolbox from the web site [14] (available in zip or tarball format), unpack the
archive, and follow the instructions in the README file.

The best way to start learning how to use the Toolbox is by looking at the examples, in
particular the annotated example described in section 2.1. Hopefully, most problems will be
similar to one or more of the examples from section 2, so that one of those routines can be
modified rather than starting from scratch.

When it comes time to develop code that implements a new application, there are several
basic steps that should be followed.

© ° N e

1.4

. Determine the Hamilton-Jacobi equation.
. Pick out the relevant types of terms from (4)-(14), or implement new ones if necessary.

. If upwinded approximations of first order derivatives are required, decide on the desired

order of accuracy.

. Provide the other parameters needed by the HJ term approximations (velocities, speeds,

matrices, discount factors, etc.).

Decide on the desired order of accuracy for the time derivative approximation, and the
CFL number.

Pick the boundary conditions.
Create the grid.
Create the initial condition ¢(z,0).

Integrate forward in time, with occasional pauses to display or save the results.

Troubleshooting

Based on the author’s experience, common mistakes include:

e Failure to follow the instructions in the README file. If an error of the form Undefined

function or variable ’processGrid’ is encountered when an example is run for
the first time, the most likely problem is that MATLAB cannot find the kernel routines
because they have not been added to MATLAB’s search path using addpath. A function
addPathToKernel is contained in the Examples/ directory, and it must be edited by
the user to provide the absolute path to the Kernel/ directory of the Toolbox before
any of the examples can be run (older versions of MATLAB have trouble with relative
path references, hence the need to provide an absolute path).

14



e Too coarse a grid. Static implicit surface functions cannot resolve details of surface
features that are smaller than a grid cell. Dynamic evolution of those surfaces using the
schemes described here introduces numerical dissipation, so that even features whose
size is a few grid cells may be smoothed away. In general, any important features
must be at least three to five grid cells wide in each dimension in order for them to be
maintained for more than a few timesteps, even when using methods with high order
accuracy. In some cases, a sufficiently fine regular grid may be too computationally
expensive to evolve and adaptive meshing may be required.

e Poor dimensional scaling. Signed distance functions and the PDE solvers included
in this toolbox work best if all the dimensions in the problem are approximately the
same size; for example, the grid ranges and cell widths should be within an order
of magnitude of one another. If dimensions involve widely different scales—such as
radians and thousands of feet—then the problem parameters should be scaled to bring
the dimensional ranges closer together. Care must be taken in this process to ensure
that all ranges, dynamics and other parameters (such as bounds on partial derivative
magnitudes) are scaled by the same amount.

e Incorrect initialization. If no implicit surface can be seen at ¢ = 0, two quick checks
should be performed. First, make sure that the desired implicit surface falls within
the bounds of the computational grid (as defined by the structure members grid.min
and grid.max). Second, make sure that the desired implicit surface is at least two grid
cells wide in each dimension (the width of a grid cell is given by the structure member
grid.dx).

e Numerical instability. The level set function may become highly oscillatory, a behavior
which manifests itself by the sudden appearance of many convoluted looking surfaces in
two dimensional contour or three dimensional isosurface plots. Instability can be caused
by buggy boundary conditions, poor dimensional scaling, incorrect CFL restrictions (for
example, if the bounds on the partial derivative of the Hamiltonian are too small when
solving a problem with a general HJ term (8)), or bugs in the kernel.

e Sign problems. If the surface seems to be moving in the wrong direction, try switching
the sign of the flow.

e Mixing up ndgrid-based and meshgrid-based grids. The Toolbox always uses ndgrid-
based grids because they can be used in any dimension and because the data they
generate is more consistent when exported to other applications. Unfortunately, some
routines in MATLAB require the incompatible meshgrid-based grids. Even more dan-
gerously, many of MATLAB’s visualization routines silently default to meshgrid-based
grids when no spatial grid argument is provided. Consequently, the grid arguments
should always be specified with grid.xs for any MATLAB visualization routine. For
example, the correct call is surf (grid.xs{1}, grid.xs{2}, data). The incorrect call
surf (data) will silently create a meshgrid-based array with indices 1,..., grid.N(d)

15



for each d = 1,...,grid.dim, and may flip some dimensions. The accidental and silent
use of meshgrid can lead to visualizations with distortions that are very hard to spot;
in particular, it plays havoc with the vector fields displayed by quiver. See section 3.1.3
for more details and for a routine that converts between ndgrid-based and meshgrid-
based grids.

1.5 Advanced Tips for the Toolbox

We heartily endorse attempts to modify the toolbox, add to it, or use some of its more
advanced features (such as general Hamilton-Jacobi terms); however, we do have some rec-
ommendations.

e Start with a simplified example that is known to work, and add features incrementally
with tests until the full version is achieved.

e Start with low order accurate approximations on a reasonably coarse grid. If it works,
improve the accuracy. Often it is more efficient to increase the order of accuracy of
the approximations than to refine the grid. On the other hand, for most examples the
biggest improvement is seen when moving from first to second order of accuracy; addi-
tional orders of accuracy may not be worth the computational effort if only qualitative
or visual error is important.

e Learn how to use MATLAB’s debugging and visualization systems. One of the reasons
that structures were used extensively in this version (rather than full blown classes)
was to allow their contents to be examined easily during debugging at any level of the
stack. Furthermore, the ability to produce contour and isosurface plots at the debugger
command line makes debugging of two and three dimensional code merely unpleasant,
instead of virtually impossible.

e Learn MATLAB’s cell arrays (arrays written with “{}” instead of “()”). In order to
create dimensionally independent code, cell arrays were used extensively in the kernel
code. In particular, if data is an n dimensional (regular) array and indices is a cell
vector of length n (a two dimensional cell array of size n x 1) each element of which is
a regular vector, then the syntax data(indices{:}) can be used to pick out subsets
and slices of data. For example, if data = rand([10 10 10]) and indices = { 2:9;
4:6; 5 }, then data(indices{:}) = data(2:9,4:6,5). More generally, the notation
indices{:} turns the elements of the cell array indices into a comma separated list
that can be used either to index into an array or as the parameter list for a function;
for example, to call interpn in a dimensionally independent way. Another very useful
function for cell arrays is MATLAB’s deal; for example, the help text of deal shows
how to collect the comma separated list of parameters returned by a function into a
single cell array.
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e Learn how to vectorize in the MATLAB sense. Despite working in MATLAB’s interpreted
programming environment, this toolbox can achieve nearly the performance of compiled
code. In order to achieve this performance, it is important never to loop explicitly over
the elements of the data array. Instead, all operations on the data array are written
as element-wise sums, products (“.*”) and logical comparisons. The result is not as
memory efficient as could be achieved in a carefully constructed compiled code, but it
is far better than explicit loops.

e Tell us if you find a repeatable bug.

1.6 Other Publications about the Toolbox

Publications currently available describing the Toolbox and/or its applications include:

e Applications in control, simulation and verification of continuous and hybrid systems [20].

e Design and implementation so that the Toolbox can easily be used to test new level set
schemes in the field of numerical analysis [16].

Although there is some slight overlap between these papers and this manual, most of the
material in these papers is complementary to the material covered here. These other papers
may also include schemes and/or examples which are not part of the base Toolbox download
discussed here. In those cases, code is available as separate downloads from the Toolbox web
site [14].

1.7 Citing the Toolbox

It may seem a bit silly to discuss citations, a cross referencing system designed for paper
publications, when talking about software available on the Internet. Nevertheless, citations
matter to the author’s academic career. Consequently, users (particularly those in academia)
are encouraged to provide a bibliographic entry in articles which make use of the Toolbox,
because alternative methods of attribution—such as plain text footnotes or the Toolbox’s
URL—are not so easily identified by automated cross-referencing systems.

Users should cite whichever publication is most appropriate to their application from among
those available [16,18,20]. Thanks!

One additional note about citations. Almost all of the schemes in the original version of
the Toolbox were drawn from [24]. In the rush to produce documentation, references to the
primary literature on these schemes was mostly omitted. These omissions are definitely a

17



bug in the documentation, and hence reports of missing citations are welcome. Like all bug
reports, it is important to provide as much information as possible; for missing citations, that
means specific papers. As the Toolbox is updated, citations to the primary literature will be
added for both the new schemes and the old.
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2 Level Set Examples

Our examples fall into three categories: those that are motivated by specific examples taken
from papers or texts, those that demonstrate the basic capabilities of the toolbox, and those
designed to test aspects of the implementation. The code implementing most of the examples
in the former two categories follows a similar structures, so as a starting point, we provide
an extensively annotated script file which shows how to implement motion by an external
velocity field.

The first step to running the examples described in this section is to modify the script
file Examples/addPathToKernel so that it contains the absolute path name for the Kernel
directory. The absolute path name is required because current versions of MATLAB appear
unable to create function handles involving relative path names. Once this modification
is performed, it should be possible to enter into any of the example subdirectories, start
MATLAB, and execute one of the examples by typing its name at the MATLAB prompt.

2.1 Getting Started: Convective Motion (5)

In this section we examine in detail how to implement motion by an external velocity field (5)
using the file Examples/Basic/convectionDemo. The implementation of many of the other
examples follows the same basic framework.

[ data, g, data0 ] = convectionDemo(flowType, accuracy, displayType): Demon-
strate motion by an external velocity field. The three input parameters are strings; the
options for the first two are explained in the help text and the options for displayType
come directly from the helper routine visualizeLevelSet. All three input parame-
ters are optional. The returned parameters are the final ¢(z, tmax) function data, the
computational grid g and the initial ¢(z,0) function dataO.

Figure 1 shows the results of running convectionDemo(’linear’, ’medium’). Beyond the
three input parameters, there are many other options to the way this example runs and is
displayed. These options can be easily modified by editing the source of convectionDemo
directly.

e Initial and final time.

e Whether to display intermediate results. If so, how many intermediate results, whether
to display results in a single figure or as a sequence of subplots, whether to pause
between visualizations, and whether to remove visualizations from previous timesteps
before displaying the next.
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Figure 1: Result of running convectionDemo(’linear’, ’medium’). Shows motion by a
constant rotational external velocity field.

e Grid parameters: dimension, resolution, periodic or extrapolating boundary conditions.

e Details of the velocity field.

e Shape and location of the initial surface.

For more details, see the commentary below. Increasing accuracy will increase execution
time. Table 1 shows the execution times for each of the accuracy options with flowType =
’linear’. In order to get better resolution of the execution time, the grid resolution was
doubled to g.dx = 0.01 (see below for details on how to make this change). The compu-
tational platform was a Pentium 4 with plenty of memory running Matlab 6.5 in Windows
XP Professional. Examining the figures, the low accuracy run had clearly lost area by the
end of the full rotation (at tnax) but the remaining choices were visually indistinguishable.

A quantitative error comparison will be performed when somebody has the time to write the
scripts.

We now examine the components of the source code for convectionDemo. Notice that most

of the file is concerned with initialization, since the toolbox and MATLAB handle the real
work.

function [ data, g, data0 ] = convectionDemo(flowType, accuracy, displayType)
% convectionDemo: demonstrate a simple convective flow field.
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Accuracy | Temporal | Spatial Execution Time
Parameter | Accuracy | Accuracy | seconds | relative
low 1 1 140 1
medium 2 ENO 2 684 5
high 3 ENO 3 2433 17
very high 3 WENO 5 2585 18

Table 1: Execution time for convectionDemo(’linear’, accuracy) with the various choices
of accuracy on a 1012 grid with extrapolated boundary conditions.

[ data, g, data0 ] =

convectionDemo (flowType, accuracy, displayType)

This function was originally designed as a script file, so most of the
options can only be modified in the file.

For example, edit the file to change the grid dimension, boundary conditioms,

flow field parameters, etc.
Parameters:

flowType String to specify type of flow field.
’constant’ Constant flow field xdot = k (default).
’linear’ Linear flow field xdot = A x.
’constantRev’ Constant flow field, negate at t_half.
’linearRev’ Linear flow field, negate at t_half.

accuracy Controls the order of approximations.
>low’ Use odeCFL1 and upwindFirstFirst (default).
’medium’ Use odeCFL2 and upwindFirstEN02.
’high’ Use o0deCFL3 and upwindFirstEN03.
’veryHigh’ Use odeCFL3 and upwindFirstWENOS.

displayType String to specify how to display results.
The specific string depends on the grid dimension;
look at the helper visualizelevelSet to see the optiomns
(optional, default depends on grid dimension).

data Implicit surface function at t_max.

g Grid structure on which data was computed.

data0 Implicit surface function at t_O.

Ian Mitchell, 2/9/04

You will see many executable lines that are commented out.
These are included to show some of the options available; modify
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38
39

%  the commenting to modify the behavior.

Standard opening comments, including the help text. The blank line 32 ensures that sub-
sequent comment lines are not included in the help entry. Notice the options for input
parameters flowType and accuracy.

40
41
42
43

% Make sure we can see the kernel m-files.
run(’../addPathToKernel’);

To make sense of the function calls and function handles encountered in the remainder of the
file, the kernel directories must be on MATLAB’s path. The script Examples/addPathToKernel
adds the Kernel directory and all its subdirectories to MATLAB’s path if they are not already
present (so repeated executions of addPathToKernel are safe). We use the functional form
of run in order to access the parent directory.

44
45
46
47
48
49
50
o1
52
93
54
95
56
a7
o8
99
60
61
62
63
64
65
66
67
68
69

e
% Integration parameters.

tMax = 1.0; % End time.

plotSteps = 9; % How many intermediate plots to produce?

t0 = 0; % Start time.

singleStep = 0; % Plot at each timestep (overrides tPlot).

% Period at which intermediate plots should be produced.
tPlot = (tMax - t0) / (plotSteps - 1);

% How close (relative) do we need to get to tMax to be considered finished?
small = 100 * eps;

R ———————————————————
% What level set should we view?
level = 0;

% Pause after each plot?
pauseAfterPlot = O;

% Delete previous plot before showing next?
deleteLastPlot = 0;

% Plot in separate subplots (set deletelLastPlot = 0 in this case)?
useSubplots = 1;
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Figure 2: Result of running convectionDemo (’linearRev’, ’low’) with internal parameter
useSubplots = 0. Shows rigid body rotation about the origin, clockwise for the first half
of the simulation and then counter clockwise for the remainder. The loss of area associated
with using low accuracy methods is obvious from the fact that the two sets of circles do not
overlap.

All of these parameters are meant to be modified by the user except tPlot and small. The
difference tMax —t0 controls the length of the simulation, and tMax/2 is the time at which the
time dependent flow fields constantRev and linearRev reverse directions (see below). The
number of intermediate plots includes the plots of the initial and final conditions, so choose
plotSteps > 2. The time between plots is controlled by tPlot and depends on the length of
the simulation and the number of plots. The parameter small takes care of the fact that the
final timestep often comes up a little short of the final time, but so close that taking another
timestep is not worth the effort. The boolean parameter singleStep can be turned on to
force visualization of the surface after every CFL constrained timestep. It is mostly useful for
debugging, and we recommend choosing deleteLastPlot = 1 and useSubplots = 0 if you
choose singleStep = 1. If useSubplots = 0, then all visualizations are done in a single
full figure axis. Figure 2 shows the results of running convectionDemo (’linearRev’,’low’)
when the source is modified to set the internal parameter useSubplots = 0. The parameter

level chooses which isosurface of ¢ is visualized when using contour plots (in 2D) or surfaces
(in 3D).

% Use periodic boundary conditions?
periodic = 0;
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Figure 3: Running convectionDemo in other dimensions by modifying the internal parameter
g.dim. These are not exactly the figures generated during the run: the subplots generated
during the run have had their axis bounds adjusted to be consistent across all nine subplots
in each case. Figure 3(a): The implicit surface function ¢ for a one dimensional example run
by convectionDemo(’constantRev’, ’veryHigh’). Figure 3(b): An isosurface plot for a

three dimensional example run by convectionDemo(’linear’, ’medium’).

73

74 % Create the grid.

75  g.dim = 2;

76 g.min = -1;

77 g.dx =1/ 50;

78  if(periodic)

79 g.max = (1 - g.dx);

80 g.bdry = QaddGhostPeriodic;
81 else

82 g.max = +1;

83 g.bdry = QaddGhostExtrapolate;
84 end

85 g = processGrid(g);

86

This block of code creates the computational grid. The user may modify the boolean flag
periodic to choose whether periodic or extrapolation boundary conditions are used (or
choose something else by setting g.bdry). Dimension is set with g.dim and resolution with
g.dx. Since all dimensions have the same resolution, bounds and boundary conditions, it
is only necessary to store scalars and single function handles in the fields. The call to
processGrid automatically extends all fields (except g.dim) to their full vector length. Miss-
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ing fields are given inferred values (such as g.N) or defaults (such as g.bdryData). Figure 3
shows the results of running this example in dimensions one and three.

87 =
88 % Most of the time in constant flow case, we want flow in a

89 /i  distinguished direction, so assign first dimension’s flow separately.

90 constantV = 0 * ones(g.dim);

91 constantV (1) = 2;

92  constantV = num2cell(constantV);

93

94 ¥ Create linear flow field xdot = A * x

95 linearA =2 *pi * [0100; -1000; 0000; 00001;

96  Y%linearA = eye(4);

97  indices = { 1:g.dim; 1:g.dim };

98 linearV = cellMatrixMultiply(num2cell(linearA(indices{:})), g.xs);
99

Flow fields are defined by cell vectors. Element 7 of the cell vector gives the motion in the
i*" dimensions. Element i can be either a scalar—if the flow field does not depend on z—or
an array of size grid.shape, each element of which gives the motion in dimension 4 for the
corresponding node of the grid. While MATLAB has many ways to generate regular vectors,
matrices and arrays, there are few ways to similarly populate cell arrays. This block of code
demonstrates a few, including the very useful num2cell.

The constant flow field v(xz) = constantV demonstrates a spatially independent flow field,
in this case a flow field with speed two along the first dimension. The linear flow field
v(z) = Az = linearV demonstrates the spatially dependent flow field. In order to allow for
variable dimension, the array A = linearA is defined up to dimension 4. Line 95 provides
a definition of A which generates rotation about the origin in the z,-z2 plane. Line 96 can
be uncommented to generate an exponentially growing surface. The magic is performed in
line 98, where cellMatrixMultiply computes Az at every node z in the grid. In particular,
the appropriate g.dim x g.dim subset of linearA is picked out by indices{:}, which turns
the indices cell vector into a comma separated list that can be used as an argument to a
function or (in this case) an index into an array. This “{:}” construction is used extensively
throughout the toolbox to provide dimensionally independent code.

100 Y= =—m e
101  if(nargin < 1)

102 flowType = ’constant’;

103  end

104

105 % Choose the flow field.
106  switch(flowType)
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107

108 case ’constant’

109 v = constantV;

110

111 case ’linear’

112 v = linearV;

113

114 case ’constantRev’

115 v = @switchValue;

116 schemeData.one = constantV;

117 schemeData.two = cellMatrixMultiply(-1, constantV)
118 schemeData.tSwitch = 0.5 * tMax;

119

120 case ’linearRev’

121 v = @switchValue;

122 schemeData.one = linearV;

123 schemeData.two = cellMatrixMultiply(-1, linearV)
124 schemeData.tSwitch = 0.5 * tMax;

125

126 otherwise

127 error (’Unknown flowType %s’, flowType);
128

129  end

130

This block of code picks out which velocity field will be used in the run. The default flow
field is determined by line 102. The first two cases of flow field *constant’ and ’linear’
are straightforward, and show how to create a time independent flow field using a constant
cell vector. For time dependent flow fields, a function handle is passed instead. The func-
tion switchValue is described below. It requires that the schemeData structure have some
additional fields beyond those required by termConvection: one, two, and tSwitch (these
additional fields will be ignored by termConvection). Note the use of cellMatrixMultiply
with a scalar parameter to reverse the direction of the flow fields for the second half of the
simulation.

131
132 % What kind of display?
133  if(nargin < 3)

134 switch(g.dim)

135 case 1

136 displayType = ’plot’;
137 case 2

138 displayType = ’contour’;
139 case 3

140 displayType = ’surface’;
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141 otherwise

142 error (’Default display type undefined for dimension %d’, g.dim);
143 end
144  end

The default visualization style for each of dimensions 1-3 is set by this block of code. While
the toolbox is almost entirely dimensionally independent, and the version of convectionDemo
described here will work computationally for dimensions up to four, visualization is challeng-
ing for dimensions greater than three.

145 Y
146 % Create initial conditions (a circle/sphere).

147 )  Note that in the periodic BC case, these initial conditions will not

148 ¥  be continuous across the boundary unless the circle is perfectly centered.
149 ¥  In practice, we’ll just ignore that little detail.

150 center = [ -0.4; 0.0; 0.0; 0.0 J;

151 radius = 0.35;

152 data = zeros(size(g.xs{1}));

153 for i =1 : g.dim

154 data = data + (g.xs{i} - center(i))."2;

155 end

156  data = sqrt(data) - radius;

157 data0 = data;

158

The initial conditions are a sphere in dimension grid.dim of radius radius centered at
center. Note the vectorized use of g.xs to determine the initial implicit surface function (in
fact, this is a signed distance function).

159

160 i m
161  if(nargin < 2)

162 accuracy = ’low’;

163 end

164

165 % Set up spatial approximation scheme.

166 schemeFunc = @termConvection;

167  schemeData.velocity = v;

168  schemeData.grid = g;

169

170 % Set up time approximation scheme.

171 integratorOptions = odeCFLset(’factorCFL’, 0.5, ’stats’, ’on’);
172

173 ¥ Choose approximations at appropriate level of accuracy.
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174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

switch(accuracy)
case ’low’
schemeData.derivFunc = QupwindFirstFirst;
integratorFunc = @odeCFL1;
case ’medium’
schemeData.derivFunc = QupwindFirstEN02;
integratorFunc = QodeCFL2;
case ’high’
schemeData.derivFunc = QupwindFirstEN03;
integratorFunc = QodeCFL3;
case ’veryHigh’
schemeData.derivFunc = QupwindFirstWEN05;
integratorFunc = @odeCFL3;
otherwise
error (’Unknown accuracy level ¥s’, accuracy);
end

if (singleStep)
integratorOptions = odeCFLset(integratorOptions, ’singleStep’, ’on’);
end

This block sets up function handles for both the spatial approximation scheme schemeFunc
and the time integration scheme integratorFunc. The default accuracy is determined by
line 162. The meaning of each level of accuracy is determined by the switch/case statement.
The flow field information which was determined earlier is stored into schemeData.velocity.
In line 192, notice that an existing odeCFLn option structure is modified if single stepping
has been requested.

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Y
% Initialize Display
f = figure;

% Set up subplot parameters if necessary.
if (useSubplots)

rows = ceil(sqrt(plotSteps));

cols = ceil(plotSteps / rows);

plotNum = 1;

subplot (rows, cols, plotNum);
end
h = visualizeLevelSet(g, data, displayType, level, [ ’t = ’ num2str(t0) 1);
hold on;

if(g.dim > 1)
axis(g.axis);
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212
213
214

daspect([ 1 1 1 1);
end

This block of code performs basic display initialization. If subplots have been requested,
the layout of the subplot array must be determined. Before calling visualizeLevelSet to

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238

perform the actual visualization, we make current the appropriate figure axis with either
figure or subplot. The current time is passed in a string for use as the title of the figure.
As a side effect, visualizeLevelSet will finish with a call to drawnow to ensure that the
results are shown before computation proceeds. Because this call to drawnow is performed
before the modifications in lines 211-212, they may not be immediately visible.

= m e
% Loop until tMax (subject to a little roundoff).
tNow = tO0;

startTime = cputime;
while(tMax - tNow > small * tMax)

% Reshape data array into column vector for ode solver call.
yO = data(:);

% How far to step?
tSpan = [ tNow, min(tMax, tNow + tPlot) 1];

% Take a timestep.

[ t y1 = feval(integratorFunc, schemeFunc, tSpan, yoO,...
integratorOptions, schemeData);

tNow = t(end);

% Get back the correctly shaped data array
data = reshape(y, g.shape);

This is the heart of the simulation, where all of the work is accomplished. Integration of
the underlying PDE is accomplished entirely by lines 228-229. Lines 222 and 233 massage
the array data that stores the implicit surface function ¢ into the shape required by the
integrator functions integratorFunc = Q@odeCFLn and back again. Lines 219, 225 and 230
keep track of the passage of simulation time.

if (pauseAfterPlot)
% Wait for last plot to be digested.
pause;

end
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239

240 % Get correct figure, and remember its current view.
241 figure(f);

242 figureView = view;

243

244 % Delete last visualization if necessary.
245 if (deleteLastPlot)

246 delete(h);

247 end

248

249 % Move to next subplot if necessary.

250 if (useSubplots)

251 plotNum = plotNum + 1;

252 subplot(rows, cols, plotNum);

253 end

254

255 % Create new visualization.

256 h = visualizelevelSet(g, data, displayType, level, [ ’t = ’ num2str(tNow) ]);
257

258 % Restore view.

259 view(figureView) ;

260

261 end

262

263 endTime = cputime;

264 fprintf(’Total execution time %g seconds’, endTime - startTime);
265

266

267

These remaining lines complete the while loop that manages simulation time and the convectionDemo
function as a whole. They are devoted to visualization.

268 Y ————————
269 T I I I T Tt Tl T Tt Tt To o To fo To o To Voo To Vo To Fo T To Fo o Vo o Fo o Vo o To o o Yo o o o Voo o o o Fo o Vo o o oo o o Vot o o o Voo Yoo Fo o o o o o
270 =
271  function out = switchValue(t, data, schemeData)

272 ' switchValue: switches between two values.

273

274 % out = switchValue(t, data, schemeData)
275 %

276 % Returns a constant value:

277k one for t <= tSwitch;

278 % two for t > tSwitch.

279 %

280 % By setting one and two correctly, this function can implement
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281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

%  the velocityFunc prototype for termConvection;

% the scalarGridFunc prototype for termNormal, termCurvature and others;
% and possibly some other prototypes...

h

% Parameters:

%t Current time.

% data Level set function.

%  schemeData  Structure (see below).

h

% out Either schemeData.one or schemeData.two.

h

% schemeData is a structure containing data specific to this type of
% term approximation. For this function it contains the field(s)

h

% .one The value to return for t <= tSwitch.

% .two The value to return for t > tSwitch.

% .tSwitch The time at which the switch between flow fields occurs.
h

% schemeData may contain other fields.
checkStructureFields(schemeData, ’one’, ’two’, ’tSwitch’);

if (t <= schemeData.tSwitch)
out = schemeData.one;
else
out = schemeData.two;
end

This subfunction switchValue within convectionDemo is an example of a function satisfying
the velocityFunc prototype for the term approximation termConvection (see section 3.6.1).
It implements a time dependent flow field by choosing one of two constant flow fields based
on the current time. This simple time dependent function also satisfies the scalarGridFunc
prototype (assuming that schemeData.one and schemeData.two are set appropriately), and
is used in the examples normalStarDemo and curvatureStarDemo in section 2.3. Much more
complex time dependent velocity fields are possible with this framework.

2.2 Basic Examples

This section discusses functions found in the directory Examples/Basic. This directory
provides an example for each of the types of spatial terms (7)—(14) with the exception of
motion by mean curvature (9). Examples for the omitted terms can be found elsewhere:
section 2.1 for motion by a constant velocity field (5) and section 2.3 for motion in the normal
direction (6) and motion by mean curvature (9). Since terms (11)-(14) do not include a

31



!

B

il

o R

i i
i

i

i

— after remialization
=== before reinfialization

AN
L
TR

\><///“//<-05

1 4 -1 - 0 1000 2000 3000 4000 5000 6000 7000 8000 €000 10000

(a) ¢(z,0) (b) ¢(, tmax) (©) IVo(x, )l

Figure 4: Comparing initial (left) and final (center) implicit surface functions for
reinitDemo(’star’, ’medium’, ’surf’). The right figure shows how the magnitude of
the gradient of the final ¢(z,tmax) (solid line) is much more consistent and close to unity
than that of the initial ¢(z,0) (dashed line). All of these figures were generated with the
subcell fix.

spatial derivative, examples for these terms naturally include a combination with other types
of term.

2.2.1 The Reinitialization Equation (7)

This section describes the function Examples/Basic/reinitDemo.

Reinitialization is the process of converting an implicit surface function into a signed distance
function—modifying ¢ such that ||V¢|| ~ 1 without moving its zero isosurface. Reinitializa-
tion was first proposed in [5], and the PDE formulation now called the reinitialization equa-
tion was introduced by [33]. The reinitialization equation is a general HJ PDE with spatial
term (7), and unlike other methods for reinitialization it does not require explicitly locating
the current zero isosurface of ¢. The numerical approximation used in the Toolbox for the
reinitialization equation is a Godunov scheme from [12, appendix A.3]. By default a first
order accurate subcell fix from [27] is applied to the nodes adjacent to the zero isosurface in
order to reduce movement of that isosurface during reinitialization, but this fix is optional.
For more details on the fix and additional reinitialization examples, see section (2.10).

Under normal circumstances the reinitialization equation is solved in a pseudo-time that takes
place between timesteps of the regular dynamic surface integration by an auxiliary integration
routine that hides the details; for example, see signedDistancelIterative in section 3.7.4
and reinitTest in section 2.11.3. However, for the purposes of demonstrating and testing
the term approximation function termReinit, we provide the following routine.
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Figure 5: Examining the effect of reinitialization on the implicit surface (the zero isosurface
of ¢(x,t)). There is much less movement of the interface with the first order accurate subcell
fix from [27] than without.

[ data, g, data0 ] = reinitDemo(initialType, accuracy, displayType): Demonstrate
the reinitialization equation. The three input parameters are strings; the last two are
the same as for convectionDemo. The initialType can be either ’circle’ (an off
center circle) or ’star’ (a centered seven pointed star). All three input parameters are
optional. The returned parameters are the final ¢(x, tymax) function data, the compu-
tational grid g and the initial ¢(z,0) function data0. Edit the file to modify the grid
size or to choose not to apply the subcell fix.

The internals of reinitDemo are virtually identical to convectionDemo, so we discuss them
no further here.

In the >circle’ case, the initial implicit surface function for an off center circle is not a signed
distance function because of the periodic boundary conditions. In the >star’ case, the initial
implicit surface function does not have unit magnitude gradient (see (16) in section 2.3 for the
initial implicit surface equation). Figure 4 shows the results for the ’star’ case, including
how the reinitialization procedure successfully adjusts the gradient magnitude to be close to
unity. Figure 5 shows the effect of reinitialization on the zero isosurface. Without the subcell
fix from [27], there is a small but visually identifiable movement; with the fix the interface
appears to be stationary. These results were calculated on a relatively coarse grid (g.dx =
0.02) using accuracy = ’medium’.
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A script file reinitDemoFigures is provided, which runs reinitDemo and generates most of
the plots for figures 4 and 5. To generate the contour plot without the subcell fix in figure 5,
reinitDemo must be edited and run a second time.

2.2.2 General HJ Terms (8)

This section describes the function Examples/Basic/laxFriedrichsDemo.

General Hamilton-Jacobi equations are challenging but useful in a wide variety of applica-
tions. In this section we look at how convective motion can be formulated as a general HJ,
which is perhaps the simplest example of such equations. Since the methods for general HJ
generally require the addition of artificial dissipation, this formulation is not usually appro-
priate for convective flow; instead, the specialized upwinded convection schemes should be
used (see the example in section 2.1). More ambitious examples of general HJ can be found
in sections 2.5 and 2.6.

[ data, g, data0 ] = laxFriedrichsDemo(flowType, initShape, accuracy, dissType,
displayType):Demonstrate an implementation of time independent convective flow
using a general HJ solver. The four input parameters are strings. The parameters
accuracy and displayType have the same options as the identically named parame-
ters of convectionDemo. The parameter flowType allows the time-independent flow
fields permitted by convectionDemo. The parameter initShape specifies the shape of
the initial implicit surface. The parameter dissType specifies which of the types of
artificial dissipation functions to use to stabilize the Lax-Friedrichs solver. All five in-
put parameters are optional. The returned parameters are the final ¢(x, tmax) function
data, the computational grid g and the initial ¢(z,0) function dataO.

The internals of laxFriedrichsDemo are the same as convectionDemo, with the excep-
tion that functions for the prototypes hamFunc and partialFunc must be provided. In
addition, it demonstrates the use of termLaxFriedrichs and the routines implementing
the dissFunc prototype: artificialDissipationGLF, artificialDissipationLLF, and
artificialDissipationLLLF.

Formulating convection by flow field v(z) as a general HJ leads to Hamiltonian

H(z,p) = v(z) - p

This simple dot product is calculated by the subfunction laxFriedrichsDemoHamFunc (found
in the file laxFriedrichsDemo), which implements the hamFunc prototype. To scale the

dissipation, we need

(o) = g | 200 o), (15)
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Figure 6: Using Lax-Friedrichs to approximate rotational convective flow in two di-
mensions with laxFriedrichsDemo. Figure 6(a): The individual time steps for
laxFriedrichsDemo(’linear’, ’cube’, ’low’). Figure 6(b): Comparing the final im-
plicit surface calculated by Lax-Friedrichs when using approximation schemes of different
accuracies. Note that the results of this example are independent of the artificial dissipation
scheme chosen (so the default dissType = ’global’ was used).

This optimization over partials is performed by the subfunction laxFriedrichsDemoPartialFunc,
which implements the partialFunc prototype. Note that the partials of H with respect to p

are independent of p; consequently the range of p in the maximization is irrelevant and the dif-
ferent types of dissipation function (chosen by the parameter dissType of laxFriedrichsDemo)
will all produce the same results.

Do not be fooled by the simplicity of these hamFunc and partialFunc examples. Usually
they are much more difficult to compute. In most interesting cases the partial derivative of
H with respect to p will depend on p (otherwise the Hamiltonian represents a convective flow
field), so the maximization in (15) will be nontrivial. Fortunately, it can be overapproximated
if the optimization is too challenging, at the cost of additional dissipation. For more details,
see section 3.6.2.

Figure 6 shows the results of running this example in two dimensions for a rigid body rotation
of a square. The dissipation which smooths away the corners of the square has two sources:
errors in the calculation of the first derivative and the Lax-Friedrichs’ artificial dissipation
term. By using an approximation scheme of higher order accuracy, the former can be reduced.
The approximate execution time (relative to accuracy = ’low’) for the four schemes were:
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Figure 7: Applications of the PostTimestep option of odeCFLn to a convection example.
Figure 7(a) shows how a constraint of the form (14) can be used to mask out a portion of
the state space into which the evolving set cannot enter. Figure 7(b) shows the masking set,
as well as min; ¢(x,t), which is computed and recorded inside the PostTimestep function
maskAndKeepMin.

’low’ =1, ’medium’ = 4, ’high’ = 12 and ’veryHigh’ = 17.

2.2.3 Constraints on ¢ (14)

This section describes the function Examples/Basic/maskDemo.

Most of the examples deal with terms in the HJ PDE that effect ¢ only through its temporal
or spatial dervatives; in contrast, the constraint (14) involves ¢ directly. Consequently, it
is implemented in a different manner in the toolbox. Users should not be discouraged by
its unusual treatment, since this form of constraint has many useful applications, and the
mechanism by which it is implemented is even more general than it may first appear.

In its simplest form, (14) can be used to mask out regions of the state space, as shown in
figure 7. Suppose that there exists a set S into which an evolving set—represented by the zero
sublevel set of ¢(z,t)—should not enter. Given an implicit surface representation 1)(x) for
the complement of the forbidden set ST, enforcing the constraint ¢(x,t) > (z) will ensure
that the forbidden set is not entered. In figure 7(b), S is the small circle centered at the
origin. In figure 7(a) the initial circular evolving set is cut in half as it moves to the right
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under a constant convective flow field. Because the evolving set is represented implicitly, no
special treatment is required when it breaks apart.

The standard odeCFLn and term approximation algorithms of the toolbox allow ¢ to be
modified only through its temporal derivative. However, direct modification of ¢ is supported
using the PostTimestep option of odeCFLn, accessed through odeCFLset (see section 3.5.3).
This option allows the user to specify a function which will be called after each timestep; the
function must conform to the PostTimestepFunc prototype. The function will have access
to the same parameters as a term approximation routine (t, y, and schemeData). It may
then modify y and/or schemeData. The constraint (14) is implemented by modification of
y, and the constraint function ¢ can be stored in schemeData.

Figure 7 is generated by the following function, which demonstrates the use of termConvection
and the PostTimestep option of odeCFLn. The subfunction maskAndKeepMin contained
within follows the postTimestepFunc prototype.

[ data, g, data0 ] = maskDemo(accuracy, displayType): Demonstrates applications
of the PostTimestep option of odeCFLn, using a simple convective flow field. The
parameters accuracy and displayType are as normal. Plotting routines at the end of
the function are specialized to two dimensional grids, and demonstrate the effects of
the PostTimestep calls. The figure 7(b) is generated by these plotting routines.

The PostTimestep mechanism is more general than just constraints of the form (14). Changes
to the term approximation parameters in schemeData can effect the evolution of the interface;
however, there are often ways to achieve the same effect directly in the term approximation
routine. A better use is to record information about the changes to ¢ during the integration.
This application is demonstrated in maskDemo as well, where the field schemeData.min is
used to record min; ¢(x,t) as the integration proceeds.

Users should note that modification of schemeData can carry a signficant performance
penalty, since all of its large fields (such as schemeData.grid) will be copied at each timestep.
Consequently, this modification mechanism should be used only when no other mechanism
can achieve the same result.

2.3 Examples from Osher & Fedkiw [24]

This section describes functions in the directory Examples/OsherFedkiw/.

This section provides routines which recreate some examples from [24]. Several of these
examples involve a star-shaped initial interface. The initial level set function for this curve
in R? is given by (the implementation uses polar coordinates)

#(z,0) = ||z — s <cos (parctan (ij)) + a) (16)
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Figure 8: Motion by mean curvature (compare with [24, figure 4.1]). The initial implicit
surface function is generated from an ellipse in polar coordinates, rather than the original
point cloud description of the problem [24,25].

where s is a scale controlling the size of the star, p is the number of points, and o is an
offset the controls the relative size of the points compared to the main body. For the actual
parameters chosen, see the example files.

2.3.1 Motion by Mean Curvature (9)

This section describes the functions curvatureSpiralDemo, curvatureStarDemo, spiralFromEllipse
and spiralFromPoints in the directory Examples/OsherFedkiw/.

The first example of motion by mean curvature is a classic taken from [25] and shown in
figure 8: motion of a two dimensional wound spiral interface. This example and the next
demonstrate the use of termCurvature.

[ data, g, data0 ] = curvatureSpiralDemo(accuracy, initial, displayType): Demon-
strates motion by mean curvature on a two dimensional wound spiral interface. The
accuracy and displayType parameters are as normal. The string parameter initial
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Figure 9: Motion by mean curvature. Figure 9(a) shows motion with constant multiplier b,
the result of curvatureStarDemo with default parameters (compare with [24, figure 4.2]).
Figure 9(b) uses a time and spatially varying multiplier b(z,t) (by choosing splitFlow ==
1).

chooses how to construct the initial implicit surface function. The options are *ellipse’
(the default) and ’points’. These initial conditions are specifically designed for two
dimensional grids.

Two choices are given for generating the initial implicit surface function. The default choice
initial = ’ellipse’ generates an ellipse in an extended polar coordinate frame, where the
parameters of the ellipse were chosen to try to match the shape of the original spiral. The
choice initial = ’points’ uses the original point cloud description of the spiral from [25].
In this release, the latter option is not operational, because the helper routines to generate
a signed distance function from a point cloud have not yet been created. The actual
generation of the initial implicit surface functions for the spiral is performed in the helper
routines spiralFromEllipse and spiralFromPoints.

The second example of motion by mean curvature is evolution of the star shaped interface,
as shown in figure 9. In addition to a different shape, this example shows how to implement
a time and spatially varying motion parameter.

[ data, g, data0 ] = curvatureStarDemo(accuracy, splitFlow, displayType): Demon-
strates motion by mean curvature with multiplier b(z). The accuracy and displayType
parameters are as normal. The boolean parameter splitFlow specifies whether the
multiplier should be constant (the default) or varying in time and space. The initial
conditions (16) are specifically designed for two dimensional grids.
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Figure 10: Motion in the normal direction, starting with a star shaped interface. Figure 10(a)
shows motion at a constant positive speed, the result of normalStarDemo with default pa-
rameters (compare with [24, figure 6.1]). Figure 10(b) uses the same speed, but reverses its
sign at the midpoint of the simulation (by choosing reverseFlow == 1).

The initial conditions and constant multiplier by were chosen to try to match the results
of [24, figure 4.2]. For the time and spatially varying case splitFlow == 1, the multiplier is
given by (the actual implementation uses polar coordinates)

.t bo 1—H%H , for t <t
z,t) =
by (1+ I%\I , otherwise.

The switch time ¢ is the midpoint of the simulation. In practical terms, this multiplier
causes faster motion on the left side of the interface for the first half of the simulation, and
then switches sides. The end result should be very similar to the effect of using constant
multiplier everywhere. This multiplier is implemented using the subfunction switchValue,
which follows the scalarGridFunc prototype.

2.3.2 Motion in the Normal Direction (6)

This section describes the function Examples/0OsherFedkiw/normalStarDemo.

Evolution of a star shaped interface by motion in the direction normal to the interface is
shown in figure 10, and is generated by the following function, which demonstrates the use of
termNormal. The subfunction switchValue contained within follows the scalarGridFunc
prototype.
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Figure 11: Combining motion in the normal direction with rotational convection. Figure 11(a)
shows the results of a rigid body rotation (choose rigid == 1). Figure 11(b) multiplies the
speed of rotation by the square of the distance to the origin (compare with [24, figure 6.2]).
Both figures are generated with accuracy = ’medium’ on 2012 grids.

[ data, g, data0 ] = normalStarDemo(accuracy, reverseFlow, displayType): Demon-
strates motion in the surface normal direction at speed a(z). The accuracy and
displayType parameters are as normal. The boolean parameter reverseFlow spec-
ifies that the spatially constant speed field should reverse direction halfway through
the simulation. The initial conditions (16) are specifically designed for two dimensional
grids.

The initial conditions and speed were chosen to try to match the results of [24, figure 6.1]
(when reverseFlow == 0). Note that when reverseFlow == 1 is chosen, the initial condi-
tions are not recovered at the final time. This loss of information occurs because of regular-
ization along the concave portions of the front during the first half of the simulation. For
another example of this regularization process, see section 2.4.1.

2.3.3 Normal Motion Plus Convection

This section describes the function Examples/0OsherFedkiw/spinStarDemo.

Evolution of a star shaped interface by a combination of rotational convection and motion in
the direction normal to the interface is shown in figure 11. It is generated by the following
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function, which demonstrates the use of termSum, termNormal, and termConvection. Be-
cause termNormal and termConvection follow the schemeFunc prototype, they can be used
inside of termSum.

[ data, g, data0 ] = spinStarDemo(accuracy, rigid, displayType): Demonstrates
the combination of motion in the normal direction and convective rotation. The
accuracy and displayType parameters are as normal. The boolean parameter rigid
specifies whether the rotation field should be a rigid body rotation; otherwise, it will
be faster further from the origin (the default behavior). The initial conditions (16) and
flow fields are specifically designed for two dimensional grids.

Although the caption of [24, figure 6.2] claims that it shows rigid body rotation, the tips of
the star are clearly moving faster than the inner portions. Consequently, spinStarDemo is
designed to show both actual rigid body rotation, or to recreate the figure using a rotational
speed that increases as the square of the distance from the origin.

2.4 Examples from Sethian [28]

This section provides routines which recreate some examples from [28]. The lack of quantita-
tive parameters in that text—such as figure axis scales with which to reconstruct the initial
conditions—makes it challenging to exactly recreate the results.

Before proceeding to the implemented examples, we mention that [28, figure 12.4] uses the
same motion as the flowType = ’linear’ option of the convectionDemo routine discussed
in section 2.1, and hence could be recreated with minor modifications of that code.

2.4.1 Regularization and the Viscous Limit

This section describes the function Examples/Sethian/tripleSine.

Many discussions of viscosity solutions of first order HJ PDEs make the point that they are
the limit of the classical solutions of a linear second order PDE as the second order term
vanishes; for example, see [28, chapter 2.4] or [10, chapter 10]. In [28, figures 2.6 and 2.7]
this claim is examined experimentally on a two dimensional example using motion in the
normal direction with speed a(z) = 1 — bk(z), where b > 0 is a constant and k(z) is the
local curvature. In the case b > 0, this motion is a combination of spatial terms (6) and (9).
Figure 12 shows the attempted recreation for three values of b. Data for the figure is generated
by tripleSine, which demonstrates the use of termNormal, termCurvature and termSum.
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Figure 12: The viscous limit of motion by mean curvature. All three figures show motion
in the normal direction with speed a(z) = 1 — bk(z), where each figure uses the specified
value for b. The initial conditions are the lowest curve, and the remaining curves show the
evolution of the implicit surface at equally spaced time intervals. For b > 0, the solution
remains differentiable for all time. For b = 0, the solution quickly develops kinks in the
concave regions, but the result can be seen as the limit of the differentiable solution as b — 0.
Compare with [28, figures 2.6 and 2.7]

[ data, g, data0 ] = tripleSine(b, accuracy): Demonstrates the evolution of a sine
shaped interface under a combination of curvature and normal motion. The accuracy
parameter has the usual options. The multiplier for the curvature dependence b must be
nonnegative. As b — 0, this function demonstrates how motion in the normal direction
is the viscous limit of a curvature dependent motion

The difference between the b = 0.025 and b = 0 cases is subtle, and lies in the bottom of
the valleys of the implicit surface: for the b = 0 case, the implicit surface quickly develops a
visible sharp corner, while the b = 0.025 case remains differentiable for all time. Lagrangian
or particle based methods to approximate the motion of the surface in the b = 0 case would
produce a “swallowtail” solution (see [28, figure 2.3]), which corresponds in some sense to
a multivalued solution of the HJ PDE. The upwinded derivatives used in level set methods
for motion in the normal direction (the component of the motion independent of k(z)) are
designed to produce this regularized and single valued viscosity solution, which generates an
intersection free implicit surface.

2.4.2 Motion by Mean Curvature and Surface Separation
This section describes the function Examples/Sethian/dumbbelll.
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Figure 13: Motion by mean curvature of a three dimensional dumbbell, demonstrating the
ability of level set methods to easily handle the separation of implicit surfaces. Figure 13(a)
shows how the handle of the dumbbell shrinks faster due to its higher curvature, and hence
the implicit surface pinches off into two separate objects. Figure 13(b) shows contour plots
at the same timesteps on a slice through the middle of the dumbbell evolving under the same
motion (compare with [28, figure 14.2]).

One of the strengths of implicit surface evolution that the level set community often cites is
the ability to handle the merging and separation of the surfaces without any mathematical or
algorithmic effort. A classic example of the latter is evolution of the dumbbell shape under
motion by mean curvature; for example, see [28, figure 14.2]. Figure 13 shows two views of
the evolution. Data for the figure is generated by dumbbelll, which demonstrates the use of
termCurvature.

[ data, g, data0 ] = dumbbelll(accuracy): Demonstrates the evolution of a three di-
mensional dumbbell under motion by mean curvature. The accuracy parameter has
the usual options. Two figures are produced: a three dimensional isosurface showing
the whole dumbbell, and a two dimensional contour of the dumbbell sliced through the
middle.

This example also demonstrates another benefit of the implicit surface representation that
is not given as much attention. Construction of the three dimensional dumbbell’s initial
conditions is accomplished in only four lines of code. This feat is possible because simple
shapes—such as spheres, polygons and cylinders—can be created by simple mathematical
functions, and unions, intersections and complements of implicitly represented sets can be
accomplished by taking the minimum, maximum and negation respectively of their implicit
surface functions.
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As an example, the dumbbell is created by

Yresr(@) = \/ (@1 + 0)? + B+ aF —r,

Yright(T) = \/(xl —0)2+ a3+ 23—,

enir ) = max (| =), (/e = )]
¢(2,0) = min [tre (), Yrignt(T), Peenter (T)]

where o is the offset of the center of the lobes of the dumbbell from the origin, r is the radius of
the lobes, and w is the radius of the center cylinder. The left and right lobes are constructed
from a spherical implicit surface function. The center portion is a cylinder aligned with the
x1 axis, capped at the ends by intersection (using the max operator) with halfspaces offset
from the origin so as to align with the center of the lobes. The dumbbell as a whole is the
union (using the min operator) of these three implicit surfaces.

2.5 General HJ Examples from Osher & Shu [26]

This section describes functions in the directory Examples/0sherShu/.

The method for treating general Hamilton-Jacobi terms (8) adopted by this toolbox and [24]
is basically drawn from [25], and so in this section we provide code for both versions of
examples 1 and 2 from that paper.

2.5.1 Convex Hamiltonian (Burgers’ equation)

This section describes the function burgersLF in the directory Examples/OsherShu/, which
implements

Dipla,t) + H(V(x,8) =0, 1<az<L,

17
¢(z,0) = — cos(mz) (7
where H(p) is the convex function
o 2
(a + e Pi)
H(p) = (18)

2 ’

which makes (17) Burgers’ equation. Results in one and two dimensions are shown in fig-

ure 14, and are generated by the following function, which demonstrates the use of termLaxFriedrichs

and the routines implementing the dissFunc prototype: artificialDissipationGLF, artificialDissipatior
and artificialDissipationLLLF.
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Figure 14: Solving Burgers’ equation with Lax-Friedrichs schemes. Figure 14(a) compares
the exact solution (solid) with the third order ENO-LLF approximation on a grid of 10 points
(circles); compare with [25, figure 1(d)]. Figure 14(b) shows a two dimensional version of
Burgers with an ENO-LLF approximation on a 402 grid; compare with [25, figure 3(b)].

[ data, g, data0 ] = burgersLF(accuracy, dissType, gridDim, gridSize, tMax): Demon-

strates solution of Burgers’ equation (17) and (18), which in this context is a general
HJ PDE with convex Hamiltonian. The accuracy parameter choices are the usual.
The dissType parameter must be one of >global’, local’ or ’locallocal’, which
choose artificial dissipation using the (regular) Lax-Friedrichs, Local Lax-Friedrichs or
Local-Local Lax-Friedrichs schemes from [25] respectively. The gridDim and gridSize
inputs specify parameters of the computational grid. The tMax parameter specifies the
final time of simulation, and defaults to 1.5/7% (when the solution has discontinuous
derivative).

Within the file burgersLF, the subfunction burgersHamFunc implements the hamFunc pro-
totype for (18). Subfunction burgersPartialFunc implements the partialFunc prototype
solving (47) with Hamiltonian (18). Note that the dissipation parameter «;(z) is different
from the problem parameter «.

rid.dim
0H (p) g
aqi(r) = max = max |« + E il s
]( ) P 8p] » P Di

where the range over which p is optimized depends on the type of artificial dissipation chosen.
For all of the types of artificial dissipation available, the range is a product of intervals, so
the optimization over p can be performed by examining each component’s interval endpoints
independently.
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Figure 15: Solving a non-convex general HJ PDE with Lax-Friedrichs schemes. Figure 15(a)
compares the exact solution (solid) with the third order ENO-LF approximation on a grid
of 10 points (circles); compare with [25, figure 2(d)]. Figure 15(b) shows a two dimensional
version of the same equation with an ENO-LF approximation on a 40? grid; compare with [25,

figure 3(d)]. There may be slightly more dissipation in these solutions than in those of [25]
(see the discussion of nonconvexPartialFunc below).

2.5.2 Non-Convex Hamiltonian

This section describes the function nonconvexLF in the directory Examples/OsherShu/,
which implements (17), where H(p) is the non-convex function

grid.dim
H(p) = —cos <a+ Z pi> . (19)
i=1

Results in one and two dimensions are shown in figure 15, and are generated by the following
function, which demonstrates the use of termLaxFriedrichs and the routines implementing

the dissFunc prototype: artificialDissipationGLF, artificialDissipationLLF, and
artificialDissipationLLLF.

[ data, g, data0 ] = nonconvexLF(accuracy, dissType, gridDim, gridSize, tMax):
Demonstrates solution of (17) and (19). The accuracy parameter choices are the usual.
The dissType parameter must be one of >global’, local’ or ’locallocal’, which
choose artificial dissipation using the (regular) Lax-Friedrichs, Local Lax-Friedrichs or
Local-Local Lax-Friedrichs schemes from [25] respectively (although the choice turns
out to be irrelevant; see the discussion of nonconvexPartialFunc below). The gridDim
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and gridSize inputs specify parameters of the computational grid. The tMax parame-
ter specifies the final time of simulation, and defaults to 1.5/72 (when the solution has
discontinuous derivative).

Within the file nonconvexLF, the subfunction nonconvexHamFunc implements the hamFunc
prototype for (19). Subfunction nonconvexPartialFunc implements the partialFunc pro-
totype solving (47) with Hamiltonian (19). In this version we conservatively choose

OH grid.dim
aj(z) = max Bp(]p)‘ = max sin <a+ Z:ZI pi || <1

as an upper bound on the maximum of the magnitude of the partials. This choice is not
particularly accurate, but it will maintain numerical stability. Because it does not depend
on the range of p, all of the dissipation methods will give the same result.

2.6 Examples of Reachable Sets

As engineering systems have become more complex, a formal methods community has devel-
oped to study methods of validating or verifying the correct behavior of such systems. Model
checking is one major thrust of this community, and is a verification method in which the
state space of the design is explored in order to determine whether the system—or at least
its mathematical model—can enter into an unsafe or incorrect state. Many model checking
algorithms attempt to compute a reachable set, which comes in two flavors. The forwards
reachable set is the set of states that can be reached by system trajectories which start in a
given set of initial states. The backwards reachable set is the set of states that can give rise to
trajectories which subsequently pass through some given set of target states. In [17,19,35] we
developed a method of computing robust backwards reachable sets for nonlinear continuous
and hybrid systems using an HJ PDE. For more discussion of reachable sets and alternative
algorithms for their computation, we suggest [17,19] and the references contained therein.

This toolbox contains several examples of script files to compute reachable sets. We have
not yet created an automatic method of computing reachable sets from a SIMULINK block
diagram or MATLAB m-file description of a system. Instead, we outline the steps needed to
encode a reachable set computation as an HJ PDE in the toolbox.

Consider first the backwards reachable set from a target set 7 of a continuous system with
dynamics © = f(x,a,b), where z € R" is the state of the system, T C R", a € A C R" is
an input seeking to keep the system from entering 7, and b € B C R™ is an input seeking to
drive the system into 7. In many examples, 7 is an unsafe set so that a should be considered
controls keeping the system safe, and b consists of disturbances or model uncertainties which
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are assumed to try to make the system unsafe (a robust but conservative treatment). In some
examples a and/or b may not be present.

Computation of the backwards reachable set is normally encoded as a terminal value HJ
PDE—the same as an initial value PDE, but time runs backwards. The terminal value
encodes the target set, so ¢(z,0) should be an implicit surface function representation of 7.
Evolution of the backwards reachable set is accomplished by solving

Dy¢(x,t) + min[0, H(z, Dy¢(z,t))] =0 (20)

backwards in time, where
H = inp’ b). 21
(z,p) max min p f(z,a,b) (21)

The solution ¢(z, t) is an implicit surface representation of the finite time backwards reachable
set. While the toolbox is designed for solving initial value and not terminal value PDEs, for
autonomous systems (f does not depend on t) converting to the initial value PDE form used
in the toolbox simply requires multiplying the output of H(z,p) in (21) by —1.

Consideration of (20) reveals that the minimization with zero component is equivalent to
constraining the sign of the temporal derivative to be positive (13). This constraint keeps the
reachable set from shrinking as time progresses, and is implemented with the spatial term
approximation routine termRestrictUpdate, which appears in all of the examples below.

If the model involves no inputs or nondeterministic parameters, then (21) degenerates to
convection under flow field v(z) = f(z) and can be treated as an example of the form (5).
This type of continuous dynamics is encountered in section 2.6.3—although the discrete part
of this system has inputs, the continuous part (which gives rise to the HJ PDE) does not.
However, most cases involve at least one of the inputs a or b, and so (21) must be treated
as a general Hamiltonian (8) using termLaxFriedrichs. The other examples in this section
involve inputs and consequently require the latter treatment.

As described in section 3.6.2, use of termLaxFriedrichs requires providing functions which
satisfy the derivFunc, dissFunc, hamFunc, and partialFunc prototypes. The first is chosen
from among the upwind approximations of the first derivative described in section 3.4.1. The
second is chosen from among the artificial dissipation functions described in section 3.6.2.
The final two must be provided by the user.

The function satisfying the hamFunc prototype must compute the solution of (21). Since
the optimization over inputs a and b is done for fixed z and p = V¢(z,t), it can often be
performed exactly. If exact optimization over the continuous ranges of A and/or B is not
possible, they can be sampled discretely. However, users should keep in mind that if H is
overestimated—for example, if the truly optimal value of b is not found—then the reachable
set will be underestimated. Furthermore, care should be taken if the effects of a and b are
not separable. In that case, the order of the optimizations in (21) demands that the value of
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a be fixed before the minimization over b is performed (a robust but conservative choice if a
is the controls and b is the disturbances).

Coding the function satisfying the partialFunc prototype is often the most challenging part
of computing a reachable set. This function must solve (47), which in this context translates
to

a;(r) = max ’ (22)

p

aamH(x,p)‘ = max 881)@ [r&afbrgngf(x,a,b)]
where the hyperrectangular range over which p is optimized is an argument to partialFunc.
The order of the optimizations cannot be modified. Underestimation of this value can lead to
numerical instability and toolbox failure. Overestimation will lead to a numerically benign in-
crease in the amount of artificial dissipation introduced by the Lax-Friedrichs approximation.
Such dissipation will round sharp corners in the reachable set and, in the worst case, may
cause its underestimation; however, since the optimization in (22) can rarely be performed
exactly, overestimation is the preferable form of error.

Before proceeding to specific examples, we examine the mathematics of a particularly common
form of dynamics. A nonlinear system’s inputs enter linearly if we can separate its dynamics
into the form

f(z,a,b) = f*(z) + F*(z)a + F(z)b, (23)

where f7 : R* — R?, F% : R — R™*" and F¥ : R® — R™*".f We also assume that the
input constraints are hyperrectangles

aZEAZ:[AzaZZ]a A:HAH
1=1

bi€ B =[B,B], B=][]8:
=1

Then the optimal inputs to the Hamiltonian (21) can be determined analytically

LAY p () < 0
a;fu,p):{““w it 35 T () <

A;  otherwise;

i .
B, otherwise.

B;, if 37 p;Fl(z) <O0;
b*(.’L‘,p):{ iy 1 E]_lpj ]z('r)_

Futhermore, defining

AP = max (|4, |4il) B = max (|8, |Bil) ,

tLinear systems clearly satisfy this property, since in that case f%(x) = Az where A € R"*™, while F¢
and F? are constant matrices.
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the terms (22) for the partialFunc routine can be slightly overestimated by

Na Ty
0;(@) < |F7@)] + D [F5i(a)] AP+ 3 | Fh(a)| B (25)
i=1 =1

Section 2.6.1 examines a system which satisfies these separability assumptions.

The extension to hybrid system reachable sets is very much an ad hoc process in the current
toolbox. The discrete iteration proposed in [34] and repeated with minor modifications
in [17,35] can be coded manually into an m-file, as is done in section 2.6.3. The avoid portion
of the reach-avoid operator is implemented by masking the evolving reachable set against
the escape set using the PostTimestep option of the odeCFLn integrators. For autonomous
systems, we no longer believe that the escape set itself need be evolved. A revised hybrid
system reachable set algorithm—based on variational inequalities—is under development and
will be integrated into the toolbox once it is complete.

2.6.1 The Game of Two Identical Vehicles

This section describes the functions air3D and figureAir3D in the directory Examples/Reachability/.
The game of two identical vehicles has also been called the three dimensional aircraft collision
avoidance example.

You've seen this example in virtually every publication on the topic of computing reachable
sets using HJ PDEs; recent appearances include [17,19,35]. Now you too can have it running
on your very own computer! How much would you pay for this amazing reachable set, you
ask? Wait, there’s more! Because of recent advances in MATLAB visualization, you can plot
not one but two or even three semitransparent isosurface visualizations all in a single figure
frame! We’ll even throw in a script file to do all the work for you! All this for only a few
billion compute cycles! And if you can find a better alternative algorithm, we’ll gladly refund
110% of your purchase price!*

The coordinate system is shown in figure 16. The vehicles are shown as aircraft, although the
simple kinematic model is appropriate to cars or bicycles as well. The state of each vehicle
is a position on the plane and a heading. Each vehicle has a fixed forward velocity and an
adjustable angular velocity. The game is played between an evader vehicle which is trying
to escape collision and a pursuer which is trying to cause one. Collision occurs if the two
vehicles get within a distance r of each other. Because collision only depends on their relative
locations, the game is solved in relative coordinates with the evader fixed at the origin facing

tOffer valid only when purchase price is $0.

ol



evader (player |) pursuer (player Il)

Figure 16: Relative coordinate system for game of two identical vehicles.

right. The target set 7 is the set of collided states, which is a cylinder of radius r centered
on the z3 axis. The relative dynamics are

PES —Vq + Up COS T3 + AT
i = % To| = Vp sinzxs — axq = f(xa a, b)? (26)
T3 b—a

where v, € R is the fixed linear velocity of the evader, v, € R is the fixed linear velocity of the
pursuer, a € A C R is the angular velocity of the evader and is the “control” input trying to
avoid 7, and b € B C R is the angular velocity of the pursuer and is the “disturbance” input
trying to reach 7. The routines below assume vy > 0, vy > 0, A = [ AT AMaX] & Amax > (),
B = [—B™ax B™max] and B™2* > (), although the algorithm will work for any combination of
parameters. In particular, if v, = v, and A™* = B™# then the two vehicles are considered
identical.

The reachable set for the game of two identical vehicles with r = 5, v, = v, = 5 and
AMa* = Bmax = 1 js shown in figure 17. The data for the figure is generated by the follow-
ing function, which demonstrates the use of termLaxFriedrichs and termRestrictUpdate.
Because termLaxFriedrichs follows the schemeFunc prototype, it can be used inside of
termRestrictUpdate.

[ data, g, data0 ] = air3D(accuracy): Demonstrate the (now infamous) three dimen-
sional reachable set for the game of two identical vehicles. The accuracy parameter is
as usual. The vehicle parameters and visualization technique can be modified within
the m-file.

The visualization for figure 17 can be recreated by the following routine.
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Figure 17: The target and reachable sets for the game of two identical vehicles as visualized by
figureAir3D. Figure 17(a) shows the target cylinder representing the set of collision states.
Figure 17(b) shows the final reachable set at ¢t = 2.8, computed by air3D(’medium’).

hs = figureAir3D(g, data, data0O, superimpose): Visualize the three dimensional reach-

able set, and possibly the initial collision/target set. The first three arguments corre-
spond to the arguments returned by air3D. The final argument superimpose is a
boolean specifying that the target and reachable sets should be displayed in a single
figure window using a transparent isosurface for the reachable set. The final two argu-
ments are optional. If dataO is omitted, no target set is plotted. The default value of
superimpose is zero. The return value hs is a vector of handles to the isosurfaces that
were generated.

Before moving on to the next example of reachable sets, we examine the mathematical details
of this example a little more. Notice that (26) can be put into the form (23).

—Vq + Vp COS T3 T2 0
fi(z) = vp Sin 3 , F(z)= |-z, F'(z) = |0
0 -1 1

It is easy to determine from (24) that

a” (z,p) = ATEX sign(pize — paz1 — p3),
b*(z,p) = —B™* sign(ps),

and the resulting optimal Hamiltonian is

H(z,p) = —p1vq + p1vy cos 3 + pavp sin zz + A" |p1xo — poxy — p3| — B |p3].
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This Hamiltonian, multiplied by —1 to transform the terminal value PDE into an initial
value PDE, is implemented by the subfunction air3DHamFunc, which implements the hamFunc
prototype.

The partials of the Hamiltonian can also be determined from (25)

ay1(z) < | — vg + vy cos x| + AT |zo|,
az(z) < |vpsinzg| + A™|xq],
0[3(17) < Amax | pmax

These equations are implemented by the subfunction air3DPartialFunc which implements
the partialFunc prototype.

2.6.2 Acoustic Capture

This section describes the function Examples/Reachability/acoustic.

The example is a variation of the classical homicidal chauffer problem. The version of the
game studied here is taken from [4] and we recreate the results in [17]. The reachable set is
calculated in relative coordinates with the pursuer fixed at the origin, leading to dynamics

d W,
S o] [ s, e

where the state is z = (z,y) € R? and the problem parameters are the pursuer’s speed Wy,
the evader’s speed W,, the pursuer’s turn radius R and the evader’s radius of maximum speed
S. The input constraints a € A and b € B are

A={aeR?||a| <1} CcR®> B=[-1,+1]CR
The pursuer’s capture set 7 is a wide but shallow horizontal rectangle near the origin.

The reachable set for the acoustic capture game with W, = 1.3, W, = 1.5, R = 0.8 and
S = 0.5 is shown in figure 18. The unusual feature of this problem is the development of the
hole in the reachable set, a hole which does not anywhere touch the target set 7. Because it
does not touch T, finding its boundary by Lagrangian methods—for example, by following
trajectories backwards from the target set—would prove very challenging.

The figure is generated by the following function, which demonstrates the use of termLaxFriedrichs

and termRestrictUpdate.

[ data, g, data0 ] = acoustic(accuracy): Demonstrate the reachable set for the acous-
tic capture game. The accuracy parameter is as usual. The vehicle parameters and
visualization technique can be modified within the m-file.
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Figure 18: Evolution of the acoustic capture game’s reachable set.

Unlike the previous example, (27) cannot be put into the form (23) because the bounds on
input @ are not dimensionally separable. However, it is relatively easy to find the optimal
Hamiltonian

H = in [p? b
(2,p) = maxmin [p" f(z,a,b)],

—paWptb—3E (p1y — pa)
= max min

lal[<1 pl<1 + (p"a)(2W,) min (\/:1;2 +y2,s)
W, .
= —paWy =~ pry — poal + [lpl| 2Wo) min (Va2 +2,5)

where we choose inputs

P .
a*(z,p) = ol b*(z,p) = —sign(pry — p2).

This Hamiltonian, multiplied by —1 to transform the terminal value PDE into an initial value
PDE, is implemented by the subfunction acousticHamFunc, which implements the hamFunc
prototype.

Computing the partials of the Hamiltonian is also complicated by the dimensionally mixed

bounds on input a. However, since we only need to overestimate these partials, we can safely
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switch condition:
discrete control input switch condition:
initiating maneuver t=x

straight1 straight2

q state reset: state reset: q;
Rotate x clockwise 90° Rotate x clockwise 90°

__ | —va + vpCOS Yy __ | —va +vpcosr + wxo
fs(x) = { Vg SIN Uy ] fa(z) = [ Vg SIN Yr — w1

dynamics in straight modes dynamics in arc modes

Va, Up, Yr, w constant

Figure 19: Hybrid automata for the three mode protocol.

assume that the bounds on the norm of a apply to each of its individual components. Then
an overestimation of the partials is possible.

W,
al(Z) S fp|y| + 2We min(\/ma S)7
W,
az(z) < Wy + [l +2We min(v/22 + 42, 5).

These equations are implemented by the subfunction acousticPartialFunc which imple-
ments the partialFunc prototype.

2.6.3 Multimode Collision Avoidance

This section describes the function Examples/Reachability/airMode.

As an example of a hybrid system reachable set we take the three mode collision avoidance
example from [15,17]. Like the game of two identical vehicles in section 2.6.1, this is a
collision avoidance scenario played with two simple kinematic vehicles. In this case, however,
the angular velocities of the two vehicles are fixed and equal, so that their relative angle never
varies. Therefore the computation can be performed in two dimensions.

The hybrid automata for the example is shown in figure 19. The only input to the system
is the decision o to initiate the collision avoidance protocol, and after that point all switches
and motion is synchronized between the vehicles. The relative location of the vehicles always
follows one of two dynamics:
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Figure 20: Reachable set in the first mode for the three mode collision avoidance protocol.
The solid region is the set of states within which collision is inevitable. Outside the solid
contour the protocol can be safely initiated. The dashed contour shows the edges of the
unsafe set if no protocol is initiated.

e Straight motion: both vehicles move with constant linear velocities and zero angular
velocities. The dynamics are

. d |z|  |[—vg+ovpcosih|
=4 [y] - [ o ] ~ fu(e),

where v, and vy are fixed (although not necessarily equal).

e Curved motion: both vehicles move with constant linear velocities and a constant, equal
angular velocity. The dynamics are

d [mr] _ [—va—i-vb COS 1y +wyr] — 1)

2= — .
dt |y, Vg SIN Y, — WT,
where v,, v and w are fixed.
Because the continuous dynamics involve no inputs, we can simplify the computation by

using convection by constant flow fields within each of the individual modes.

The reachable set for this multimode protocol with v, = 3, v, =4, ¢ = —4n/3 and w =1
is shown in figure 20. The figure is generated by the following function, which demonstrates
the use of termConvection and termRestrictUpdate.
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[ reach, g, avoid, data0 ] = airMode(accuracy): Demonstrate the three mode colli-
sion avoidance protocol reach set computation. The accuracy parameter is as usual.
The vehicle parameters and visualization technique can be modified within the m-file.
The return parameter reach is an implicit surface function for the set of states where
a collision is inevitable, and the parameter avoid is an implicit surface function for the
set of states in which the protocol can be safely initiated.

The computation of the reach sets in each individual mode is relatively straightforward (all
the more so because of the convective dynamics), and is accomplished by the subfunction
findReachSet. The tricky and entirely ad hoc component is how to keep track of the in-
teraction between the modes. For this specific example, four reach set computations are
performed.

e The set of states which lead to collision in the final mode. This is simple convection of
the target set (a circle) according to the constant linear velocity dynamics fs.

e The set of states which lead to collision in the second mode. This is simple convection
of the target set according to a constant rotational flow field f..

e The set of states which, when rotated through the second mode, lead to collision in
the third mode. This set is computed starting with the third mode’s unsafe states and
using the rotational flow field f.. However, this computation does not restrict the sign
of the temporal derivative in the HJ PDE. Such a restriction would mark states as
unsafe if they merely passed into and then out of the third mode’s unsafe states while
still in the protocol’s second mode. Instead, states should only be marked as unsafe if
they pass through the collision set in the second mode, or switch into the third mode
while in the third mode’s unsafe states.

e The set of states in which a collision is inevitable whether the protocol is initiated or not.
This computation involves the reach-avoid operator. The escape set is all those states
in which it is safe to initiate the protocol; specifically, the complement of the union of
the states which lead to collision in the second mode (the second reach set computed)
and the states which go through the second mode and lead to collision in the third (the
third reach set computed). This escape set is used to mask the evolution of the reach set
via a constraint of the form (14) The reach set’s evolution is otherwise identical to the
evolution in the third mode above. The masking is performed by postTimestepMask,
which implements the postTimestepFunc protocol.

For more general reach and reach-avoid computation algorithms, see [35] and the citations
within.
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2.7 Examples of Cost to Go and Time to Reach Stationary HJ Equations

This section describes functions in the directory Examples/TimeToReach/.

The time-dependent initial value PDE discussed in sections 1.1 and 1.2 is not the only type
of equation often given the moniker “Hamilton-Jacobi.” Another common class of equations
given this name is exemplified by

G(z,9(z),VI(z)) =0 in R\ T,

Hx) =0 on JT, (28)

where 7 C R is closed. Note that this equation is a boundary value problem with no time
variable. This class of time-independent equations is also often called stationary or static.
A generalization which allows for second order derivative terms D29(z) is called degenerate
elliptic [8].

Clearly this PDE is not of a form directly supported by the toolbox—it does not even contain
a temporal derivative. However, following [23] we can solve an auxiliary time-dependent HJ
PDE using the toolbox and extract an approximation of the solution to (28). To summarize
those results, assume that the boundary conditions are noncharacteristic

d

Y piiaG(I’ﬁ’p) 40 on 97T (29)
i=1 pi

A time-dependent HJ PDE is found by making the changes of variables

d(z) +t and Vi(z) + m

in (28) and algebraic manipulation of the resulting equation into the form
Dt¢(x7t) +H('T7t7 V¢($,t)) =0, (30)

where (29) ensures that this manipulation is locally feasible. The corresponding initial con-
ditions are v

¢(x,0) =0 on 0T,
¢(z,0) <0 inside T, (31)
$(2,0) >0 on RE\ T,

with ¢(z,0) a continuous and strictly monotone function of distance to 7 near its boundary.

Typically ¢(z,0) is chosen as a signed distance function for 7. Terms (4) and (8) from the
toolbox can then be applied to solve (30), and from this solution we can extract

d(z) ={t| $(z,t) = 0}. (32)
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As a concrete example of this process, let 7 be the closed target set of a system evolving
according to dynamics & = f(z,b). The single input parameter b € B, where B C R% is
compact and b(-) : [0,7] — B is measurable, is attempting to minimize the cost to go to
arrive at the target

9(a) = min /0 (). b(0))dt, (33)

where the running cost #(x,b) > 0 is continuous and 7' = min{¢t > 0 | z(¢) € T} is the time
of arrival at the target set. If £ =1, then ¥(x) is the minimum time to reach function.

Following standard procedures [2] it can be shown that the cost to go function is the viscosity
solution of the HJ PDE

H(z,D,9(x)) = £(x,b) in R4\ T,
Hz) =0 on JT, (34)
H(z,p) = minp- f(z,0).

This equation is an example of (28), and following the procedure outlined above leads to the
time-dependent HJ PDE (30) with Hamiltonian
. D f(xa t)
H(x,t,p) = —. 35

(% p) = min 7@.0) (35)
The condition (29) in this case requires that V¢(z,0)- f(z,b) # 0 on 9T, which is equivalent to
requiring that the vector field f not be tangent to the target set. This condition ensures that
the resulting ¢ function is continuous (although not necessarily Lipschitz, as is demonstrated
in section 2.7.2).

Interestingly, in the case of cost to go with no discount, it is possible to derive the same HJ
PDE (30) with Hamiltonian (35) starting from the reach set theory [19], but without the
noncharacteristic assumption (29). The resulting ¢ function is still continuous in time and
space, but it may be constant with respect to t at fixed z; consequently, we cannot uniquely
define ¢ using (32). Choosing ¥(z) = min{t | ¢(z,t) = 0} is a reasonable alternative, although
this 9 will no longer be continuous and hence the standard viscosity solution theory does not

apply.

A variety of different algorithms have been proposed for approximating minimum time to
reach, cost to go or general stationary HJ PDE solutions for systems with inputs and non-
linear dynamics [3,11,29,36]. Because the explicit time-dependent solvers of the toolbox are
timestep restricted by a CFL condition, it is likely that the method described above is the
slowest of the algorithms. However, it is quite general—although not derived above, this
method works for zero sum differential games, where (33) and (35) are modified to include
a maximization over an input a € A which may appear in both the dynamics f and the
running cost £. The resulting Hamiltonian is nonconvex in V¢. Furthermore, because the
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function ¢ on which derivative approximations are taken is continuous, this algorithm has the
potential for better accuracy than those methods which depend on differentiating the some-
times discontinuous ¢ function directly. Quantitative comparisons are challenging, because
implementations of the other algorithms are not publicly available at the present time.

Solution of (30) requires straightforward application of the toolbox techniques discussed else-
where in this document. In order to avoid storing the entire time history ¢(z,t), extraction
of ¥ from ¢ using (32) can be accomplished on the fly by the postTimestepTTR routine
(see section 3.7.3) and modification of the schemeData structure. The simplest example is
provided by convectionTTR. The dynamic system in this case has no inputs, so the general
Hamiltonian term in (30) can be replaced by motion by convection (5).

[ mttr, data, gridOut, data0 ] = convectionTTR(front, accuracy, gridIn): Demon-
strate time to reach computation for a system without inputs. The target set is every-
thing to the right of a curve running essentially perpendicular to ;. The dynamics are
T = f(x) = [1 0o --- O]T. The parameter front can be used to choose a specific
shape for the target set. The parameter accuracy has the usual string choices. The
parameter gridIn can be used to modify the default two dimensional grid. Parameter
mttr is the minimum time to reach function 9(z) out to the maximum integration time
tmax (as specified in the source code); nodes that were not reached within ¢y, are set
to NaN. Parameters data and data0 are ¢(z,tmax) and ¢(z,0) respectively. Parameter
gridOut = gridIn (or the default grid, if gridIn is unspecified).

The analytic solution to this problem is given by max (0, data0), so this routine can be used
to validate the operation of postTimestepTTR. Otherwise, convectionTTR is not particularly
interesting.

The remaining examples in this section treat problems with ideal target sets that are ill-
posed for this time-dependent formulation, and the convergence results are not surprisingly
somewhat poor. We are still looking for compelling examples with well-posed target sets and
analytic solutions.

2.7.1 Time to Reach for a Holonomic System

As the first detailed example of a time to reach function, we consider the holonomic two
dimensional system

&= f(z,b) =b

for z € R?, b € R? with ||b||x < 1, and k € {1,2,00}. Trajectories for this system can travel
in any direction, with the speed of travel bounded in the k£ norm. Different results can be
generated by choosing different k. If the target set T is the origin, then
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e k=1 will generate a ¥ with diamond shaped level sets.
e k =2 will generate a ¢ with circular level sets.

e k = oo will generate a 9 with square level sets.

Futhermore, the analytic solution in each of these cases is just 9(z) = ||z||4.

The stationary formulation of the problem is

H(z,D9(x)) =1 in R\ T,
I(z) =0 on T,
(#:p) = wmig p-b.

Note that the noncharacteristic condition (29) will be satisfied for any 7. Since £(z,b) = 1,
by (35) the Hamiltonian for the time-dependent equation is identical to that for the stationary
equation H(z,p) = H(z,p). After choosing the optimal input ||b]|z < 1, the result is

—(max; [pi]), ifk=1;
— > il if £ = oo.

The resulting time-dependent HJ PDE is implemented in the following routine, which demon-
strates the use of termLaxFriedrichs and postTimestepTTR.

[ mttr, attr, data, gridOut, data0 ] = holonomicTTR(whichNorm, accuracy, gridIn):
Compute the minimum time to reach function for the simple holonomic system. The
input to the system is bounded ||b||y < 1; the argument whichNorm provides several
methods of specifying k. The string argument accuracy has its usual options. The
gridIn argument optionally allows the calling function to specify a grid different from
the default—useful for convergence studies (see convergeHolonomicTTR below); how-
ever, the routine is not designed to work in dimensions other than R?. Parameter mttr
is the numeric approximation of the minimum time to reach function 1§(:1:) generated by
postTimestepTTR out to the maximum integration time ¢y, (as specified in the source
code); nodes that were not reached within #,,x are set to NaN. Parameter attr is the
analytic minimum time to reach function J(z) for all nodes of the grid, generated by
either analyticHolonomicTTR or analyticSumSquareTTR (as specified in the source
code). Parameters data and data0 are ¢(x,tmax) and ¢(z,0) respectively. Parameter
gridOut = gridIn (or the default grid, if gridIn is unspecified).
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Figure 21: Contour plots of the numeric approximation 197"(:15) of the minimum time to reach
function for the simple holonomic system with the three different choices of norm bounds
on the input [|b||z < 1. The innermost contour in each case is the target set 7,, and the
remaining contours have a spacing of 0.1 units.

Unfortunately, after this translation to time-dependent form, we discover that the initial
conditions (31) rule out any target set that cannot be represented by an implicit surface
function. The origin of R? is of codimension 2, so we must choose a larger set—specifically, a
set with an interior. A parameter whichIC within the source code for holonomicTTR can be
modified to choose either a circle or a square of a given size is used as the initial condition;
however, the analytic solution for such choices is, in general, no longer so easy to determine.

In order to analyze the accuracy of postTimestepTTR, a third choice for whichICis ’analytic’.
This option computes the analytic solution 9y (z) for the chosen norm & and with the origin
as the target set 7y. A target set with nonempty interior is generated by

Tr ={x [ do(z) <7},

where r > 0 is the effective radius of the target set. The analytic solution ¥, (z) with target
set T, is then simply
Yy () = max(0,9o(z) — 1),

where the maximization is required because minimum time to reach functions are never neg-
ative. Tt is this function 9, (x) which is returned by parameter attr of holonomicTTR in the
case whichIC is set to analytic’ in the source code. Note that using whichIC = ’circle’
and whichNorm = ’2’ or whichIC = ’square’ and whichNorm = ’inf’ will produce sim-
ilar results. Examples of the numerical approximations 1§T(x) returned by parameter mttr
for each of the three choice of k£ are shown in figure 21. Calculation of the analytic solution
Jo(z) is performed by the following routine.

mttr = analyticHolonomicTTR(whichNorm, grid): Compute the analytic minimum time
to reach the origin for the simple holonomic system in two dimensions. Parameter
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Figure 22: Results for the simple holonomic system with square target set and one norm
bounded input. Figure 22(a) shows contour plots of the analytic solution (solid) and numeri-
cal approximation (dashed). Figure 22(b) shows a surface plot of the numeric approximation.

whichNorm specifies the norm & in which the system input is bounded ||b]|x < 1. The
parameter grid should be in R2. The solution 9o (z) = ||z|| is returned in mttr.

Despite the ease of finding the analytic solution ¥,(x), some readers might object to the
validity of a convergence analysis on the approximation of the solution 7§r(a;) to a stationary
primal problem when the analytic solution to that problem is used as the initial condition
for the auxiliary time-dependent equation. Consequently, the analytic solution for a slightly
different problem was also determined.

mttr = analyticSumSquareTTR(radius, grid): Compute the analytic minimum time to
reach a square centered at the origin whose sides are of length 2 * radius for the
simple holonomic system with input bounded in the one norm ||b||; = ), |b;| < 1. This
analytic solution 94(z) is returned in mttr. The parameter grid should be in R2.

The level sets of ¥s(z) are essentially diamonds, except that the corners are replaced by
axis aligned segments of the same length as the target square. The user can select either
analyticHolonomicTTR or analyticSumSquareTTR to generate the analytic solution inside
holonomicTTR by modifying the source code. When using analyticSumSquare, the user
should choose whichIC = ’square’ and whichNorm = ’sum’. In this case, the initial condi-
tions ¢(z,0) for the time-dependent equation are not related to the analytic solution of the
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Figure 23: Convergence of the numeric solution to the analytic solution for the simple holo-
nomic system with square target set and one norm bounded input. A variety of accuracies
for the time-dependent solver are shown, as is the grid cell size for comparison. Note that
the vertical axes of the two plots are not the same.

problem. The solution is shown in figure 22. Note how the dissipation from the Lax-Friedrichs
solver causes the corners of the numeric solution to become rounded. Approximately first or-
der convergence of the numeric solution in both maximum and average error is demonstrated
in figure 23. Higher order convergence cannot be expected because postTimestepTTR uses
linear interpolation to approximate (32). The convergence analysis is performed by the fol-
lowing script.

convergeHolonomicTTR: Script file that runs holonomicTTR for a variety of grid resolutions
and accuracies, and compares the resulting numeric and analytic minimum time to
reach functions in order to demonstrate convergence of the numeric solution to the
analytic solution as the grid is refined. Results are stored in the structure err. Most
problem parameters must be set in advance in the source code for holonomicTTR.

This script can be used with either of the analytic solutions analyticHolonomicTTR or
analyticSumSquareTTR, as chosen inside holonomicTTR.

65



2.7.2 Time to Reach for a Double Integrator

A more challenging example is the well studied double integrator. The two dimensions are
position z1 and velocity x2, and the input b € B is a scalar. The system parameters are

=[], 7={[I)

Lz, b) =1, B=[-1,+1],
$(z,0) = [|zl2.
The analytic solution when the target set is the origin is given by [1]
T2 + \/4z1 + 273, if 21 > Jao|s;
() = —zo + \/—4z1 + 223, if 1 < $29|72); (36)
2 if 21 = Laa|zs).

This system satisfies (29) and is small time controllable when the target is the origin, so 9(z)
is continuous; however, as can be seen from the square root term in (36), it is not Lipschitz
continuous on the curve z; = %:1;2|x2|. Calculation of this analytic solution is performed by
the following routine.

mttr = analyticDoubleIntegratorTTR(grid): Compute the analytic minimum time to
reach the origin for the double integrator with unit bounded input, as given in (36).
This solution is returned in mttr, which is defined on the grid given by grid.

Returning to the numerical approximation, the Hamiltonian is easy to derive

H(z,p) = g&q(mxa + p2b) = (p122 — |p2]). (37)
The challenge of accurate approximation, as in the previous section, comes down to the
target set. The origin is again a codimension 2 object, and cannot be represented by the
initial conditions ¢(z,0). Two options are available: using a small circle around the origin, or
using a sublevel set of the analytic solution. The numerical approximation is generated by the
following routine, which demonstrates the use of termLaxFriedrichs and postTimestepTTR.
The target set is chosen by setting variable whichIC within the source code.

[ mttr, attr, data, gridOut, dataO ] = doublelIntegratorTTR(accuracy, gridIn):
Compute the minimum time to reach function for the classical double integrator with
unit bounded input. The string argument accuracy has its usual options. The gridIn
argument optionally allows the calling function to specify a grid different from the
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Figure 24: Contour plots of the minimum time to reach a target centered at the origin for a
double integrator with unit magnitude input. The largest contour represents a time to reach
of 2.4. In figure 24(a), the target is a circle of radius less than a grid cell. In figure 24(b),
the target is the square of width 0.4.

default—useful for convergence studies (see convergeDoubleIntegratorTTR below);
however, the routine is not designed to work in dimensions other than R?. Parameter
mttr is the numeric approximation of the minimum time to reach function 9(z) gener-
ated by postTimestepTTR out to the maximum integration time ¢,y (as specified in
the source code); nodes that were not reached within ¢y, are set to NaN. Parameter
attr is the analytic minimum time to reach function 9(z) for all nodes of the grid, gen-
erated by analyticDoubleIntegratorTTR. Parameters data and dataO are ¢(x, tmax)
and ¢(z,0) respectively. Parameter gridOut = gridIn (or the default grid, if gridIn
is unspecified).

Using a small circle as the target is an appealing solution, since it is easy to create a signed
distance function for ¢(z,0) for such a target. While a target of nonzero size may break
assumption (29) and may give rise to a discontinuous 9(z), as discussed earlier it is possible
to derive the same time-dependent HJ PDE from reach set theory without this assumption
for time to reach examples. Figure 24 shows the results for two target sets: one whose size
is small relative to the grid size, and one whose radius is much larger. The contour lines for
the latter case become very tightly packed along the curves where the analytic ¥(x) would
be discontinuous. Unfortunately, the analytic solution (36) no longer applies for a target of
nonzero radius and hence quantitative analysis of the accuracy of the approximation for this
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Figure 25: Convergence of the numeric solution to the analytic solution for the double in-
tegrator when approximating the origin as the target set using the 0.4 sublevel set of the
analytic solution. A variety of accuracies for the time-dependent solver are shown, as is the
grid cell size for comparison. The error is large, but converging. Possible reasons for the poor
results are discussed in the text.

target option is not currently available. Direct quantitative comparison with (36) generates
poor results even if the target circle size is reduced toward zero.

For the purposes of demonstrating convergence, we are therefore stuck using a sublevel set
of the analytic solution as target. Quite apart from the validity argument presented in the
previous section, this option is poor because the analytic solution is not Lipschitz and hence
is not a well behaved implicit surface function to use as an initial condition. Attempts to
create a signed distance version of this target set using signedDistancelterative have
failed due to large motions of the target set’s boundary in the regions where the function is
not Lipschitz. Direct use of the analytic solution’s 0.4 sublevel set generates the convergence
results shown in figure 25. The errors are large—usually greater than a grid cell—but are
converging. This convergence study was generated with the following routine.

convergeDoubleIntegratorTTR: Script file that runs doubleIntegratorTTR for a variety
of grid resolutions and accuracies, and compares the resulting numeric and analytic
minimum time to reach functions in order to demonstrate convergence of the numeric
solution to the analytic solution as the grid is refined. Results are stored in the struc-
ture err. Most problem parameters must be set in advance in the source code for
doubleIntegratorTTR.
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There are at least three potential origins of these poor results. The first is the fact that the
initial conditions for the time-dependent HJ PDE were not Lipschitz continuous. The second
is that the solution we are trying to approximate is not Lipschitz continuous. The third is the
artificial dissipation introduced by the Lax-Friedrichs approximation of the Hamiltonian (37).
The true reach set at any fixed time for the double integrator has two very sharp corners in
the upper left and lower right. All three of these error sources will tend to blunt the numerical
approximation of these corners, and since the optimal trajectories discovered by the HJ PDE
from all points in the state space travel through one of these corners, errors introduced here
will propagate throughout the state space. In fact, it is likely that all three error sources play
a role, and we will continue to investigate this challenging example in the hopes of improving
the accuracy of this method of solving stationary HJ PDEs.

2.8 Expectations of Stochastic Differential Equations

This section describes functions in the directory Examples/SDE/.

Many systems are not amenable to deterministic models because their evolution is influenced
by parameters whose exact value is not known. Knowledge about the nondeterministic pa-
rameters comes in several different varieties. Sections 2.6 and 2.7 examine systems in which
the time varying parameters are drawn at each instant from some bounded set—a model of
nondeterminism often used for control signals that steer a system’s evolution toward some
desired state.

In this section we examine systems in which the nondeterministic parameters are drawn prob-
abilistically from a known distribution. More specifically, the system will evolve according to
the stochastic differential equation (SDE)

dz(t) = f(z(t),t) dt + o(z(t),t) dB(t), z(ty) = xo, (38)

where B(t) is a Brownian motion process of appropriate dimension, the drift term f repre-
sents the deterministic component of the system evolution, and the diffusion term o dB(t)
represents the probabilistic component of the system evolution. The functions f and ¢ must
be continuous in = and t. We interpret (38) in the It6 sense [22]. We note in passing that
this model can be extended to allow for magnitude bounded time varying parameters, which
leads to a stochastic differential game; for more details and examples of using the toolbox to
analyze such stochastic systems, see [20]

Given f, o and 1z, there are methods to simulate sample trajectories of the system (38) [13].
Here, however, we concentrate on expected outcomes. Unfortunately, SDE theory is complex,
and this section is not designed as an introduction to it. Instead, we refer the reader to [9,22],
and move on to some examples with which we seek to demonstrate the power of the toolbox
to those who have selected an appropriate PDE formulation for the expected outcome of their
SDE problem.
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Actually, the toy routines below are mostly designed to test the toolbox, and are essentially
one dimensional. The toolbox is designed to be far more general, and so we would very
much like to hear about interesting SDE examples in 1-3 dimensions with which we could
demonstrate the toolbox’s features, particularly if they have analytic solutions against which
to test.

In the examples below, the astute reader will notice that in some cases the sign of the
discounting and trace of the Hessian terms are opposite to those given in (11) and (10)
respectively. Consequently, the PDEs will appear to violate the monotonicity requirement (3).
However, in these cases the stated PDEs are terminal value problems, and so reversing time
to put them into the initial value format required by the toolbox will introduce the necessary
negative sign.

2.8.1 A Linear SDE with Additive Noise

Perhaps the simplest nontrivial case of (38) is the system
dr = axdt+bdB, z(to) = xo, (39)

where a and b are constants. Given some continuous terminal payoff function g(z), the
expected terminal payoff at time T" > ¢y can be defined as

p(zo,t0) = Efg(z(T))],

where z(t) solves (39). In particular, we can pick out the expected terminal state E[x]

with g(z) = x and the variance Var(z) in the expected terminal state using g(z) = z? and
Var(z) = E[z?] — E[z]%.
The expected payoff function ¢ is the solution to the second order PDE

Dyg(z,t) + aV(z,t) + 5 trace [B*D2¢(z,t)] = 0. (40)

with terminal condition ¢(z,T) = g(x). Note that we need not appeal to viscosity solutions in
this restricted case if b # 0, because the PDE is linear parabolic. However, we will solve this
PDE using the toolbox. The following routine demonstrates the use of termTraceHessian
and termConvection.

[ data, g, data0 ] = linearAdditiveSDE(payoff, a, b, tf, dim, accuracy): Demon-
strate the expected outcome of a linear ODE with additive stochastic noise. Input
parameter payoff specifies the terminal payoff function g(z) whose expectation will
be determined: either *x’ for g(z) = z or *x"2’ for g(r) = z2. The parameters a

and b respectively specify the drift and diffusion terms for the SDE (39). The time
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Figure 26: Output of testLinearAdditiveSDE, showing the expected terminal state and
expected terminal variance of the state, as computed with the toolbox and analytically. On
the top of the left plot, note that the approximation and the analytic solution are indistin-
guishable, while on the top of the right plot the scale of the vertical axis is about 1077,

interval T' — t, is specified by tf. Normally this example is run in one dimension, but
for testing purposes it can be run in two dimensions, in which case system evolution
is governed by (39) in the z; 4+ z9 direction, and no evolution occurs in the z; — x5
direction (similar to the two dimensional general HJ examples from section 2.5). The
accuracy input parameter has its usual choices. The first return parameter data is
the expected terminal payoff ¢(z,t) for trajectories starting from time ¢ = T'—t£. The
remaining output parameters are the computational grid in g and the terminal payoff
function ¢(z,T) = g(z) in dataO.

For this simple SDE (39), there is an analytic solution against which to check our calculations.
Blz] = " E[z(T)],
Var[z] = 5 [(6* + 2a Var[z(T)])e** — %] .

Such testing is performed using the following script, where we assume E[z(T)] = z and
Var[z(T')] = 0. The results are shown in figure 26.

testLinearAdditiveSDE: Runs the linearAdditive routine for a fixed set of parameters,
and compares the results against the analytic solution. Intermediate results with payoff
= ’x’ and payoff = ’x"2’ are shown during simulation, and then the analytic and
numeric E[z] and Var[z] are shown.
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Figure 27: Results of running exerciseKP529. The analytic and numeric solutions are
visually indistinguishable in the upper plot, as can be deduced from the error shown in the
lower plot. The pattern of error suggests that the nonphysical boundary conditions are a
significant source.

2.8.2 An Example from Kloeden & Platen [13]

This example is taken from [13, exercise 17.1.2, p. 531]. Translated into the toolbox’s notation,
the general PDE is

Dy¢ + 5 trace [D2¢] + V(z,t)¢p =0 (41)
with terminal conditions ¢(z,T) = g(z). Starting from the left, the terms in this equation are
a temporal derivative (4), a second order diffusion (10) which is just the Laplacian operator,

and a discounting term (11) with potentially state and time dependent rate V' (z,t). For this
specific exercise, the authors select

g(l‘) =1, V(ib,t) = _%an

(there is a typo in [13]—the V(z,t) stated there should be negated) and state the solution

¢($7 t) = €xp

1 1f1-eXT-DY , 1 2

forreRand 0 <t <T.

The following script solves (41) with the toolbox, and compares the approximation against
the analytic solution. In the process it demonstrates the application of termTraceHessian
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to approximate a Laplacian (although in this case it is in one dimension), and the application
of termDiscount with state dependent discount rate. Results are shown in figure 27.

exerciseKP529: Approximate the solution to the PDE (41) in [13, exercise 17.1.2, p. 531]
numerically using the toolbox. This function is a script, so all parameters must be set
by modifying the file and all variables will appear in the top level workspace. A figure
showing the evolution of the solution is generated, as is a figure demonstrating the error
in the solution at the final time.

2.8.3 An Example from @Qksendal [22]

This example is technically drawn from [22, exercise 8.6, pp 169-170], although a number of
similar SDEs appear in nearby exercises. In connection with the Black-Scholes formula for
pricing financial options, we arrive at the PDE

Dy + pp — 0xV$ — 5°2° Do =0 (42)

with initial conditions ¢(z,0) = max(0,z — K), where p > 0, a, 3, and K > ( are constants.
Starting from the left, the terms in this equation are a temporal derivative (4), a discounting
term (11) with constant discount rate p, a convection term (5) with state dependent velocity
az, and a second order diffusion (10) with state dependent rate %5%2. Financially, the
constants p and « are related to deterministic rates of interest, and  to the stock’s volatility.

The exercise also gives the solution as the integral

e~ Pt

V2t

d(z,t) = /Rmax [O,xexp ([a — %ﬂQ] t+ ﬁy) — K] exp (%f) dy. (43)

The following routine solves (42) with the toolbox, and (43) with MATLAB’s quadrature rou-
tine quad. In the process it demonstrates the application of termTraceHessian, termDiscount,
and termConvection.

[ data, g, data0 ] = exercise0169b: Approximate the solution to the PDE in [22, ex-
ercise 8.6, pp. 169-170] numerically using both direct application of the toolbox to the
PDE (42), and numerical quadrature on the integral solution (43). This function was
designed as a script, but converted into a function only to allow helper subfunctions to
be stored in the same file—all parameters must be set within the function itself. The
return parameters have their usual interpretation.
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Figure 28: Results of running exercise0169b. Only the initial condition is plotted for
t = 0. The PDE and quadrature approximations are indistinguishable until ¢ = 1, where
they have separated near the upper boundary of the computational domain, likely due to
errors introduced by the nonphysical boundary conditions.

The results are shown in figure 28. The toolbox approximation of the solution to the PDE
and MATLAB’s quadrature approximation to the integral are indistinguishable for small ¢,
but begin to separate near the upper boundary of the computational domain by ¢t = 1. This
error may be due to the dubious boundary condition imposed by exercise0169b.

For simulation with smaller plotting intervals, another discrepancy was noted between the
two approximations. Near the kink in the initial conditions at K, the quadrature solution
deviated from the PDE solution and continued to display a kink for small ¢ > 0. Since the true
solution is known to be smooth for ¢ > 0, we believe it is the quadrature approximation that is
incorrect rather than the toolbox. This belief is supported by the fact that the discrepancy is
occuring near the kink in the initial conditions, where quadrature’s interpolating polynomials
will do a poor job of approximating the integrand. Further support comes from tests with
smooth functions replacing the max(0,z — K) in the initial conditions and integrand; tests
in which the PDE and quadrature approximations agree visually for all time.

This routine has not been well tested. This example is closely related to many in finan-
cial mathematics, and deserves further exploration and improvements; however, its prelimi-
nary form successfully serves the purpose of demonstrating the new features of the toolbox,
and so in the interests of early release we have not fully validated or investigated it.
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2.9 Vector Level Sets

This section describes functions in the directory Examples/Vector/.

While they handle topological surface changes very well, the scalar level set functions used in
most of the toolbox’s examples are restricted in that they can only represent closed surfaces
of codimension one. This restriction rules out, for example, closed curves in R? (codimension
two) or open curves in R%. As explained in [24, chapter 10], this constraint can be overcome
by solving a system of interacting HJ PDEs, and working with intersections of the level and
sublevel sets of the solutions.

At the present time, we have only implemented the open curves in R? example detailed
below. We do not anticipate trouble implementing the closed curves in R? example using the
same framework, although it will require new term approximation routines for the tangent,
normal and binormal vectors. For another example—one that uses the toolbox’s vector level
set formulation to analyze a stochastic hybrid system model of the Internet’s Transmission
Control Protocol (TCP)—see [20].

As an initial test of the vector level set code, we compare convective motion by a fixed ve-
locity field (5) using upwinded (termConvection) and Lax-Friedrichs (termLaxFriedrichs)
approximations. The evolution equations for the two level sets do not depend on one another,
so this comparison does not technically require vector level sets; however, it serves as a useful
test and keeps the two simulations in temporal lockstep.

[ dataC, dataH, g, data0 ] = compareTerms(flowType, initShape, accuracy, dissType,
displayType): Test the vector level set code in odeCFLn by two independent sim-
ulations of convective motion: one by upwinding with termConvection and one by
Lax-Friedrichs with termLaxFriedrichs. All parameters have defaults. Parameter
flowType specifies one of a list of possible flow fields. Parameter initShape spec-
ifies what type of initial level set should be convected. Parameters accuracy and
displayType have their usual options. Return parameter dataC contains the final time
value of the level set function evolved with termConvection, and dataH the level set
function evolved with termLaxFriedrichs. Return parameters g and dataO contain
the computational grid and initial conditions respectively.

Figure 29 shows the results of running compareTerms(’linear’, ’cube’, ’medium’). Over
the timespan ¢ € [0,1] and for the options available in compareTerms, there appears to be
very little difference in results between upwinding and Lax-Friedrichs. Whether this is an
indictment of the poor accuracy of upwinding or a testimony to the impressive accuracy of
Lax-Friedrichs is not clear.
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Figure 29: Results of running compareTerms(’linear’, ’cube’, ’medium’). The up-
winded and Lax-Friedrichs results are indistinguishable. The difference in the values of the
two level set functions at £ = 1 is less than 107'0, even on a relatively coarse 1012 grid.

2.9.1 Open Curves for Spiral Crystal Growth

This section describes the routines smerekaSpirals and visualizeOpenCurve in the direc-
tory Examples/Vector/.

This example comes from [31] and is mentioned briefly in [24, chapter 10.3]. Crystals are
observed to grow in spiral patterns under a variety of growth conditions. The mechanism
of this growth is believed to be a step discontinuity of the crystal surface which grows in
a direction normal to itself, but is anchored at its ends to screw dislocations in the crystal
structure. The model proposed is motion in the direction normal to the step-line at speed

Up () = Voo (1 — Ak()),

where vy, is the speed of a straight step-line, A is a fixed parameter, and x(z) is the local
curvature of the step-line. If the step-lines were closed curves, this motion could be easily
simulated using the basic toolbox and a scalar implicit surface representation of the step-line
in R?; however, because the step-lines terminate at fixed locations in the state space, we turn
to vector level sets.

The idea is simple: use one level set function ¢(x,t) to track the motion of the true step-line
curve and an artificial step-line curve, the union of which is a closed curve. The sign of
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a second level set function 1) is used to distinguish between the physical and the artificial
step-lines. Mathematically, the physical step-line is represented by

[(t) = {z € R? | ¢(z,t) = 0 A¢p(z,t) > 0}. (44)

The screw dislocations which anchor the ends of the physical step-line are those locations
where both ¢ and 1) are zero. Motion of the step-line is then simulated by solving the pair
of HJ PDEs

D¢ — voo sign(y) [Asign(4)r(¢) — 1][|[Ve[| = 0,
Ditp — voo sign(e) [Asign(d)r(4) + 1] [[V[| = 0,

where k(&) is the local curvature of the level set function {(z,t). Note that (45) is in a
slightly different form than [31, equations (9) and (10)]—we have flipped a sign in the latter
equation, and then rearranged to regain the symmetry in the two equations. For ¢, this PDE
is simply motion by mean curvature (9) with speed b(z,t) = v Asign(¢(z, t))? and motion in
the normal direction (6) with speed a(z,t) = v sign((x, t)). For ), the same motions apply
after substituting sign(¢(z, t)) and negating a(z,t). Note that we do not assume sign(¢)? = 1,
since we use the mollification

(45)

+1, &>¢
sign(§) = ¢ /e, €] <
-1, (< —e

In our simulations, we choose € = 4Az, where Az = max; grid.dx(i).

The following routine implements (45) and can be used to recreate selected figures from [31].
In the process it demonstrates the use of termCurvature, termNormal, and termSum with
vector level sets. The postTimestep routine postTimestepReinit is also demonstrated; it is
used to run a single iteration of the reinitialization equation (7) on ¢ and 1 after each step
of simulating (45). Note that v, = 1 in all of these examples.

[ dataCurve, dataMask, g, tPlot ] = smerekaSpirals(whichFig, exactCopy, accuracy,
tMax): Demonstrate the evolution of open curves in R? using vector level sets. All in-
put parameters have defaults. The A parameter in (45), plot times, and the initial
conditions are drawn from among selected figures in [31]; the user may choose with
whichFig. The user may also specify whether to recreate the exact sample times in
the figure or to just show evenly spaced sample times using the boolean parameter
exactCopy. The usual options are available for accuracy. The optional parameter
tMax can be used to terminate the simulation early or late. The return parameters
dataCurve and dataMask are ¢ and 9 respectively. If the user does not request return
parameter tPlot, dataCurve and dataMask are arrays containing ¢ and ¢ at the final
time. If the user requests tPlot, then dataCurve and dataMask are cell vectors whose
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Figure 30: Spiral motions of step lines demonstrating the use of vector level sets for open
curve evolution in two dimensions. Compare with [31, figures 4 and 12].

elements are ¢ and v at each plot time. The return parameter g returns the computa-
tional grid. The return parameter tPlot is a vector of times at which the solution was
plotted; requesting it also controls the form of the output parameters dataCurve and
dataMask as described above.

Recreations of [31, figures 4 and 12] are shown in figure 30. Resolution of the tight spiraling
patterns demands a fine grid; for the figures we used grid.N = 4012. The combination
of fine grid and motion by mean curvature (with timestep proportional to (Az) ?) means
that these systems take a long time to simulate fully—the co-rotating spirals took nearly
24 hours. Consequently, we have not yet tried the resolution of 501 recommended in [31]
(which would take roughly twice as long). Nor have we yet tracked down the source of the
discrepancy in our recreation of [31, figure 12]. The initial conditions used in smerekaSpirals
for whichFig = 12 are not the same as those suggested in [31, equation (21)] (we could not
get the definition of v (x,0) given there to work), so it is not clear whether the difference in
results springs from the slightly coarser grid or from differences in initial conditions.

The spirals in figure 30 are not trivial to generate, since I'(¢) in (44) cannot be directly visu-
alized with MATLAB’s contour plotters. Following [31], we use MATLAB’s contour function
to visualize the %Aa; isocontour of the function

0z, 1) = 4 @D (@) > 0;
| +1, p(z,t) < 0.
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The resulting curves are actually two contour lines very close together, but for the grid
resolutions used the two lines are indistinguishable unless we zoom in on the plot. Computing
0 and plotting the result are accomplished with the following routine.

[ hCurve, hAll ] = visualizeOpenCurve(grid, curve, mask, showAll, titleStr): Vi-
sualize an open curve defined by two level set functions according to (44). Plotting is
performed in the current figure window and axis. The grid is given by grid, and the
parameters curve and mask are arrays of size grid.shape containing ¢ and 1 respec-
tively. If the optional boolean parameter showAll is true, then the entire zero level
set of ¢ is plotted in addition to the open curve (the two portions are distinguished by
color). The optional string argument titleStr causes a title to be added to the plot.
The return arguments hCurve and hA11l are graphics handles to the contours created.

If showAll is false (or missing) then hA1l will be the empty vector [J.

2.10 Reinitialization Examples from Russo & Smereka [27]

This section describes functions in the directory Examples/RussoSmereka/.

Reinitialization using the reinitialization PDE (7) has a number of advantages over compet-
ing methods like fast marching: there is no need to find the front explicitly and schemes with
high orders of accuracy can be applied to approximate the temporal and spatial derivatives.
Unfortunately, despite smoothing of the signum function there is usually some movement of
the interface; for example, see figure 5. In [27], the authors propose a scheme intermedi-
ate between explicitly locating the interface and the plain reinitialization equation. In this
modified scheme, the reinitialization equation is solved as usual for all nodes except those
adjacent to the interface, where adjacent means that they have at least one neighbour node
on the other side of the interface. For nodes adjacent to the interface, the distance to the
interface is approximated and an alternative update is used that results in less movement of
the interface.

The first order accurate version of this “subcell fix” is implemented by termReinit. In
this section we demonstrate the advantages of this modification by recreating some of the
examples from [27]. All of these codes use termReinit directly (they do not call a helper
function such as signedDistancelterative).

[ data, g, data0 ] = reinitiD(apply fix, accuracy): Recreates [27, figures 2 and 5].
Adjusting the axis bounds on these figures can generate [27, figures 3 and 6]. The
boolean apply_fix parameter determines whether or not the subcell fix is applied. The
accuracy parameter choices are as usual; however, it should be noted that the subcell
fix is itself only first order accurate. The results of running this code are shown in
figure 31.
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Figure 31: One dimensional reinitialization problem from [27, sections 2 and 3], as recreated
by reinitiD with accuracy = ’low’. The dashed line is the initial implicit surface. The
horizontal line represents the grid and the circles on this line are the node locations. The other
solid lines are iterations 3, 6, 9, and 12 of the reinitialization. Compare with [27, figures 2, 3, 5
and 6].

[ data, g, data0 ] = reinitCircle(apply_fix, accuracy, shownodes, grid-anisotropy,

dim): Recreates [27, figures 7 and 8]. The boolean apply_fix parameter determines
whether or not the subcell fix is applied. The accuracy parameter choices are as usual.
The boolean show nodes determines whether the (rather coarse) grid is shown by light
grey dots. The double grid_anisotropy parameter allows the example to be run on
grids that have different node spacing in the horizontal direction (the analysis and ex-
amples in [27] assume an isotropic grid). The integer dim allows for either two or three
dimensional runs. Figure 32 shows the results of two sample runs of this code.

[ dataout, g ] = reinitEllipse(apply_fix, accuracy, numnodes, do_figure 9): Recre-
ates [27, figure 9]. The boolean apply fix parameter determines whether or not the
subcell fix is applied. The accuracy parameter choices are as usual. The num nodes pa-
rameter controls the resolution of the grid; the default setting of 200 is taken from [27].

The boolean do_figure 9 determines whether the user wants graphical output (to recre-
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Figure 32: A two dimensional reinitialization problem from [27, section 4] as recreated by
reinitCircle(apply fix, ’low’, 1, 2, 2), where apply fix € {0,1}. The initial con-
ditions are a signed distance function representing a circle, so reinitialization should not
modify the function or its zero isosurface. Both figures show contours at iterations 1607 for
1 =20,1,...,5. The case without the subcell fix shows that over many iterations the zero
isosurface shrinks, while the contours are indistinguishable when the subcell fix is applied.
The two subplots correspond to [27, figures 7 and 8], except that the grid is denoted by small
dots and the grid nodes have twice the spacing in the horizontal direction as in the vertical.

ate [27, figure 9]), or just error information (to recreate [27, figures 10 and 11]; see
ellipseError below). The return parameter data out is a structure containing infor-
mation about the error at each timestep of the reinitialization. The results of running
reinitEllipse with the default settings are shown in figure 33.

ellipseError: A script file which uses multiple calls to reinitEllipse to recreate [27,
figures 10 and 11]. With some editing, it can also recreate [27, figure 15]. Results are
shown in figure 34.

The fact that the recreations are not exact matches has several possible causes. First, the
scheme used here for solving the reinitialization equation away from the front is the scheme
from [12], which is not the same as what was used in [27]. Second, the default MATLAB
visualization methods (linear interpolation) are used to generate the figures here, while [27]
used cubic splines in at least a few of the examples. Third, it is not clear in [27] whether the
examples use the “robust” distance approximation scheme; all of the recreations above do
make use of the robust version. Fourth, some of the parameters given in the text of [27] clearly
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Figure 33: A more challenging two dimensional reinitialization problem from [27, section 4],
as recreated by the default settings of reinitEllipse. The thicker line in the middle of the
contours is the zero isosurface. In the left-most subplot the implicit surface function starts
with regions where the gradient magnitude is both large and small, but by the final iteration
in the right-most subplot, the contours are evenly spaced and hence the gradient magnitude
is roughly equal everywhere. Compare with [27, figure 9].

disagreed with the figures, and so parameter settings were altered to make the recreations
closer to the figures (most notably the contours and iterations in figure 33).

The source of the discrepancy in the interface location absolute error metric of the recreation
in figure 34 of [27, figure 11] is not known.

2.11 Testing Routines

This section describes functions in Examples/Test.

2.11.1 Initial Conditions

Several script-like functions were written to test the initial condition routines for basic shapes
and set operations for constructive solid geometry (see section 3.3). Some of the outputs from
these scripts are shown in figure 35.

initialConditionsTest1D(): Creates a sequence of shapes defined by implicit surface
functions in a one dimensional state space. In one dimension, an implicitly defined
shape is always an interval, although one or both endpoints may be infinite. Plotting
the intervals is not terribly exciting, so the entire implicit surface function for each
shape is displayed as a function plot, state vs function value. The implicitly defined
interval for each plot is the region in which the function value is negative.
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Figure 34: Demonstration that the reinitialization PDE with the subcell fix eventually reaches
a fixpoint for the ellipse problem shown in figure 33, a fixpoint which may not be achieved
without the fix. Compare with [27, figures 10, 11 and 15], but note that the vertical axes may
not be the same. The vertical axes are log-scale error, and the horizontal axes are integration
time. The dashed line corresponds to reinitialization without the subcell fix on a 200? grid.
The three solid lines correspond to reinitialization with the subcell fix on grids of size 502,
1002 and 200%. The left two subplots are generated by ellipseError, and use first order of
accuracy approximations throughout. To generate the right subplot, el1ipseError must be
edited to set accuracy = ’medium’, which then uses second order of accuracy in time and
for nodes not adjacent to the interface.

initialConditionsTest2D(): Creates a sequence of shapes defined by implicit surface
functions in a two dimensional state space. The two dimensional implicit surfaces
are shown in one figure window by contour plots, while the implicit surface functions
themselves appear in a separate window as surface plots.

initialConditionsTest3D(): Creates a sequence of shapes defined by implicit surface
functions in a three dimensional state space. The three dimensional implicit surfaces
are shown as isosurfaces, because the implicit surface functions themselves are rather
challenging to visualize.

2.11.2 Derivative Approximations

Do the high resolution (high order) approximation schemes live up to their billing? A pair
of routines were designed to test the functions (see section 3.4.1) and determine their errors,
convergence rates and execution times. Given proper input data, solutions of the time-
dependent HJ PDEs that we solve with this toolbox should remain continuous, although
they may not be differentiable everywhere. In order to test whether the approximation
schemes correctly handle this situation, the test function is chosen to be continuous but with
discontinuities in the derivative.
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Figure 35: Examples of implicitly defined surfaces and sets built by constructive solid geom-
etry operations from basic shapes. The top row is generated by initialConditionsTest2D
and the bottom row by initialConditionsTest3D. Figure 35(a) shows a square subtracted
from a circle, while figure 35(b) shows a nonconvex polygon constructed by intersections and
unions of hyperplanes. Figure 35(c) shows the union of a sphere and a cube, and figure 35(d)
shows an octohedron constructed by the intersection of eight hyperplanes.
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[ errorL, errorR, time ] = firstDerivSpatialTestl(scheme, dim, whichDim, dx):
Computes the errors in the left and right approximations for a single scheme on a sin-
gle grid. The scheme is specified by the function handle scheme. The dim dimensional
grid has periodic boundary conditions in every dimension and grid spacing dx. The
derivative is taken in dimension whichDim. Letting x4 be the whichDim component of
the state vector x, the test function is

sin (27r:1:d + %) , for0<ay< %;
f(z) =S sin(2mzg — %), for § <zq< i
sin (27zg) +1, for 5 <xzg < 1.

NIt

Note that the test function is constant in all dimensions other than whichDim. In
order to correctly catch the discontinuities, dx should be an integer division of 1/4.
Calling this function without output arguments will generate a figure showing the test
function, its analytic derivative, and the approximations. Statistics on the quality of
the approximation will be displayed. There will be no display if any of the output
parameters is requested. The outputs errorL and errorR will be structures with the
scalar fields maximum (maximum error over the nodes), average (average error over all
nodes), rms (root mean square error over all nodes), and jumps (average error over
the three nodes that lie on a jump, assuming that dx was correctly chosen). The
output time will be the time (in seconds) required to evaluate scheme, as reported by
cputime. This procedure is appended Testl in the hopes that additional procedures
with the same interface but different test functions f(z) will be implemented.

firstDerivSpatialConverge: A script file to demonstrate the convergence rate of the vari-
ous first derivative approximation schemes. The schemes, grid sizes and grid dimensions
can be specified inside the script file. The function firstDerivSpatialTest1 is used to
generate the error estimates, although alternative procedures with different test func-
tions could easily be substituted. Four figures are generated, showing the convergence
rate in maximum error, average error, root-mean-square error, and average jump error
(maximum jump error is not computed, since it is almost always the overall maximum
error). Execution times are also displayed.

As a demonstration, figure 36 shows the results of running firstDerivSpatialConverge on
all of the upwind approximations from section 3.4.1: upwindFirstFirst, upwindFirstEN02,
upwindFirstENQ3a, upwindFirstEN03b, upwindFirstWENO5a, and upwindFirstWENO5b. The
errors for the two forms of ENO3 and WENOS turn out to be indistinguishable. The schemes
behave as expected, with the exception of the WENObS schemes. They do not achieve fifth or-
der accuracy, although they do show higher order convergence than the basic ENO3J scheme.
Furthermore, although they consistently outperform the ENO3 scheme in average error, the
WENOS schemes are worse in maximum error and errors near the jumps (quantities which
tend to be closely related).
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Figure 36: Convergence rates demonstrated by the various upwind approximations of the
first deriviative from section 3.4.1, as generated by firstDerivSpatialConverge on the test
function in firstDerivSpatialTestl in two dimensions. The short lines in the middle of
the bottom of each figure show the slopes corresponding to first, second, third and fifth order
convergence.
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Relative

Execution

Scheme Time
upwindFirstFirst 1
upwindFirstENO2 5
upwindFirstENO3a 12
upwindFirstENO3b 25
upwindFirstWENO5a 20
upwindFirstWENO5b 28

Table 2: Approximate speeds of the upwind approximation schemes from section 3.4.1 (rel-
ative to the speed of upwindFirstFirst), as measured by firstDerivSpatialConverge on
a two dimensional example.

The choice of scheme will be driven primarily by desired accuracy and the need for speed.
The relative speeds of the six schemes on the N = 1280 grid is shown in table 2, although re-
sults will vary depending on the hardware, dimension and grid size. In most simple interface
motion examples, the spatial derivative approximation plays the largest roll in determin-
ing the overall computation time and the accuracy of the results, so choosing an appropriate
scheme is important. Clearly, the ENO3b and WENO3b schemes should not be used for com-
plex examples, since they deliver the same results as ENO3a and WENOb5a (respectively)
at significantly higher computational cost. For that reason, the functions upwindFirstENQ3
and upwindFirstWENQO5 are wrappers for upwindFirstENO3a and upwindFirstWENO5a re-
spectively. Beyond that, however, the user must determine the appropriate tradeoff between
accuracy and speed. In practice, we often run initial tests with low resolution schemes, and
save the high resolution schemes for producing final results.

2.11.3 Other Test Routines

Some miscellaneous testing routines.

[ data, g, data0 ] = reinitTest(initialType, accuracy, displayType): Demonstrates
the signedDistancelIterative helper routine. The parameters and results are identi-
cal to those of reinitDemo from section 2.2.1, except that this routine uses signedDistanceIterative
to handle the main loop of the PDE approximation.

argumentSemanticsTest (loops, matSize): MATLAB’s programming language uses pass-
by-value semantics, but purports to achieve pass-by-reference speed by avoiding the
creation of copies until absolutely necessary; for example, when an input argument is
modified. This routine can be used to demonstrate the veracity of that claim, as well
as test whether array reshaping (through either reshape or (:)) is inexpensive.
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ghostCell: A script file to test the routines for adding ghost cells implementing various
types of boundary conditions to data arrays in dimensions one and two. The results
must be examined manually to determine whether the correct ghost cell values were
added in the correct places. Because the file is a script, parameters can only be modified
by editing the file directly; however, all the internal variables of the script are available
in the base workspace at the completion of the script (useful for debugging).
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3 Code Components

This section discusses the routines in the directory Kernel. It is designed primarily as a
reference, although the best reference is probably the help entries for the routines themselves,
which are found at the top of each function’s source m-file and can be accessed with MATLAB’s
help command.

3.1 Grids

This section discusses functions found in the directory Kernel/Grids.

The goal of this toolbox is to allow simple solution of simple interface motion problems.
Because the computational grid affects virtually every operation in a hyperbolic PDE solver,
nowhere is the decision to pursue simplicity over generality more defining than in our choice
of grids. While there are many problems that cannot be solved to high accuracy or within
reasonable computational time without resorting to adaptive and/or unstructured grids, the
complexity of the data structures for such grids makes them poorly suited for simple problems
or the MATLAB interpreted programming environment.

Consequently, we have adopted a very simple grid structure: a fixed rectangular Euclidean
mesh. The grid cells are of fixed size, although the spacing for each dimension may be chosen
independently. A grid is represented by a structure with fields:

grid.dim: The dimension of the grid. Typically between one and four, although the code
should work in any dimension.

grid.min: A column vector specifying the lower left corner of the computational domain.

grid.max: A column vector specifying the upper right corner of the computational domain.

grid.bdry: A cell column vector. Each element is a function handle pointing to the bound-
ary condition (see section 3.2), which provides data values for nodes which fall outside
the computational domain in that dimension.

grid.bdryData: A cell column vector. Each element provides parameters for the corre-
sponding grid.bdry element.

grid.N: A column vector specifying the number of grid nodes in each dimension.
grid.dx: A column vector specifying the grid cell spacing in each dimension.

grid.vs: A cell column vector. Each element contains a regular column vector giv-
ing the node locations in the corresponding dimension. Generated by grid.vs{d}
= linspace(grid.min(d), grid.max(d), grid.N(d)).
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grid.xs: A cell column vector. Each element contains an array giving the node loca-
tions for each node in the entire grid. Generated by [ grid.xs{l:grid.dim} ] =
ndgrid(grid.vs{:}).

grid.axis: A row vector specifying the computational domain boundary in a format suit-
able to pass to MATLAB’s axis command.

grid.shape: A row vector specifying the number of nodes in each dimension in a format
suitable to pass to MATLAB’s reshape command. Specifically

) [grid.N 1], if grid.dim=1;
grid.shape = o .
grid.N’, otherwise.
The special case for one dimensional grids is required because MATLAB does not support
true one dimensional arrays. If data is a data array defined on grid, then grid.shape
== size(data).

3.1.1 Creating A Grid

Manually entering all of the fields that define a grid would be tedious and prone to in-
consistencies. Therefore, most will be automatically generated by a call to processGrid.
Typically, only the fields grid.dim, grid.min, grid.max, grid.bdry, grid.bdryData and
one of grid.N or grid.dx need be supplied by the user.

gridOut = processGrid(gridIn, data): Fill in the fields missing from a grid structure.
Where possible, missing fields in gridIn will be automatically generated. Some con-
sistency checking is also performed on the fields that already exist. Some fields have
default values, which can be seen in the help entry. This function can be safely called
multiple times on the same grid structure (the second call will only invoke consistency
checks), although it can be rather slow to execute. The optional second argument is only
checked to ensure that ndims(data) and size(data) are consistent with gridIn.dim
and gridIn.N respectively.

The user should ensure that processGrid is called before a grid structure is passed into any of
the other routines in this toolbox. The resulting grid will be a grid.dim dimensional array
with grid.N(d) nodes in dimension d for d = 1,...,grid.dim.
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3.1.2 Allocating, Passing and Saving Grids

The grid.xs field will generally be much larger than any other in grid, since it will have
a total of grid.dim * prod(grid.N) entries. While it is large, alternative schemes for
vectorizing the level set computations inevitably lead to allocating multiple copies of similarly
large state arrays at different levels in the call stack, and so it was decided to include this
single copy of the state array in the grid structure. The large size of this field will not reduce
computational efficiency as long as the grid structure and its fields are not modified within
any of the functions to which it is passed; so far we have found no reason to do so within any
of our examples.

When saving a grid to disk, the command sequence

grid = rmfield(grid,’ xs');

! - ! .
save('someFilename’, grid);

can be used to remove this field and hence enormously reduce the size of the resulting file.
The field can be easily regenerated when loading by using the command sequence

grid = load('someFilename’);

grid = processGrid(grid);.

3.1.3 Other Grid Functions

There are two incompatible methods provided by MATLAB for generating state arrays of the
sort stored in the grid.xs field: meshgrid and ndgrid. MATLAB’s indexing system grew out
of matrix indexing, which is given in the order rows (vertical) and then columns (horizontal).
This index ordering is incompatible with the ordering usually used in visualization, which
in two dimensions would be z (horizontal) and then y (vertical). To get around this incom-
patibility, MATLAB’s default method for generating location arrays—meshgrid—effectively
swaps the order of its first two arguments. This swapping works fine when working in di-
mensions two and three in MATLAB, but it begins to make less sense when transfering data
to external applications and in higher dimensions; in fact, meshgrid only works in dimension
three or less. For grids which are indexed consistently in any dimension, MATLAB provides
ndgrid, which is equivalent to meshgrid but does not perform the dimension swap. Because
it is designed for arbitrary dimension, the Toolbox’s grid structure is set up by processGrid
using ndgrid.

This choice means that interpn (which requires ndgrid-based grids) should be used when
working in dimension two or higher for interpolating data generated by the Toolbox, rather
than interp2 or interp3 (which require meshgrid-based grids). In one dimension, interpl
(or even spline) can be used.
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The choice of ndgrid-based grids also causes two visualization issues. The first is that some
MATLAB visualization routines require that their data be laid out in a meshgrid-based array;
for example, contourslice, slice, and isonormals. To handle such routines, the following
function is provided:

[ mesh xs, mesh datal, mesh data2, ...] = gridnd2mesh(grid, nd_datal, nd_data2,
...): Converts an ndgrid-based grid and its associated implicit surface function data
arrays into a meshgrid-based grid. The ndgrid-based grid is specified with a stan-
dard Toolbox grid structure in grid. The optional grid.dim dimensional array(s)
nd datal, nd data?2, ... store the corresponding implicit surface function(s). The out-
put mesh xs is a cell vector of length grid.dim containing the meshgrid-based equiv-
alent of grid.xs. The decision to return only the grid.xs component of the grid
structure was purposeful, to try to ensure that all grid structures are ndgrid-based in
the Toolbox. For the purpose of calling MATLAB visualization routines, mesh_xs should
be sufficient. Any Toolbox visualization routines will use the grid structure directly.

The other output parameter(s) mesh datal, mesh data2, ... contain the appropriately
modified versions of the input parameter(s) nd_datal, nd data2, ... when those are
provided.

For an example of how gridnd2mesh is used, look at the three dimensional visualization
options in the source code of visualizeLevelSet (section 3.7.6).

A more subtle problem with the incompatibility between grid types is that almost all MATLAB
visualization routines in dimensions two or higher silently call meshgrid when they are not
provided with grid arguments. Consequently, users should always explicitly pass the grid (in
the form of the grid.xs cell vector) when calling any MATLAB visualization routine. For
more comments, see section 1.4.

These grid incompatibility visualization issues do not arise if visualization is performed by
visualizeLevelSet (see section 3.7.6). Users interested in examples of correct calls to
MATLAB’s visualization routines should look at the source code for visualizeLevelSet.

3.2 Boundary Conditions

This section discusses functions found in the directory Kernel/BoundaryCondition.

The computational domain is finite, and so the finite difference stencils we use to approximate
the spatial derivatives of the HJ PDE will extend beyond the edge of the grid when working
on nodes near that edge. In order to manage this process, every face of the computational
domain must be associated with a boundary condition. This association is represented by
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function handles passed in the grid.bdry field of the grid structure described in section 3.1.
In general, each dimension can have its own boundary conditions, although the upper and
lower boundaries in a particular dimension must use the same boundary condition function.

The boundary condition functions are called by the spatial derivative approximations (see
section 3.4). When called for a particular dimension, they add an appropriate number of ghost
nodes—the stencil width specified by the spatial derivative approximation—to the upper and
lower sides of the data array in that dimension. The values placed in these ghost nodes are
determined by the type of boundary condition.

addGhostPeriodic: Values from the lower end of the array are copied to the upper ghost
nodes, and vice versa. This boundary condition requires no additional parameters.

addGhostDirichlet: A constant value is placed into the ghost nodes. Different constants
may be chosen for the upper and lower ghost nodes. The values are passed as parame-
ters.

addGhostNeumann: The ghost nodes are filled with data linearly extrapolated from the
computational boundary so as to have a constant specified derivative normal to the
boundary. Different constants may be chosen for the upper and lower ghost nodes. The
constants are passed as parameters.

addGhostExtrapolate: The ghost nodes are filled with data linearly extrapolated from the
computational boundary so as to have a slope towards or away from the zero level
set. The choice of towards or away from the zero level set is passed as a parameter.
While this is not a traditional PDE boundary condition, it proves quite useful in level
set computations for domains with inflow boundaries that have no physically appropri-
ate boundary conditions. By choosing to extrapolate away from zero, the ghost cells
will never falsely imply the existence of a “ghost” interface beyond the computational
domain, and hence lend stability to a potentially unstable nonphysical computational
domain boundary. All of the examples use this boundary condition when the periodic
boundary condition cannot be justified.

For more details on the parameters required by each boundary condition function, see the
individual help entries. All four boundary condition functions use the same call structure,
which we demonstrate with addGhostExtrapolate.

dataOut = addGhostExtrapolate(dataln, dim, width, ghostData): Adds width ghost
cells in dimension dim to the top and bottom of the data array dataIn. These ghost
cells are filled with data linearly extrapolated from the two nodes nearest the bound-
ary in the appropriate dimension. The sign of the extrapolation is chosen so as to
extrapolate away from or towards the zero level set, as specified by the boolean field
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ghostData.towardZero (defaults to false). For example, if dataln is two dimen-
sional of size grid.shape, then dim = 2, width = 1 and ghostData.towardZero =
0 would result in a two dimensional dataOut of size grid.shape + [ 0, 2 17 with
values generated by

dataOut(:,1) =datalIn(:,1)
+ sign(datalIn(:,1))|dataIn(:,1) — datalIn(:,2)|
dataOut(:,2: end — 1) =dataln(:,1 : end)
dataOut(:,end) =dataln(:, end)
+ sign(datalIn(:,end))|dataln(:,end) — dataln(:,end — 1)

Function handles to the boundary condition functions described above are passed as the ele-
ments of the cell vector grid.bdry of the grid structure. Each is called on a single dimension
at a time. While this one dimension at a time method reduces the memory requirements of
adding ghost cells when working with the one dimension at a time first order spatial deriva-
tive approximations in section 3.4.1, it is sometimes necessary to create ghost cells on every
side of the data array at once. Two helper routines are provided for this purpose.

dataOut = addGhostAllDims(grid, dataln, width): Adds width ghost cells to the top
and bottom of every dimension of the data array datalIn, according to the boundary
conditions specified in grid.bdry.

[ vs, xs ] = addNodesAl11Dims(grid, width): Creates vs and xs cell vectors that cor-
respond to those in grid.vs and grid.xs, but include the states of all the ghost nodes
as well as the regular grid nodes. Note that xs can be very large, and hence this function
can be expensive to evaluate.

The process of creating and releasing the memory for the ghost nodes at each timestep
is clearly not the most efficient way to handle boundary conditions. Unfortunately, the
alternative would be to preallocate sufficient memory in the data array for the ghost cells.
The size of the preallocation would depend on the spatial derivative approximation, and
would necessitate an offset indexing system to retrieve the true data from the array. Thus,
we decided to use the slower method of repetitive ghost cell allocation rather than destroy the
intuitively simple layout of the data array. A future object oriented version of this toolbox
may be able to revisit this decision and achieve both goals with a single implementation.

3.3 Initial Conditions

This section describes functions in Kernel/InitialConditions.
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A major advantage of implicit surface representations is the ease with which complex shapes
can be created through operations from constructive solid geometry. Simple algebraic func-
tions can create implicit surface functions for basic shapes—circles, spheres, cylinders, squares,
cubes, rectangles, hyperplanes, and polygons, to name just a few. These shapes can then be
combined by unions, intersections, complements and set differences to form more complex
shapes. When sets are represented by implicit surface functions, each of these set operations
has a simple corresponding mathematical operation.

In many cases, including most of the examples in this toolbox, the initial conditions involve
implicit surfaces so simple that their implicit surface functions are computed explicitly in
the main routine. However, for those not so familiar with implicit surface functions, the
functions in this section were recently added to the toolbox to simplify the construction of
initial conditions. They may also be used for other tasks, such as masking functions (see
section 2.2.3).

3.3.1 Basic Shapes

This section describes functions in Kernel/InitialConditions/BasicShapes.

Routines are currently provided to create implicit surface functions for spheres (including
circles), cylinders, rectangles (including cubes and squares) and hyperplanes. Future shapes
could include cones and ellipses, among others. At present the cylinders and rectangles must
be aligned with the coordinate axes, although that restriction could be removed.

The sphere and cylinder routines both produce signed distance functions. Cylinders must be
coordinate axis aligned.

data = shapeSphere(grid, center, radius): Constructs a signed distance function on
the computational grid grid for a grid.dim dimensional sphere centered at center
of radius radius. The parameter center should be a vector of length grid.dim and
radius should be a positive scalar. In two dimensions this shape will be a circle, while
in one dimension it will be an interval. The default values for center and radius
generate a unit ball centered at the origin.

data = shapeCylinder(grid, ignoreDims, center, radius): Constructs a signed dis-
tance function for an unbounded cylinder. In two dimensions this shape will be a slab,
while in one dimension it will be an interval. More formally, a cylinder is a prism with
a spherical cross-section. It could also be viewed as a sphere in which some dimensions
of the state space are ignored. These dimensions are listed in the vector ignoreDims;
the remaining parameters are the same as for shapeSphere. If ignoreDims is the
empty vector, then a true sphere will be generated. For example, a traditional three
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dimensional cylinder oriented vertically with unit radius with axis running through the
origin would be created by shapeCylinder(grid, 3, [ 0; 0; 0 1, 1), where grid
is a three dimensional grid. The default values for ignoreDims, center and radius
will generate a unit ball centered at the origin.

Two routines are provided for creating a rectangle, depending in which format the user
prefers to describe the rectangle’s size and location. Both versions require that the rectangle
be aligned with the coordinate axes. Both allow for certain dimensions to be unbounded.
Both are implemented using intersection operations on axis aligned hyperplanes, and so do
not return true signed distance functions—inside the rectangle the implicit surface function
will be a signed distance function, but outside the cones around the corners will not be signed
distance (although they will have unit magnitude gradients).

data = shapeRectangleByCorners(grid, lower, upper): Constructs an implicit surface
function for an axis aligned (hyper) rectangle on the computational grid grid. The
vectors lower and upper (of length grid.dim) specify diagonally opposite corners of
the rectangle, where lower (i) < upper(i). The rectangle may be unbounded in selected
dimensions by choosing components of lower as —Inf or components of upper as +Inf.
The default values for lower and upper generate a unit cube whose lower left corner is
at the origin.

data = shapeRectangleByCenter(grid, center, widths): Constructs an implicit sur-
face function for an axis aligned (hyper) rectangle on the computational grid grid.
The vector center (of length grid.dim) specifies the center of the rectangle, while
the vector widths (of length grid.dim) specifies the full width of each dimension of
the rectangle. This function is equivalent to calling shapeRectangleByCorners with
lower = center — width/2 and upper = center + width/2. The default values for
center and width generate a unit cube centered at the origin.

A hyperplane is defined by its outward normal n and a point through which it passes zg.
Given these two parameters, a signed distance function for the hyperplane is given by

Hyperplanes can be combined using intersection (see section 3.3.2) to form convex polygons.

data = shapeHyperplane(grid, normal, point): Constructs a signed distance function
for a hyperplane on the computational grid grid. The vectors normal and point
should be of length grid.dim. The vector normal specifies the outward normal of the
hyperplane, while point specifies a point through which the hyperplane passes.
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data = shapeHyperplaneByPoints(grid, points, positivePoint): Constructs a signed
distance function for a hyperplane on the computational grid grid. Each of the
grid.dim rows of matrix points is a grid.dim dimensional vector specifying a point
through which the hyperplane passes. The direction of the normal vector of the
hyperplane—in other words, on which side of the hyperplane the implicit surface func-
tion is positive—can be specified in one of two ways. First, if the optional grid.dim
dimensional vector parameter positivePoint is supplied, then the normal direction
is chosen so that the implicit surface function has a positive value at the point rep-
resented by positivePoint. Note that positivePoint must not be too close to the
hyperplane, and must be within the bounds grid. If positivePoint is not provided,
then the points in points are assumed to be given in clockwise order and the normal
will be chosen to point out of the face of the clock. The output array data of size
grid.size contains the implicit surface function. This routine has not been well
tested.

Examination of the code in shapeHyperplane and shapeHyperplaneByPoints provides good
evidence of how cellMatrixMultiply and cellMatrixAdd can be used to simplify spa-
tially dependent matrix algebra, particularly with respect to the vector x which is stored
in grid.xs.

3.3.2 Set Operations for Constructive Solid Geometry

This section describes functions in Kernel/InitialConditions/Set0Operations.

Given sets Gy, Go and G defined by the implicit surface functions ¢1(x), ¢o(z) and ¢3(x)
respectively, the set operations of intersection, union, difference and complement have corre-
spondingly simple mathematical descriptions in terms of the implicit surface functions.

Gs3=0G1NG2 <<= ¢3(r) = max(p1(), p2(z)),

Gs=G1UGy <<= ¢3(z) = min(¢1(x), p2(z)),

G3=0G1\G2 <<= ¢3(v) = max(¢1(x), —¢2(z)),
G3=00 = ¢s() = —¢1(v)

It should be noted that the operations intersection, union and difference do not necessarily
produce signed distance functions even if both of the input shapes are described by signed
distance functions. That said, the outputs of these operations in this case are still implicit
surface functions and, because they retain a gradient of unit magnitude, they are generally
very well behaved numerically.
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data = shapelntersection(shapel, shape2): Given implicit surface functions shapel
and shape?2 (which must be arrays of the same size), returns the implicit surface function
for the intersection of the two shapes. If both implicit surface functions are signed
distance, then the output function will be signed distance within the intersection, but
may not be outside of it.

data = shapeUnion(shapel, shape2): Given implicit surface functions shapel and shape2
(which must be arrays of the same size), returns the implicit surface function for the
union of the two shapes. If both implicit surface functions are signed distance, then the
output function will be signed distance outside of the union, but may not be inside of
it.

data = shapeDifference(shapel, shape2): Given implicit surface functions shapel and
shape2 (which must be arrays of the same size) describing sets G; and Go, returns the
implicit surface function for G; \ Go = G N gg. If both implicit surface functions are
signed distance, then the output function will be signed distance within the resulting
difference, but may not be outside of it.

data = shapeComplement (shapel): Given an implicit surface function shapel, returns
the implicit surface function for its complement. Unlike the binary set operations, with
complement if the implicit surface function is signed distance, then the output function
will be signed distance.

3.4 Spatial Derivative Approximations

This section discusses functions found in the directory Kernel/SpatialDerivative.

Level set equations, and more generally HJ PDEs, are first order hyperbolic PDEs related
to conservation laws; consequently, care must be taken when computing derivatives in order
to keep the numerical solution stable. In particular, certain types of terms—notably those
involving the gradient or the surface normal—must either use upwinding or introduce artificial
diffusion in order to maintain stability. Derivative approximations for the former case are
dealt with in section 3.4.1.

If the HJ PDE contains sufficient diffusion, arising either naturally from second order terms or
artificially from methods like Lax-Friedrichs (see section 3.6), then either upwind or centered
approximations can be safely employed. Section 3.4.2 treats centered approximations for
both first and second order differential terms, including mean curvature.
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3.4.1 Upwind Approximations of the First Derivative

This section discusses functions found in the directory Kernel/SpatialDerivative/UpwindFirst.

The first derivative (in the form of V¢(x,t)) appears in the terms (5)—(9) of the HJ PDE.
The last of these terms, curvature dependent motion, includes the dissipative mean curvature
k(z), and hence centered differences can be used for the gradient in this case. In the remaining
cases—motion by constant velocity, motion in the normal direction, reinitialization, and the
general HJ—either upwinded approximations or artificial dissipation must be used in order
to maintain stability. If the upwind direction can be determined, upwind approximations will
generally yield more accurate results than artificial diffusion.

To take advantage of these cases, a large number of upwind approximations have been de-
veloped for the first derivative. This package includes four approximations that operate on
each dimension separately (which consequently requires that the upwind direction must be
determined for each dimension separately). For each dimension, the left approximation is
used for flow that comes from nodes with lower index, and the right approximation for flow
that comes from nodes with higher index. Note that higher order approximations may in-
clude nodes on both sides in their stencil. The four approximations provide a range of order
of accuracy.

upwindFirstFirst: The basic first order approximation. For dimension d, the left D ¢(z;)
and right quﬁ(:vi) approximations at node 7 are

p(xi) — p(wi1)

D, i) = )
d QS(:L" ) A:L_d
P(@it1) — P(s)
D ¢(x;) = :
d q5(513 ) A:L_d
These are the D! and D! entries respectively of the first divided differences of

i—1/2 i+1/2
¢ in dimension d. For more details, see [24, chapter 3.2].

upwindFirstEN0O2: A second order approximation. The second order correction to the
first order approximation is the neighboring entry in the second divided differences
of ¢ with minimum modulus. In other words, there are two possible second order
approximations to both the left and right, and this scheme chooses the least oscillatory
of those two. Mathematically, it is equivalent to including up to the Q) (z;) term (3.22)
in the derivative approximation (3.18) from [24, chapter 3.3].

upwindFirstENO3: A third order Essentially Non-Oscillatory (ENO) approximation. There
are three possible third order approximations to both the left and right, and this scheme
chooses the least oscillatory among them. Mathematically, it is equivalent to including
up to the Q5(z;) term (3.24) in the derivative approximation (3.18) from [24, chap-
ter 3.3].
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upwindFirstWENO5: A fifth order Weighted Essentially Non-Oscillatory (WENO) approxi-
mation. This approximation blends together the three third order approximations from
the ENO3 scheme so that in regions where ¢ is smooth, a fifth order approximation is
achieved. In regions where ¢ is not smooth, WENOb) effectively becomes ENO3. For
more details, see [24, chapter 3.4].

All four approximation functions use the same call structure, which we demonstrate with
upwindFirstENQ3.

[ derivL, derivR ] = upwindFirstEN03(grid, data, dim, generateAll): Constructs
left and right upwind approximations to the first derivative in dimension dim of the func-
tion stored in array data, which exists on grid grid. The approximations are returned
in the arrays derivL and derivR respectively, which are the same size as data. The
approximations are determined by first constructing three third order approximations
in each direction, and then choosing the least oscillatory based on the magnitude of
entries in the second and third divided differences of ¢. The optional boolean parameter
generateAll is primarily used for debugging purposes, and can generally be left at its
default value generateAll == 0. If generateAll == 1, then derivL and derivR will
be cell vectors of length three, where each cell contains one of the three third order
approximations in the appropriate direction (no attempt is made to pick out the least
oscillatory approximation in this case).

In addition to the functions listed above, a number of helper functions appear in this directory.

upwindFirstENO3a: Constructs the third order approximations using a divided difference
table, which is more efficient than directly applying equations (3.25)—(3.27) from [24,
chapter 3.4], although it is somewhat more complicated to code. This function has
the same calling sequence as upwindFirstENO3 (in fact, the latter function is just a
wrapper for this function).

upwindFirstENO3b: Constructs the ENO3 approximations using equations (3.25)-(3.27)
from [24, chapter 3.4]. The least oscillatory approximation is chosen by evaluating
the smoothness estimates (3.32)-(3.34) and picking (for each node) the third order
approximation corresponding to the smallest smoothness estimate. This function has
the same calling sequence as upwindFirstEN03. The algorithm is less efficient than a
divided difference table; in particular, it requires that the left and right approximations
are independently computed even though they share many of the same terms. However,
the code is somewhat easier to understand. The resulting derivative approximation
should be equivalent to that produced by upwindFirstENO3a.
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upwindFirstWENO5a: Constructs the WENOS approximations using a divided difference
table, which is more efficient that directly applying equations (3.25)—(3.41) from [24,
chapter 3.4], although somewhat more difficult to code. The smoothness estimates are
constructed from the first divided differences. Several choices of € terms (including one
corresponding to (3.38), which is unfortunately rather slow to evaluate) are available
by modifying parameters in the file. This function has the same calling sequence as
upwindFirstWENO5 (in fact, the latter function is just a wrapper for this function).

upwindFirstWENO5b: Constructs the WENOS approximations using equations (3.25)—(3.41)
from [24, chapter 3.4]. This function has the same calling sequence as upwindFirstWENO5.
The algorithm is slightly less efficient than a divided difference table, although the speed
difference between the two WENOJ schemes is less pronounced than the difference
between the two ENO3 schemes. Once again, the code is somewhat easier to under-
stand. The resulting derivative approximation should be equivalent to that produced
by upwindFirstWENO5a.

upwindFirstENO3aHelper: A helper routine that constructs the divided difference table and
the third order approximations. It is used by upwindFirstENO3a and upwindFirstWENQ5a.

upwindFirstENO3bHelper: A helper routine that constructs the third order approximations
according to (3.25)—(3.27), the smoothness estimates according to (3.32)-(3.34) and
the e term (3.38), all from [24, chapter 3.4]. It is used by upwindFirstENO3b and
upwindFirstWENOSD.

checkEquivalentApprox: A helper routine that checks whether two derivative approxima-
tions are equivalent to within some relative and absolute error bounds. Since the ENO
and WENO schemes involve so many different approximations to the first derivative,
it should come as no surprise that some of them should be equivalent, in the sense
that they include the same terms from the divided difference table. A debugging op-
tion that can be set inside the files of these approximation functions will automatically
check whether these approximations are actually equivalent. Normally, this check will
not be performed.

For a discussion of the relative accuracy and speed of the various approximation schemes, see
section 2.11.2.

3.4.2 Other Approximations of Derivatives

This section discusses functions found in the directory Kernel/SpatialDerivative/Other.

Many of the terms in HJ PDEs require upwind first order derivatives, and it is these terms
that cause many of the practical difficulties in numerical solutions. Because there are so many
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viable options for approximating these derivatives, the previous section outlined a collection
of interchangable routines implementing some of these options.

In contrast, the toolbox at present offers few options for the remaining types of derivative
terms. Each of the functions is specialized to a particular type of term, and hence we examine
each separately. The first two have corresponding term approximations in section 3.6.

[ second, first ] = hessianSecond(grid, data): Constructs a second order accu-
rate approximation to the mixed second order partial derivative matrix D2¢(z) of

¢(z) = data:
- 8%¢(z)  9%¢(x) O ¢() 7
31’% 31‘16:U2 e 8x18xd
Po(x)  2¢(x) . ¢=)
Dggb(iv) _ (9132.8171 817% 0z20Ty ,
P4(z)  Oo(x) 2(z)
| 82,011  Oxg0xs Tvi_

where d is the dimension of the grid. Note that D2¢(z) depends on =, so ideally this
function would return a d x d matrix each of whose entries was an array the size of
data. Since that result is challenging to encode in MATLAB, we instead return a d x d
cell matrix, each element of which is an array the size of data containing a second order
mixed partial approximation for the entire grid. In other words,

¢(z)
0;0x;

second{i,j} =

over all nodes = in the grid. Because D2¢(r) is symmetric, only its lower left half is
computed and returned. Therefore, even though second{i,j} = [] for i < j, the ap-
propriate approximation can be found in second{j,i}. Since a centered approximation
of the gradient is computed while finding D2¢(x), it is optionally returned in the cell
vector first. Note that this centered approximation should not be used in place of an
upwind approximation for advective terms.

[ curvature, gradMag ] = curvatureSecond(grid, data): Constructs a second order
accurate approximation to the mean curvature of the isosurfaces of the function ¢(z) =

data:

d 924z a¢(z) ) 2 0¢(x) Bp(z) 92(x
Sy (sun) o s o s
[Vé(z)|? ’

where d is the dimension of the grid. The output curvature is an array the same size as
data. For more details, see [24, chapter 1.4] or [28, chapter 6.7]. Since an approximation
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of the gradient magnitude (using centered first order differences) is computed while
finding &, it is optionally returned in the array gradMag, which is also the same size as
data. Note that this centered difference approximation of ||V¢|| should not be used in
place of an upwind approximation for motion in the normal direction.

The remaining two derivative approximations do not yet have corresponding term approxima-
tions in section 3.6, primarily because we have not yet found a practical use for them. They
are provided primarily to demonstrate how additional derivative approximations can be con-
structed. The main challenge in constructing corresponding term approximation functions is
determining the appropriate CFL condition—consider it an exercise left to the reader.

laplacian = laplacianSecond(grid, data): Constructs a second order accurate approx-
imation to the Laplacian of the function ¢(z) = data:

Ag(z) =V - Vo(z),

_ zd: P $(a)
= iy
— ox;
where d is the dimension of the grid. The output laplacian is an array the same size
as data. In theory, if ¢ is a signed distance function ||V¢| = 1, the Laplacian can be

substituted for the mean curvature x, and it is much quicker to calculate. However,
since most ¢ are only approximately signed distance functions, this substitution is not
recommended.

deriv = centeredFirstSecond(grid, data, dim): Constructs a centered second order
accurate approximation to the first derivative in dimension dim of the function ¢(z) =
data. The output deriv is the same size as data. Repeated calls with different dim can
be used to construct an approximation of the gradient; however, since the approximation
is centered, it should not be used in place of upwind approximations for advective or
similar terms in the HJ PDE.

Other derivative approximations that might prove useful but are not yet coded include the
Gaussian curvature [28, chapter 6.7] and the second derivative of curvature (so a fourth order
derivative) [28, chapter 14.6].

3.5 Time Derivative Approximations

This section discusses functions found in the directory Kernel/ExplicitIntegration/Integrators.
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The time derivative (4) is treated by the method of lines. We assume that approximations
for all the other terms (5)—(12) can be collapsed into a single function G(z, ¢(x,t)), and then
solve the ODE Dy¢(z,t) = G(z, ¢(z,t)) pointwise at each state z. Note that G will have
the opposite sign of the terms (5)-(12) because it has been moved onto the opposite side of
the equation. Furthermore, G is usually nonlinear, so we will use explicit Runge-Kutta (RK)
integrators that can determine ¢(z, ¢+ At) knowing only ¢(z,t) and G(z, ¢(z,t)).

The downside of using explicit solvers is that we will need to choose our timestep At small
enough to satisfy a Courant-Friedrichs-Lewy (CFL) condition. In practical terms, this means
that the timestep will be related to the grid resolution: At proportional to (Az)? if there are
second order derivative terms (9) or (10), otherwise At proportional to Az. The particular
CFL timestep restriction is generated by the term approximations described in section 3.6;
the RK integrator routines described below merely enforce these restrictions.

Even if CFL timestep conditions are met, the time integrator must still be chosen carefully
in order to guarantee stability. Consequently, we have chosen to use a collection of Total
Variation Diminishing (TVD) RK schemes proposed in [30] and described in [24, chapter 3.5].
Note that these schemes are only TVD if the underlying spatial approximation is likewise
TVD; consequently, they provide no theoretical guarantees when used with ENO and WENO
spatial approximations. In practice they seem to work well with all the approximations
described in section 3.6.

3.5.1 Explicit Integration Routines

The basic first order explicit TVD RK scheme is simply forward Euler
Pz, + At) = ¢(z,t) + AtG(z, ¢(z,1)).

The call parameters look very similar to MATLAB’s basic ODE suite integrators, such as
ode23 and ode45.

[ t, y, schemeData ] = odeCFL1(schemeFunc, tspan, y0, options, schemeData): In-
tegrates the ODE Dy = G(t,y) from time tspan(0) to time tspan(end) using a CFL
timestep constrained forward Euler integrator that is first order accurate. The function
handle schemeFunc describes G(t,y), while the initial conditions are provided by yO.
Integration options—set by a call to odeCFLset—are passed in options. Parameters
for the underlying ODE can be passed in schemeData. All arguments are mandatory,
but the last two may be replaced with [] if they are not needed.

In most circumstances, the schemeData parameter will not be modified and therefore its
returned value can be ignored. It can be modified either through the PostTimestep option
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discussed in section 3.5.3, or by the term approximation functions that satisfy the schemeFunc
prototype. The prototype for the function handle schemeFunc matches the approximation
functions given in section 3.6.

[ ydot, stepBound, schemeData ] = schemeFunc(t, y, schemeData): Calculate ydot =
G(t,y), using the parameters provided in schemeData. Note that y is passed as a
column vector and ydot should be returned as a column vector. The return scalar
stepBound provides the maximum CFL timestep permitted (use stepBound = inf if
there is no CFL restriction). The return structure schemeData is usually identical to
the input parameter of the same name, but may be a modified version.

Two higher order accurate integrators are also provided, with the same call structure as
odeCFL1.

odeCFL2: Second order accurate TVD RK integrator, also known as the midpoint or modified
Euler method. It computes two forward Euler steps and hence about twice as much
work as odeCFL1.

0deCFL3: Third order accurate TVD RK integrator. It requires three forward Fuler steps
and hence about three times as much work as odeCFL1.

In the discussion below, we refer to these three integrators interchangably as odeCFLn. TVD
RK integrators of fourth and higher order accuracy have been described in the literature, but
we have not yet implemented them.

3.5.2 Explicit Integrator Quirks

These integrators were designed to be very similar to MATLAB’s so as to reduce the learning
curve of users and in hopes of leveraging code compatibility in future extensions. However,
implementing such compatibility requires the introduction of several nonintuitive quirks to
the code.

e In the rest of the toolbox’s routines, the implicit surface function ¢ is passed in an
array data of size grid.shape. When using the method of lines to convert the PDE
into an ODE, the value of the implicit surface function at each node becomes the ODE’s
“state.” Since MATLAB’s ODE integration routines assume that the current state of
the ODE is stored in a column vector y, we must reshape the data array into a column
vector of length prod(grid.shape) before passing it to odeCFLn, and the spatial ap-
proximation function schemeFunc must both reshape y into data before manipulating it
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and return its result in a column vector ydot. These shape alterations are accomplished
by commands such as y = data(:) and data = reshape(y, grid.shape) and are es-
sentially free if the underlying data is not subsequently altered; for example, if the right
hand side variable is not further modified in the current function. These alterations are
performed in all the examples and the term approximations from section 3.6.

e The G(t,y) function appears on the opposite side of the equality as compared to the
terms from (5)-(12) that it contains. Consequently, these terms must be negated be-
fore inclusion in G. This negation is performed in all the term approximations from
section 3.6.

e Like MATLAB’s ODE integration routines, the odeCFLn routines adjust the timestep
during integration; however, the method for determining the timestep is completely
different. MATLAB’s routines adjust the timestep to achieve a given level of local trun-
cation error, as measured by comparing two schemes with different orders of accuracy.
In contrast, the odeCFLn routines adjust the timestep solely to satisfy a CFL stability
restriction, and they never examine the local truncation error. From an ODE error
analysis point of view, they behave like fixed timestep integrators. The need for a CFL
restriction is the practical source of the requirement that at least one of the terms with
a spatial derivative (5)—(10) must be part of G(¢,y).

e The state vector y = data(:) for a discretized PDE can easily contain millions of
elements (one for each node in the grid). Storing versions of this state vector for each
of dozens of timesteps in a typical call to an integration routine would quickly fill
up memory. Consequently, the contents of return parameters t and y of odeCFLn is
determined from tspan in a different way than in MATLAB’s ODE suite. If tspan =
[ t0, tf ] contains only two elements, then y is a column vector of the state at t =
tf. If tspan contains more than two elements, then t is the column vector form of
tspan and each row of y contains the state at the time of the corresponding row in
t. In both cases, the value of the state at intermediate timesteps is discarded. For
discretized PDEs, we recommend use of the first option, since it also avoids making a
copy of the initial conditions yO.

3.5.3 Integrator Options

There are several algorithmic options for odeCFLn, which are manipulated using odeCFLset
and odeCFLget in the same manner as MATLAB’s odeset and odeget routines; however, note
that the available options are different.

options = odeCFLset(’namel’, valuel, ’name2’, value2, ...) oroptions = odeCFLset(oldopts,
’namel’, valuel, ...): Set options for one of the odeCFLn integration routines. The
parameters oldopts and options are option structures. Call odeCFLset with no input
or output parameters to see the list of available options and their defaults.

106



value = odeCFLget(options, ’name’): Retrieve the value of an option parameter from an
option structure created by odeCFLset. The parameter options is the option structure.
The value of the parameter corresponding to the string ’name’ is returned in parameter
value. Call odeCFLget with no input or output parameters to see the list of available
options and their defaults.

The currently available options are:

FactorCFL: positive scalar, default value 0.5, normally between 0 and 1 exclusive. The
actual timestep taken by odeCFLn will be FactorCFL * stepBound, where stepBound
is the CFL timestep restriction returned by schemeFunc. The default is safe, while a
choice of 0.9 would be considered aggressive.

MaxStep: positive scalar, default value realmax. Upper limit on the size of the timestep
taken by odeCFLn. Useful to enforce a fixed timestep if stepBound is infinite (such as
if schemeFunc contains no spatial derivative terms).

PostTimestep: A function handle to a function with prototype
[yOut, schemeDataOut| = postTimestepFunc(t, yIn, schemeDataln).

The default [] indicates that no such routine should be called. If present, the post-
timestep function is called by odeCFLn after every full timestep. By modifying y,
this function can be used to implement constraints of the form (14). By modifying
schemeData, this function can record information about the evolution of y, or modify
parameters for the term approximation routine schemeFunc on the fly.

This option may also be a cell vector of postTimestepFunc function handles. In this
case, each function handle element is called after each timestep. The functions are
called in the same order as the cell vector.

SingleStep: ’on’ or ’off’, default value ’off’. If this option is set to ’on’, then the
integrator will return after a single CFL constrained timestep regardless of whether the
final time in tspan has been reached or not. In this case, the return parameter t will
be set to the actual time reached after that single timestep. Useful for debugging or if
the calling routine wants to examine the state vector after every timestep; for example,
see signedDistancelterative in section 3.7.4.

Stats: ’on’ or ’off’, default value >off’. If this option is set to *on’, then a few statistics
on the integration are displayed on the screen (number of timesteps, CPU time). Useful
for debugging.

TerminalEvent: A function handle to a function with prototype

[value, schemeDataOut| = terminalEventFunc(t,y, t01d, y0ld, schemeDataln).
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The default [] indicates that no such routine should be called. If present, the terminal
event function is called by odeCFLn after every full timestep. If both post-timestep
and terminal event functions are present, all post-timestep functions are called before
the terminal event function. The input parameters include the time and data from the
present timestep (t and y) as well as the time and data from the last timestep (t01d
and y01d). The return parameter value should be a double scalar, vector or matrix,
and must not change size or shape from one timestep to the next. If any element
of value changes sign between timesteps, then integration is terminated and odeCFLn
returns immediately. Unlike MATLAB’s ODE event system, no attempt is made to
accurately locate the time at which that element of value passed through zero. Note
that integration cannot be stopped until after the second timestep has been taken. It
cannot be stopped before or after the first timestep because there is no established sign
of the elements of value from which a sign change can be detected. This routine has
not been well tested.

3.5.4 Integrator Helper Functions

A number of helper routines appear in this directory that are not intended for direct calls
from the user.

odeCFLcallPostTimestep: Calls one or more routines registered with the PostTimestep
option of odeCFLset. Since this code was common to all odeCFLn routines, it was
factored into a separate routine.

odeCFLmultipleSteps: Handles the case when odeCFLn is called with a tspan vector of
length more than two (as detailed in section 3.5.2). In this case, odeCFLmultipleSteps
is called by odeCFLn, and then odeCFLmultipleSteps makes repeated calls back to
odeCFLn to collect the solution at the requested times. Since this code was common to
all odeCFLn routines, it was factored into a separate routine. Normally, using a tspan
of length more than two is not efficient, so this code is not run. This routine has not
been well tested.

3.6 Approximating the Terms in HJ PDEs

This section discusses functions found in the directories Kernel/ExplicitIntegration/Term.

From the perspective of a typical user, it is the routines for approximating the spatial
terms (5)—(14) in the HJ PDE that are most interesting among the many routines in this
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toolbox, in the sense that it is through these terms that the user controls the motion of the
implicit surface. In particular, the user must carefully chose which terms to include, and
what parameters to provide to those terms.

All the term approximation functions follow the calling convention established by the integra-
tor functions odeCFLn so that these term approximations can be passed as the schemeFunc
parameter to odeCFLn. As an example, consider convective motion by a velocity field (5).

[ ydot, stepBound, schemeData ] = termConvection(t, y, schemeData): Computes
an approximation of G(t, ¢(z,t)) = —v(z) - Vé(z,t), where (the reshaped) ¢(z,t) is
contained in the column vector y and G(t, ¢(z,t)) is reshaped and returned in the col-
umn vector ydot. The velocity field v(z) is specified as a component of the structure
schemeData. The maximum CFL timestep is returned in stepBound. The return struc-
ture schemeData is usually identical to the input parameter of the same name, but may
be a modified version. For more details, see section 3.6.1.

We divide the term approximation functions into groups and describe each in the sections
below. The basic groups are approximations in which the first derivative appears in a spe-
cific form (5)—(7), general first derivative approximations (8), second derivative approxima-
tions (9)-(10), and others (11)-(14). Among the details discussed for each type of term are
the particular parameters for that term (passed in the structure schemeData) and the CFL
restriction imposed (returned in the scalar stepBound). Note that schemeData may contain
additional fields beyond those discussed below, should the user desire.

Many of the term approximations require the user to provide function handles that will be
called on each timestep to provide term parameters throughout the grid. Typically these
functions are called once per timestep (or once per dimension per timestep) and return an
array (or cell vector of arrays). For efficiency reasons, it is very important that these functions
be vectorized in the MATLAB sense—they should not use loops to iterate through the data
or derivative arrays. Examples of such vectorization can be found in section 2.

One particular type of function that is allowed by many routines to provide a time dependent
scalar term parameter is the scalarGridFunc prototype.

a = scalarGridFunc(t, data, schemeData)

The parameters of scalarGridFunc are identical to those of the term approximation routine
which calls it, except that data = y has been reshaped to its original size. The return
parameter a must be a scalar or an array of size grid.shape, which represents some kind of
scalar value for each node in the grid—for example, termNormal uses a as the speed of motion
normal to the front. The user can pass additional information to the function implementing
scalarGridFunc by including additional fields in the schemeData structure.
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When designing functions to the scalarGridFunc prototype, users should note that the scalar
returned is often allowed to depend on the time ¢ and state z, but not explicitly on the func-
tion ¢; for example, termNormal, termCurvature, termTraceHessian, and termDiscount.
Failure to comply with such restrictions may cause the underlying PDE to become ill-posed,
the solution to become discontinuous, and/or the discretization to become unstable. Conse-
quently, in these cases it is recommended that the function satisfying the scalarGridFunc
prototype not examine the data parameter. There are cases, such as termForcing, in which
dependence on ¢ is permitted and the return value may therefore depend on data; however,
in these cases the user must ensure satisfaction of the monotonicity requirement (3).

3.6.1 Specific Forms of First Derivative

This section discusses functions to approximate the terms which implement convection by a

velocity field (5), motion in the normal direction (6), and the reinitialization equation (7). The

functions are termConvection, termNormal and termReinit in the directory Kernel/ExplicitIntegration/Te
These terms are grouped together because they share a number of common features.

Notice that each of these terms could be restated in the form of (8), and hence approximated
by the functions discussed in section 3.6.2. Unfortunately, those approximations involve
adding artificial dissipation in order to achieve numerical stability. For these specific terms, it
is always possible to determine the upwind direction and construct a relatively dissipation free,
and hence more accurate, approximation. Because these terms appear so often in practice,
it is well worth the effort to build special purpose approximation routines for them.

In addition to the term specific fields discussed below, in every case the parameter structure
schemeData contains the fields:
schemeData.grid: The grid on which the implicit surface function is defined.
schemeData.derivFunc: A function handle to a function with prototype
[derivL,derivR| = derivFunc(grid,data,dim)

to compute upwind approximations of the first derivative. This function should gen-
erally be chosen from among those described in section 3.4.1. Note that this function
must return both left and right approximations to the first derivative.

It turns out that for each of these terms, the approximation algorithm constructs an effective
velocity field v(z) and it is this velocity field which determines the CFL timestep constraint
(by [24, equation (3.10)])

grid.dim |’U(IL‘)| -
tepBound = —_—
steptoun zrélg;af}fd ( zz—; grid.dx(i))
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The important fact about this bound is that At is proportional to Ax.

We now discuss each of the terms individually. More details can be found in the corresponding
functions’ help entries.

termConvection: Motion by an externally generated flow field (5), also called convec-
tion or advection. The user supplies the flow field v : R® x R — R" as the field
schemeData.velocity in one of two ways.

e For time invariant flow fields v(z), velocity may be a cell vector of length
grid.dim, in which case velocity{i} = wv;(z) is either a scalar (for constant
velocity) or an array of size grid.shape (for spatially varying velocity) providing
component i of the velocity field.

e For general flow fields, velocity may be a function handle to a function with
prototype
v = velocityFunc(t,data, schemeData),

where the output v is the cell vector described above and the input arguments
are the same as those of termConvection (except that data = y has been re-
shaped to its original size). The velocityFunc prototype is very similar to the
scalarGridFunc prototype, except that it returns a cell vector of arrays. In a
similar way to scalarGridFunc, it may be useful to include additional fields in
schemeData.

termNormal: Motion in the normal direction (6). The user supplies the speed of the interface
a:R™ x R — R as the field schemeData.speed in one of two ways.

e For time invariant speeds a(z), speed may be either a scalar (for constant speed)
or an array of size grid.shape (for spatially varying speed).

e For general speed functions, speed may be a function handle to a function with the
scalarGridFunc prototype. The result of evaluating this function at the current
time and state will be treated as the scalar/array described above. In this case, it
may be useful to include additional fields in schemeData.

termReinit: The reinitialization equation (7). In theory, solving this equation to conver-
gence can turn an implicit surface function into a signed distance function without
moving or explicit finding the interface [33]. In practice, it is usually used to smooth
out excessively steep or shallow gradients in ¢. The user supplies a copy of the ini-
tial conditions ¢(z,0) (as an array of size grid.shape) in schemeData.initial. The
upwinding scheme is taken from [12, appendix A.3].

There is one optional field in schemeData. By default, the first order accurate subcell fix
from [27] is applied; for more details, see the discussion in section 2.10. The order of ac-
curacy of the subcell fix can be specified by the optional integer schemeData.subcell fix order.
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At present the only accepted values are 1 (the default) and 0 (in which case the subcell
fix is disabled). If the subcell fix is disabled, then a smoothed version of the signum
function is used: ¢

sign(¢) =

- \/52 + max; [grid.dx(i)]

This term approximation routine termReinit will rarely be invoked directly, but will
be used indirectly by other routines like signedDistanceIterative (see section 3.7.4).

3.6.2 Approximating General HJ Terms

This section discusses the function Kernel/ExplicitIntegration/Term/termLaxFriedrichs
and functions found in Kernel/ExplicitIntegration/Dissipation.

Terms involving the first derivative in general form (8) are the most challenging to treat nu-
merically, and hence require the most complex term approximation function termLaxFriedrichs.
This function is based on the framework proposed in [26] and described in [24, chapter 5.3].
The basic idea is to replace the analytic H(z,p) (where p is a placeholder for V¢) with a
numerical approximation

A p) = (052 ) = aa)” [52]. (40

where p™ and p~ are the right and left approximations of the gradient respectively. The first
term of H is simply the analytic Hamiltonian evaluated with a centered approximation to
the gradient. By itself, such an approximation will be numerically unstable, so the second
term adds some dissipation. The final part of this second term (the difference between p™
and p~) looks like a Laplacian, and provides the stabilizing dissipation. In smooth regions
of the solution, the left and right approximations will be similar and this term will be near
zero. The scaling portion a(z) of this term depends on D,H (z,p), the partial derivative of
H with respect to the gradient p. As discussed below, there are several different choices of a
function.

The schemeData structure for termLaxFriedrichs requires the following fields:

schemeData.grid: The grid on which the implicit surface function is defined.

schemeData.derivFunc: A function handle to compute upwind approximations of the first
derivative, chosen from among those described in section 3.4.1. Note that this function
must return both left and right approximations to the first derivative.
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schemeData.dissFunc: A function handle to one of the dissipation routines with prototype

[diss, stepBound] = dissFunc(t, data,derivL, derivR, schemeData),

discussed below. Computes the artificial dissipation necessary to stabilize the Hamilto-
nian approximation calculated with a centered difference approximation of the gradient;
in other words, the second term on the right hand side of (46), including the a(z) scal-
ing (which is actually computed by a call to schemeData.partialFunc as described
below).

schemeData.hamFunc: A function handle to a routine that computes the analytic H(z,p).
This function is user supplied, and is called directly by termLaxFriedrichs.

schemeData.partialFunc: A function handle to a routine that computes the extrema (in
each dimension) of Dy, H(z, p). This function is user supplied and is called by dissFunc.

Typically the user will have a mathematical equation for schemeData.hamFunc and simply
needs to convert it into (vectorized) MATLAB code. Writing schemeData.partialFunc is
often more challenging. The function prototypes are:

hamValue = hamFunc(t, data, deriv, schemeData): Compute the analytic Hamiltonian
H(z,V¢); in fact, the more general form H(x,t, ¢, V) is allowed. The parameters are
the current time t (a scalar), the current implicit surface function ¢ = data (in an
array of size grid.shape), a cell vector V¢ = deriv of length grid.dim whose element
i is an array of size grid.shape containing the i’ component of the gradient, and
the schemeData structure that was passed to termLaxFriedrichs. The return value
hamValue should be an array of size grid.shape.

alpha = partialFunc(t, data, derivMin, derivMax, schemeData, dim): Estimate com-
ponent dim of the « scaling term in (46).

0gin(z) = max
pE[derivMin,deriviax]

(47)

OH (z,p) ‘
O0Pdin '

Note that a depends on z, and so should be evaluated separately at each state (prefer-
ably in a vectorized fashion). The gradient range parameters derivMin and derivMax
are each cell vectors of length grid.dim whose element ¢ is either a scalar or an array
of size grid.shape, depending on whether the range of component ¢ of the gradient is
constant (for global Lax-Friedrichs) or state dependent (for other types of dissipation).
Because the gradient range may depend on the dimension, this function is called once
for each dimension dim from 1 to grid.dim.

In general, a need not be calculated exactly. Too little dissipation will usually lead to
instability, but may be tolerable on the occasional timestep. Too much dissipation will
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smooth what should be sharp corners in the implicit surface, but is otherwise safe. If the exact
optimization in (47) is too complicated or expensive to evaluate, it is reasonable (although
somewhat less accurate) to overestimate its value.

There are a number of options for schemeData.dissFunc provided by the toolbox. They all
have the same prototype

[ diss, stepBound ] = artificialDissipationGLF(t, data, derivL, derivR, schemeData):
Compute the artificial dissipation in (46). Parameters derivL = p~ and derivR = p™
are the gradient approximations returned by a call to schemeData.derivFunc. The
returned diss is an array of size grid.data containing the appropriate dissipation for
each node in the grid. The scalar CFL timestep constraint stepBound is also calculated
in the dissipation function.

Apart from calculating the difference between the left and right approximations of the gra-
dient, the dissipation routines’ main task is to determine the range of gradient derivMin to
derivMax pass on to schemeFunc.partialFunc. The method of calculating this range differs
between the dissipation function options, following the framework laid out in [24,26].

artificialDissipationGLF: Global Laz-Friedrichs (GLF) dissipation. Calculate a single
range of gradient over the entire grid, as proposed in the original numerical scheme
for finding the viscosity solution of an HJ PDE [7]. Because this choice generates the
largest range of possible gradients, it will also generate the most dissipation.

artificialDissipationLLF: Local Laz-Friedrichs (LLF) dissipation. When considering
component «;(z) of the dissipation scaling «(zx), restrict the range of component 4 of
the gradient to the range between left and right approximations of that component
at each node individually. The range of the remaining components of the gradient is
calculated globally, as with GLF. This restriction is more costly to compute, but can
be considerably less dissipative for Hamiltonians that are very close to convective flow.

artificialDissipationLLLF: Local Local Laz-Friedrichs (LLLF) dissipation. The range
of every component of the gradient is simply the range between left and right approx-
imations of that component at each node individually. This choice leads to the least
dissipation and is less expensive to compute than LLF (since the same range is used
for every dimension). It is equivalent to LLF if the Hamiltonian is separable

grid.dim

H(xap): Z Hl(xapz)

i=1

Unfortunately, in those cases where it is not equivalent to LLF, it can be unstable
and/or nonmonotonic. Consequently, any approximation it produces may not converge
to the true viscosity solution as the grid is refined.
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Regardless of which dissipation function is chosen, the user supplied schemeFunc . partialFunc
will be called grid.dim times to compute the components of a(x). Furthermore, even if H
is independent of x and GLF is used (so that a(z) is independent of state), the actually
dissipation may be state dependent if the left and right approximations of the gradient vary
across the grid.

In addition to scaling the dissipation, a(z) is also the effective velocity and is therefore used
to compute the CFL timestep restriction.

grid.dim |a ) (.’E)| -
B = —
stepBound cegrid ( Zz; grid.dx(i))

Once again, At is proportional to Azx. Its effect on the choice of CFL restriction reemphasizes
the fact that overapproximating « is safe (although it will lead to smaller timesteps) but
regular underapproximation may lead to instability.

Two other approximation schemes for arbitrary Hamiltonians are described in [24,26]: Roe
with entropy fix (RF) and Godunov. The former uses upwinding when an upwind direction
can be determined and some form of Lax-Friedrichs otherwise; thus it will introduce even
less dissipation that the LF schemes discussed above. The latter is less dissipative still, but
requires solution of a potentially nonconvex optimization at each node. It seems likely that
RF could be implemented in the current toolbox framework for general Hamiltonians, but
the same is not true for Godunov; however, the approximation schemes in section 3.6.1 are
examples of Godunov solvers for specific types of spatial terms.

3.6.3 Second Derivatives

This section discusses the functions termCurvature and termTraceHessian in the directory
Kernel/ExplicitIntegration/Term/.

The routines for handling terms of the forms (9)—(10) both involve approximations of the
second derivative, and both place a stringent bound on the size of explicit timesteps: At is
proportional to Az2. Their schemeData structures both require the schemeData.grid field,
but are otherwise different.

termCurvature: Motion by mean curvature (9). The field schemeData.curvatureFunc
must contain a function handle for a routine that approximates the curvature s (and gra-
dient magnitude ||V ¢||); at present the only such routine in the toolbox is curvatureSecond
(see section 3.4.2). The user supplies the multiplier b : R” x R — R as the field
schemeData.b in one of two ways.
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e For time invariant multipliers b(z), b may be either a scalar (for a constant mul-
tiplier) or an array of size grid.shape (for a spatially varying multiplier).

e For general multiplier functions, b may be a function handle to a function with the
scalarGridFunc prototype. The result of evaluating this function at the current
time and state will be treated as the scalar/array described above. In this case, it
may be useful to include additional fields in schemeData.

Following [24, equation (4.7)], the bound on the timestep is calculated as

grid.dim
1
tepB d= 2b I
steptoun [mrélgar)gd( () ; grid.dx(i)2)]

termTraceHessian: Motion by the trace of the Hessian (10). The field schemeData.hessianFunc
must contain a function handle for a routine that computes a cell matrix approxima-
tion of the Hessian matrix of second derivatives; at present the only such routine in the
toolbox is hessianSecond (see section 3.4.2). The user supplies the multipliers L(z, t)
and R(z,t) as the fields schemeData.L and schemeData.R in one of three ways, where
n = grid.dim.

-1

e For time and space invariant matrices, an n X n matrix. The same matrix will be
used for every node of the grid.

e For time invariant but spatially dependent matrices, an n x n cell matrix, each ele-
ment of which is an array of size grid.shape. The function cellMatrixMultiply
is used to apply such matrices to the Hessian.

e For general matrices, a function handle to a function with prototype
M = matrixGridFunc(t,data, schemeData),

where the output M is a matrix or a cell matrix as described in the two options above
and the input arguments are the same as those of termTraceHessian (except that
data = y has been reshaped to its original size). In this case it may be useful to
include additional fields in schemeData.

The bound on the timestep is calculated as
-1

stepBound = | max (2 |trace[L(z,t) D R(z,?)]|)| (48)
regrid

where the n x n matrix D is defined elementwise as D;; = grid.dx(7) * grid.dx(j).
This routine has not been well tested. Among the shortcomings in the current

version:

e The routine termTraceHessian has been validated only on one dimensional and
faked two dimensional problems (one dimensional problems in a rotated coordinate
frame).
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e The CFL condition (48) has not been mathematically verified, although it has not
yet lead to instability.

Bug reports are always appreciated.

It should be noted that despite their popularity for approximating second order derivatives in
degenerate parabolic PDEs—such as x(z) in level set motion by mean curvature—centered
difference approximations—such as curvatureSecond—are known to be non-monotonic in
some cases. Consequently, algorithms based on centered differences may fail to be conver-
gent [21]. Caveat emptor.

3.6.4 Other Spatial Approximation Terms

This section discusses the functions termDiscount and termForcing in the directory Kernel/ExplicitIntegra:

The routines for handling terms of the forms (11)-(12) are relatively straightforward. Note
that these terms cannot appear alone as the schemeFunc passed to odeCFLn, since the result-
ing equation would not be a hyperbolic PDE. Rather, they must be combined with at least
one spatial derivative term from sections 3.6.1-3.6.3 using the termSum routine described in
section 3.6.5.

Since none of these terms involve a spatial derivative, they do not induce a CFL restriction on
the timestep size. All of these routines therefore return stepBound = +Inf. From a practical
point of view, failure to include a spatial derivative term in the (supposed) PDE will result
in a timestep of size dictated by the odeCFLn option maxStep (see section 3.5 for details).

Both of these terms may depend on ¢, so care must be taken that they satisfy the monotonicity
requirement (3). For termDiscount, this requirement translates to A > 0. For the more
general termForcing, the onus is on the user to ensure a proper function form.

termDiscount: Discounting or killing term (11). The user supplies the discount factor
A:R™ x R — [0,400] as the field schemeData.discount in one of two ways.

e For time invariant discounts A(z), discount may be either a scalar (for constant
discount) or an array of size grid.shape (for spatially varying discount).

e For general discounts, discount may be a function handle to a function with the
scalarGridFunc prototype. The result of evaluating this function at the current
time and state will be treated as the scalar/array described above. In this case, it
may be useful to include additional fields in schemeData.

termForcing: Forcing term (12). The user supplies the forcing function F' : R" xRxR — R
as the field schemeData.forcing in one of two ways.
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e For time invariant forcing functions F'(z), forcing may be either a scalar (for
constant forcing) or an array of size grid.shape (for spatially varying forcing).

e For general forcing functions, forcing may be a function handle to a function
with the scalarGridFunc prototype. Unlike most such calls to functions with this
prototype, it is reasonable to allow the return value to depend on ¢ by examining
the data parameter; however, care must be taken in this case to ensure compliance
with the monotonicity requirement (3). The result of evaluating this function at
the current time and state will be treated as the scalar/array described above. In
this case, it may be useful to include additional fields in schemeData.

3.6.5 Combining and Restricting Spatial Approximation Terms

This section discusses the functions termRestrictUpdate and termSum in the directory
Kernel/ExplicitIntegration/Term/.

The term approximation schemes discussed thus far have all dealt with a single term from (5)—
(12). In many applications these terms are combined together, or are restricted to a particular
sign by constraints of the form (13). In this section we examine routines to treat these cases.

These routines conform to the term approximation prototype schemeFunc required by the
odeCFLn integrators. However, they do not generate updates by themselves, but rather should
be thought of as wrappers for update terms from the previous sections. Consequently, their
schemeData structures will contain fields referring to other term approximation routines.

schemeData.innerFunc: A function handle (or cell vector of function handles) to a function
which conforms to the schemeFunc prototype. Normally this will be a term approxi-
mation routine for a term of the form (5)-(12).

schemeData.innerData: A structure (or cell vector of structures) which is the schemeData
structure required by the term approximation routine schemeData.innerFunc.

Within the routines below, a call of the form
feval(schemeData.innerFunc, t,y, schemeData.innerData)

will be issued to evaluate the wrapped term approximation routine (or an equivalent call for
cell vector members).

termRestrictUpdate: Restrict the sign of a single spatial term, which can be used to imple-
ment (13). The spatial term is provided by the function handle schemeData.innerFunc,
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and its associated data by the structure schemeData.innerData. The sign of the re-
striction is specified by the boolean schemeData.positive, which is true if the update
must be greater than or equal to zero (defaults to true). The restriction is calculated
independently for each node in the grid, and updates which violate the restriction are
clipped to zero. The CFL timestep restriction calculated by schemeData.innerFunc is
returned without modification, which may be conservative (if the update of the node
which induced the timestep restriction has been clipped).

termSum: Combine multiple terms by summation. Each of the terms is specified by an entry
in the cell vector of function handles schemeData.innerFunc, and its associated data
by the corresponding entry in the cell vector of structures schemeData.innerData.
Each term is evaluated independently, and the updates are summed at each node. The
overall CFL timestep restriction stepBoundgyy, is computed from the individual term’s
timestep restrictions stepBound; by:

-1
1
stepBoundgyy = (Z stepBoundZ) .

i

Note that termRestrictUpdate and termSum can be used to wrap each other, and thereby
accomplish HJ PDEs more complex than (4)-(13). They could even be used to wrap them-
selves, although we can think of little benefit to be gained from that design.

3.7 Helper Routines

This section describes functions in Examples/Helper, which are used for various auxiliary
tasks.

3.7.1 Error Checking

This section describes functions in Examples/Helper/ErrorCheck, which are used to check
the validity of function arguments.

checkStructureFields(structure, ’fieldl’, ’field2’, ...): Checks that the first
argument structure is a structure and, if so, checks that the subsequent arguments
(which should all be strings) are the names of fields in that structure. Causes an error
if either check fails. Often used in functions which access the schemeData structure.
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3.7.2 Math

This section describes functions in Examples/Helper/Math, which are various types of math-
ematical operations.

Currently, the functions in this directory implement an extended form of some simple matrix
operations. In several parts of the toolbox, it is necessary to represent spatially varying
matrices A(z) or vectors v(x)—in fact, z itself is a spatially varying vector. These objects
are a challenge to represent, since the toolbox has already adopted the convention that
MATLAB’s array indices refer to nodes in the spatial grid. Adding more indices to account
for the entries in the spatially varying matrix or vector would lead to a great deal of index
confusion.

As an alternative, we have chosen to represent such matrices and vectors as cell arrays. A
matrix A(z) € RP*Y where z € R” is represented by a two dimensional cell array with p
rows and ¢ columns. Each element of this cell array is a regular MATLAB array of dimension
n, containing elements for every node z in the computational grid. We call this object a cell
matriz. For example, the field grid.xs in the grid structure can be thought of as a n x 1
cell matrix description of the vector .

Several operations are provided for cell matrices:

addition: A(z)+ B(x),
multiplication: A (z)B(z),

elementwise maximization: max A(z) or max|A(z)|,
xT xz

elementwise trace: trace A(z).

All of the routines also accept a few special cases. If A(z) = A is independent of state z,
then the entries of the cell matrix can be scalars. If A(z) = a(x) € R is a state dependent
scalar value, then the corresponding cell matrix should not be a cell object at all, but rather
a regular array of the size appropriate for the computational grid. That array will be added
to or multiplied by every entry of the cell matrix B(z), in a manner corresponding to the
way that MATLAB treats scalars for regular matrices.

C = cellMatrixAdd(A,B): Returns the spatially varying matrix C(z) = A(z) + B(z), rep-
resented as a cell matrix. If they are cell matrices, parameters A and B must be the
same size and of dimension two, and this size is adopted by output C. The contents of
each cell element of A and B must also be the same size, since they are added compo-
nentwise. Cell elements of A and/or B may be scalars. If A or B is a regular array, then
C adopts the size of the other, and the one which is a regular array is treated as a state
dependent scalar.
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maxA = cellMatrixMax(A, takeAbs): Calculate the elementwise maximum over state space
x of spatially varying array A(x), represented as the cell matrix A. The maximum is
returned in the regular matrix maxA, which has the same number of rows and columns
as the cell matrix A. If the optional boolean parameter takeAbs is true, then the ele-
mentwise maximum max, |A(z)| is computed instead.

C = cellMatrixMultiply(A,B): Returns the spatially varying matrix C(z) = A(z)B(z),
represented as a cell matrix. If A(z) € R™*P and B(z) € RP*?, then C(z) € R™*4.
Therefore, if they are cell matrices, parameters A and B must be of dimension two, their
inner dimensions must agree, and their outer dimensions dictate the size of output C.
The contents of each cell element of A and B must either be arrays of the same size or
scalars, since they are multiplied componentwise. If A or B is a regular array, then C
adopts the size of the other, and the one which is a regular array is treated as a state
dependent scalar.

traceA = cellMatrixTrace(A): Calculate the elementwise trace at each node for the spa-
tially varying array A (x), represented as the cell matrix A. The trace is returned in the
regular array traceA, which is the same size as each element of A (ie the size of the
grid for x). Specifically, if z € R the operation is

traceA(i) = > A{k,k}(i),
k
A similar operation applies in other dimensions. If A is a regular array, it is treated as
a spatially varying scalar and hence traceA = A. To represent a spatially independent
matrix A(z) = A, use a cell matrix where every entry is a scalar.

3.7.3 Post-Timestep Routines

The routines in this directory are examples of the postTimestepFunc protocol, and implement
common tasks that are performed after each timestep of a level set calculation. Because
they implement the same protocol, all routines have the same input and output parameters;
however, in each case the schemeData structure will contain different fields.

The first routine implements the masking or constraint of ¢ (14).

[ yOut, schemeDataOut ] = postTimestepMask(t, yIn, schemeDataln): Constrains the
value of ¢(z,t) after each timestep by applying a binary mask operation. The input
argument t is ignored, while the input array yIn provides the value of ¢(z,t). The
structure schemeDataIn must contain the fields maskFunc and maskData. The output
argument schemeDataOut = schemeDataln (no change), while the modified data array
yOut is calculated by

yOut = feval(schemeDataIn.maskFunc, yIn, schemeDataIn.maskData).
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A typical application of postTimestepMask would be to enforce the constraint ¢(z,t) > 1 (z).
This constraint can be implemented by choosing maskFunc = @max and maskData to be an
array representing ¢ (z), reshaped into a column vector.

The second routine reinitializes an implicit surface level set function to be a signed distance
function using the reinitialization PDE (7).

[ yOut, schemeDataOut ] = postTimestepReinit(t, yIn, schemeDataln): Reinitial-
izes an implicit surface function to be an approximate signed distance function. The
input argument t is ignored, while the input array yIn contains the implicit surface
function (in vector form). The structure schemeDataIn must contain the field grid. It
may contain the fields reinitAccuracy, reinitSteps and/or reinitErrorMax, which
control the accuracy and number of reinitialization iterations. If these fields are not
supplied, they have defaults. The output argument schemeDataQut = schemeDataln
(no change), while yOut is the reinitialized level set function. This routine has not
been well tested.

The postTimestepReinit routine is essentially a wrapper for signedDistancelterative
(see section 3.7.4). Note that this PDE algorithm for reinitialization does not explicitly find
the interface, and hence may cause that interface to shift during iteration.

The third routine determines the time at which the zero level set crosses each node of the grid.
Specifically, for each node x, it determines a timestep £ such that ¢(z,s) > 0 for s < £ and
$(z,s) < 0 for s > t. Subject to these constraints, a linear approximation of the exact ¢ such
that ¢(z,t) = 0 is computed, where { — At < ¢t < £. This routine is used for approximating
the solution of stationary HJ [23] and degenerate elliptic PDEs; for example, see the time to
reach problems in section 2.7.

[ yOut, schemeDataOut ] = postTimestepTTR(t, yIn, schemeDataIn): Compute the
time at which the zero level set crosses each node in the grid. The implicit surface
function is unmodified: yOut = yIn. The structure schemeDataQut contains all the
fields of schemeDataIn, and the user need not add any special fields before calling
this routine. On the first call to this function, the fields ttr, ttrLastY and ttrLastT
are added to this structure—the user should ensure that fields of these names are not
present in advance (their absence ensures proper initialization). In subsequent calls,
these fields in schemeDataln are examined, and then modified versions are returned in
schemeDataOut (the user should not modify them separately). After each call, the ttr
field contains the time at which the zero level set reached each node, as determined
by the input parameter t. Nodes which have not yet be reached are given the value
inf. In order to generate accurate initialization, it is recommended that the user make
a direct call to this routine with the initial time and initial data before starting time
integration with the toolbox.
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3.7.4 Signed Distance Functions

This section describes functions in Examples/Helper/SignedDistance. Signed distance
functions are a special case of implicit surface functions, and have several useful proper-
ties. From a numerical perspective, their gradient has magnitude one, which tends to reduce
the error introduced by gradient approximations. From a geometric perspective, at every
point in state space the function magnitude measures the distance to the surface and the
gradient lies in the direction of the closest point on the surface. For these reasons it is often
useful to construct a signed distance function. The routines in this directory are the start of
a collection that will build an approximate signed distance function from a variety of initial
data types.

data = signedDistancelterative(grid, dataO, accuracy, tMax, errorMax): Turns
an implicit surface function into a signed distance function by iterative solution of
the reinitialization PDE (7). Both the implicit surface function and signed distance
functions are defined on the same computational grid, the parameter grid. The implicit
surface function is given by input array data0, and the signed distance result by output
array data. The optional parameter accuracy has the usual options determining what
order of accuracy of spatial and temporal derivative approximations should be used
for the reinitialization PDE, and defaults to medium’ (second order accurate). Since
the reinitialization wave front moves at approximately speed one outward from the
zero level set, if the optional parameter tMax > O then enough iterations are taken to
move the reinitialization about a distance tMax from the front in both directions. The
default is the entire distance across the grid (which will be excessive in many cases).
If tMax < O, then -round(tMax) is taken as the explicit number of CFL constrained
timesteps to execute; the CFL factor for these timesteps is typically large (~ 0.95)
and can be determined by looking in the source. The optional parameter errorMax
defines an update magnitude tolerance relative to the longest grid cell edge length
max (grid.dx)—if the average node update drops below this tolerance on any iteration,
the reinitialization is assumed to have converged and the iterations are terminated.
The default value of 1e-3 is so tight that iterations rarely converge under the default.
Note that the input implicit surface function must be relatively well behaved for this
operation to succeed: the function gradient should not change sign or direction too
drastically between neighboring nodes near the implicit surface. Even for well behaved
implicit surface functions, this operation may shift the implicit surface location slightly.
This routine has not been well tested.

data = unsignedDistanceFromPoints(grid, points): Creates a function whose value at
each grid node measures the distance from that grid node to the nearest of a collection
of points. The grid is defined by parameter grid and each point is a row (with grid.dim
columns) of the parameter points. The unsigned distance function is returned in array
data. The unsigned distance function is not an implicit surface function. Searching for
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the zero level set will prove futile, since all node values will be non-negative. In fact, this
routine is simply the first step in turning a collection of surface points into an implicit
surface function (for example, see [24, chapter 13]). Furthermore, this implementation
uses the brute force, quadratic time pairwise algorithm. In future versions it should be
replaced by a much quicker fast marching algorithm for unsigned distance [28].

near = isNearInterface(data, interface_level, strict_opposite): Determines for
each node in the data array whether it is near the interface. The interface is defined by
an isosurface (level set) of the implicit surface function. A node is “near” the interface
if any of its neighbors are on the opposite side of the interface. Array parameter
data stores the implicit surface function and may be of any shape. Optional double
parameter interface_level specifies which isosurface defines the interface (default
0.0). Optional boolean parameter strict_opposite specifies whether the neighbours
of nodes which lie exactly on the interface (nodes whose value in array data is equal to
interface _level) count as “near” the interface. The default value 0 (false) specifies
that all neighbors of nodes lying on the interface are themselves near the interface. The
nodes lying on the interface are always near the interface. The return boolean array
near is the same shape as data, and is 1 (true) when the corresponding node in data
is near the interface.

3.7.5 Terminal Event

The routines in this directory are examples of the TerminalEventFunc protocol.

[ value, schemeDataQut ] = terminalEventConverge(t, y, t0ld, yO0ld, schemeDataIn):
Detects whether the implicit surface function is no longer changing; in other words, that
the calculation has converged. Define the update as the change between y and y01d. In-
tegration is terminated when the norm of the update falls below some tolerance. Several
norm options are supported, and the tolerance is the maximum between an absolute tol-
erance and a relative tolerance (measured relative to y). The structure schemeDatalIn
may contain the fields convergeAbsTol, convergeRelTol and/or convergeNorm. The
field convergeAbsTol is a scalar double and specifies the absolute tolerance (defaults
to 1073). The field convergeRelTol is a scalar double and specifies the relative tol-
erance (defaults to 107%). The field convergeNorm is one of the strings ’average’,
’maximum’ or ’pointwise’ and specifies the norm to be used (defaults to ’average’).
The corresponding convergence tests are respectively the average update over all nodes,
the maximum update over all nodes, or each node’s update is tested individually (and
hence has its own relative tolerance to satisfy). The input arguments t and t01d are
ignored, and the output argument schemeDataOut = schemeDatalIn (no change). This
helper functions does not work on vector level sets. This routine has not been well
tested.
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3.7.6 Visualization

This section describes functions in Examples/Helper/Visualization, which are used to
simplify various visualization tasks.

h = addSlopes(point, width, styles, slopes, labels): Plots one or more lines of
specified slope. When plotting experimental convergence rates of algorithms, it is often
useful to have comparison lines of specified slope, which correspond to certain theoret-
ical convergence rates. This function is usually called for a figure which has already
been created (and hopefully has hold on so that addSlopes does not destroy the ex-
isting figure). For example, the script firstDerivSpatialConverge in section 2.11.2
uses addSlopes when creating figure 36. Vector parameter point (with two elements)
specifies a point from which all slope lines emanate to the right. Scalar parameter
width specifies the extent of the lines in the horizontal direction. Parameter styles
may be a string or a cell vector of strings, which specifies the line style(s) of the slope
lines. Vector parameter slopes is a list of slope lines which should be shown. Cell
vector parameter labels contains one string for each slope line, which is displayed to
the right of the end point of the corresponding slope line. The output h is a two column
array of graphic handles; the first column contains the line handles for the slope lines
and the second column the text handles for the labels.

spinAnimation(fig, filename, compress): A routine which demonstrates how to use
MATLAB’s animation facilities to generate an animation of a spinning three dimensional
plot. When working with surfaces in three dimensions, it is often difficult to understand
the shape without seeing it from several angles. Interactive MATLAB has rotate3d,
but it is difficult to use during a talk; consequently it is usually better to generate
an animation showing the surface from many different angles—if you have seen the
author of the toolbox give a talk, then you have probably seen an animation created
by this routine. The parameter fig is a figure handle to the already created three
dimensional plot. The string parameter filename is the name of the output animation
file (which will have the extension .avi appended). The boolean parameter compress
specifies whether lossy compression should be used to (significantly) reduce the size of
the resulting animation, at the expense of some image quality. Remaining parameters,
such as animation resolution, number of frames and compression quality, can be set
within the source code. Note that this function will probably work only in the Windows
environment, since it uses the avi file format.

h = visualizeLevelSet(g, data, displayType, level, titleStr): Create a visual-
ization of an implicit surface function. At present, dimensions one to three are sup-
ported. This function is designed to produce quick visualizations of implicit surface
functions, rather than polished figures. While many of the figures in this document
started as calls to visualizeLevelSet, they were usually then modified by adding la-
bels, improving the viewing angle and/or lighting, or adding more graphical objects.
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The visualization is created within the current figure and axis, so this function can be
used with subplot and to create multiple implicit surfaces in a single plot. The grid
structure is given by parameter g, and the implicit surface function by array parameter
data. The string parameter displayType specifies which type of visualization to use;
the options depend on the dimension of the grid and are given in the help entry for this
routine. The optional scalar level specifies which level set to visualize, and defaults to
zero. The optional string titleStr creates a title text object for the current axis. The
return parameter h is a graphics handle to the created graphics object(s), which can be
used to modify the appearance using MATLAB’s set command; for example, the color
can be changed. By default, a warning is generated if the requested level set does not
exist in data. This warning can be disabled by setting level = > []1’ (useful for types
of display that do not plot a level set, such as >surf’ in two dimensions).

3.8 Vector Level Sets

Vector level sets, or systems of Hamilton-Jacobi PDEs are essentially solving (1) with ¢ €
R™ and H € R™, where m need not have any particular relationship with the state space
dimension n. Unfortunately, there is very little theoretical work on such systems of nonlinear
PDEs, so care must be taken drawing any conclusions from computed approximations.

However, a number of quite interesting applications make use of vector level sets—for exam-
ple, open surfaces of codimension one (see section 2.9.1, surfaces of codimension greater than
one [24, chapter 10], and analysis of hybrid systems [20]—so the feature has been added to
the toolbox. In order to maintain a connection to at least the theory for scalar equations,
each element ¢; and H; of ¢ and H should independently satisfy all the requirements detailed
in previous sections.

Vector level sets could be easily implemented as m independent runs of the toolbox, but if
the evolution of the ¢; depend on each other, then the integrations must be kept temporally
aligned. Doing so with the SingleStep and MaxStep options of the odeCFLn integrators is
technically possible but inefficient and clumsy to implement. Consequently, the integrators
and term approximation routines have been rewritten to add direct support for vector level
sets.

Integration of scalar HJ PDEs with the toolbox involves three collections of information.
e The function ¢(z,t). This data is commonly referred to by the variable data, except

inside the time integrators where it is called y or yO to distinguish the case when it has
been reshaped from its usual array of size grid.shape into a long vector.

e The term approximation routine for H, commonly the variable schemeFunc.
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e Various auxiliary parameters required by the term approximation routine and any user
supplied subroutines, commonly the variable schemeData.

In order to handle systems of HJ PDEs of size m, each of these data collections is replaced
by a cell vector of length m. Each element of the cell vector contains the data normally used
by a scalar equation.

For example, consider the integration of a codimension two curve in R3. Such a curve can
be represented as the intersection of the zero level sets of two level set functions evolving
on the same computational grid [24, chapter 10]. In the toolbox, this would require data,
schemeFunc and schemeData to each be cell vectors of length two. Then data{1} would be
an array of size grid.shape containing the first level set function ¢;(z,t), schemeFunc{1}
would be a function handle to a term approximation routine controlling the evolution of ¢1,
and schemeData{1} would be a structure containing fields relevant to the term approximation
routine for ¢;. Similarly, data{2}, schemeFunc{2} and schemeData{2} would contain ¢o(z,t)
and information about how to evolve it.

In some cases, the elements of the vector level set may share identical evolution information;
in other words, they may all be evolved using the same term approximation routine and/or
parameters. In that case, schemeFunc may be a single function handle and/or schemeData
may be a single structure, which will be used for all the elements ¢;.

With this design, the temporal integrators are able to compute the update for all elements
of the vector level set, choose a timestep small enough to satisfy all of the CFL restrictions,
and update the ¢; to the next time in lockstep.

The only remaining complication is how the cell vectors are passed through to the term
approximation routines, and ultimately on to user code for parameters like the velocity field
v(z,t) in (5) or the Hamiltonian H(z,t, ¢, V) in (8). In particular, how do these routines
know which element of the cell arrays is to be examined, and how can we make use of
existing code for scalar equations in those vector level set cases where the update for ¢; does
not depend on any other ¢;?

The proposed solution taken by the toolbox is to treat each of the cell vectors as a circular
list, and rotate this list as each element is processed so that the current element is always
at the start of the list. Following on the example descrbed above, when schemeFunc{1} is
called, the term approximation routine that it points to should operate on data{1} (where
¢1(x,t) is currently stored), possibly referring to data{2} (for ¢,) and schemeData{1} (the
parameters for the evolution of ¢1). So far, not at all surprising.

However, when the function handle passed by the user as schemeFunc{2} is called, the data
and schemeData lists will have been rotated. Therefore, the term approximation routine that
schemeFunc{2} points to should also operate on the array passed to it as data{1} (which now
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contains ¢ (z,t)), possibly referring to data{2} (which now contains ¢) and schemeData{1}
(the parameters for the evolution of the level set function currently stored in data{1}, which
is ¢2). This is perhaps surprising until it is realized that a term approximation routine
has no way of determining whether it is called as schemeFunc{1} or as schemeFunc{2}.
Without such knowledge, the easiest way to specify on which element of the cell vectors it
should operate is to keep the simple rule that it always operates on the first. The remaining
elements are rotated as a circular list to achieve such an ordering.

More generally for cell vectors of length m, let viyiy stand for the cell vectors passed into
a time integration routine by the user, and viern be the cell vectors passed on to a term
approximation routine, where v is any of the variables commonly called data, schemeFunc
or schemeData. When the term approximation routine pointed to by schemeFuncini¢{i} is
called, then

datagery = datajnig([i:my1:1i— 1))

schemeDatatern = SchemeDataipi¢([i:m,1: 1 — 1])

The method described above manages to convey to the term approximation routines on
which of the cell vector elements they should operate. We would like to use a similar rule
for subroutines called by the term approximation routines. However, many of these routines
have been written assuming that the data and schemeData parameters are not cell vectors.
Rather than rewriting all such routines (as had to be done with the term approximation
routines), it would be nice to provide the option of either passing through the vector level
set information (if it is needed) or passing through only a scalar level set (in order to reuse
scalar code for motions that are purely scalar in nature).

The resulting protocol depends on an element of the schemeData structure called passVLS,
which is meant to convey “pass through vector level set information.” This element is always
optional, and its default value is 0 (false). For those term approximation routines that support
it, a value of 1 (true) indicates that any user subroutines (such as routines conforming to the
scalarGridFunc prototype) should be passed the entire cell vectors for data and schemeData.
In this case, the user supplied subroutine will be able to access the current element of the
vector level set in data{1}, and allow other elements of the vector level set (stored in the
other elements of the data cell vector) to influence its evolution.

For those routines that do not support passVLS, and for those routines that do but are
passed a value of 0 (false), only data{1} and schemeData{1} are passed. In this case, from
the subroutine’s perspective, the call appears to be for a scalar PDE. This option should be
used for all code unless it is specifically written for vector level set evolution.

In version 1.1, the following routines support the passVLS protocol: termCurvature, termForcing,
termNormal.
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The following routines may not support the passVLS protocol (see the help entries for details):
termConvection, termDiscount, termLaxFriedrichs, termReinit, termTraceHessian. As
described above, for these routines currently act as though passVLS were always false—only
data{1} and schemeData{1l} are passed through to user subroutines. Unless hidden bugs
are discovered in the passVLS protocol, it is expected that it will be added to these routines
soon.

There are two exceptions to the passVLS protocol: the routines for combining and restricting
term approximations from section 3.6.4. In brief, termRestrictUpdate always passes through
the entire cell vector, and termSum passes through the entire cell vector, but modifies the
first elements data{1} and schemeData{1}. For full details, see the help entries for these
routines.

The protocols for vector level sets may seem complex at first, but examination of the ex-
amples in section 2.9 will hopefully clear up most confusion. Several alternative protocols
for specifying vector level sets were explored, but the one defined here was the most flexible
that we have found so far. We would definitely like to hear about your experiences using
this protocol, especially any cases that prove to be impossible to reformulate in this manner.
Collection of experiences with this vector level set scheme is one of the reasons for a beta
release of this version of the toolbox.
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4 New and Future Features

The Toolbox is evolving as new schemes, features and examples are added, and new versions
will be released as code stability and time permit. Users are encouraged to email comments,
bug fixes and feature requests to the author(s).

There are also examples and schemes designed for the Toolbox which are not included in the
base download. You may find this other code at the toolbox website [14].

4.1 Features New to Version 1.1

Not all of the new and modified routines for this version have appeared in this documentation.
However, they should all be listed below, and their help entries should fully document their
features. All of the major modifications have been covered in the documentation.

e Implementation of term approximation routines for motion by the trace of the Hes-
sian (10) (section 3.6.3), discounting (11) and forcing (12) (section 3.6.4). For examples,
see section 2.8.

e Vector level sets. This feature required modifications to virtually all integration and
term approximation routines, but (hopefully) these modifications are completely back-
ward compatible for scalar equations. See section 3.8 for an explanation of how vector
level sets are implemented, and section 2.9 for examples of their use.

e The schemeFunc prototype has been modified to return the schemeData structure as
its third argument, and all term approximation routines have been updated to follow
the new prototype. Although none of the routines currently make use of this feature,
in theory it permits term approximation routines to modify the structure’s elements (a
capability previously only allowed for routines following the postTimestepFunc proto-

type).

e Support for some types of stationary HJ PDEs using a reformulation to a time-dependent
PDE and the postTimestepTTR routine. See sections 2.7 and 3.7.3.

e Time dependence for virtually all term parameters. This feature was actually present
in version 1.0 of the Toolbox, but was not advertised in the documentation.

e New option *TerminalEvent’ in odeCFLset for early event driven termination of inte-
gration. See section 3.5.3.
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e Added the subcell fix from [27] as the default behaviour in termReinit. This modifi-
cation seems to significantly decrease the motion of the implicit surface during reini-
tialization. If this subcell fix option is not used, there is also a new option to increase

the degree of smoothing of the signum function in the reinintialization equation. See
sections 2.2, 2.10 and 3.6.1.

e The new postTimestepReinit routine to support regular reinitialization of the level
set during integration. See section 3.7.3. An example of its application appears in
section 2.9.1.

e Several new examples: stationary HJ PDEs in section 2.7, expected outcomes of stochas-
tic differential equations in section 2.8, a spiral crystal growth demonstration from [31]
of open curves by vector level sets in section 2.9, and the examples from [27] demon-
strating the benefits of the subcell fix for reinitialization.

e In visualizeLevelSet: Added a ’wireframe’ option in 3D, fixed the ’*slice’ and
>contourslice’ options, and modified the behaviour of the *surface’ option to pro-
vide smoother looking surfaces.

e Miscellaneous modified routines: signedDistanceIterative and dumbbelll.

e Miscellaneous new routines in existing directories. The following routines are described
in this manual:

— cellMatrixTrace

— gridnd2mesh

— isNearInterface

— odeCFLget

— odeCFLmultipleSteps

— odeCFLcallPostTimestep
— shapeHyperplaneByPoints

The following routines are not described in the manual, but should have self-explanatory
help entries:

— addGhostExtrapolate2
animateSpinStar
animateAcoustic
animateAir3D

— animateDumbbell

4.2 Potential Future Features

At the completion of this version of the toolbox, among the extensions which seem useful are:
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e More general Dirichlet and Neumann boundary conditions.
e The WENOS3 upwind first order spatial derivative scheme.

e Roe-Fix and possibly Gudonov numerical Hamiltonians. Stencil Lax-Friedrichs artificial
dissipation.

e ENO/WENO function value interpolation (not just gradients) away from nodes.

e Higher order of accuracy versions of the subcell fix in termReinit.

e Implicit time stepping (with MATLAB’s ODE suite?).

e Adding the passVLS vector level set option to all the term approximation routines.
e Some method to avoid constant reallocation of memory for ghost cells.

e Adaptively refined grids.

e Construction of signed distance functions from point clouds.

e Evolution of closed curves in R? using vector level sets.

e Examples from various application fields.

Do you have any other ideas?
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Concept Index

Reading the Index: Roman page num-
bers indicate discussion of the concept or
command. Italic page numbers indicate an
example of its use.

boundary conditions: 24, 92-94
Dirichlet: 93
extrapolated: 24, 93
Neumann: 93
periodic: 24, 93

cell matrix: 120

constraints: see term approximation, con-
straints

constructive solid geometry: see initial con-
ditions

convection: see term approximation, con-
vection

cost to go: H9-69

curvature: see term approximation, curva-
ture

equation class
degenerate elliptic: 59
degenerate parabolic: 11, 69-7/
elliptic: see degenerate elliptic
hyperbolic: 11
parabolic: see degenerate parabolic
static: 59
stationary: 11, 59-69
stochastic: 69-7/
systems: see vector level sets
time-dependent: 10, 12
time-independent: 59

Hessian: 10

initial conditions: 82-83, 94-98
basic shapes: 95-97
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reinitialization: see term approxima-
tion, reinitialization

set operations: 97-98

masking: see term approximation, constraints

monotonicity: 11

reachable sets: 48-58
continuous: 48-51, 51-56
Hamiltonian for: 49, 53, 55
HJ PDE for: 49
hybrid: 51, 56-58
reinitialization: see term approximation,
reinitialization

set operations: see initial conditions

solution class
viscosity solution: 11
weak solution: 11

spatial derivative: 28, 98-103
centered: 102, 103
convergence rate of: 83-87
ENO: 28, 85-87, 99, 100
first: 28, 85-87, 99, 100, 103
second: 102, 103
upwind: 28, 85-87, 99-101
WENO: 28, 85-87, 100
stochastic differential equations: see equa-
tion class, stochastic

term approximation: 11-13, 108-119
advection: see convection
combining: 41-42, 119
constraints
on ¢: 13, 36-37, 58, 107, 121
on Dy: 13, 49, 118
convection: 12, 19-81, 41-42, 109, 111
curvature, mean: 13, 38-40, 115



discount: 13, 117
forcing: 13, 117
general HJ: 12, 3/-36, 49-51, 112-115
Hessian, trace of the: 13, 116
Lax-Friedrichs: 3/-36, 4/9-51, 112-115
artificial dissipation: 114-115
estimating the partials: 34, 46, 48,
51, 54, 56, 113
mean curvature: see curvature, mean
normal direction: 12, 40-42, 111
reinitialization: 12, 82-34, 79-82, 111,
122,123
velocity field: see convection
time derivative: 12, 28, 103-108
PostTimestep option: 13, 87, 107
TerminalEvent option: 107
explicit integrator: 28, 104, 105
integration options: 106-108
TVD RK: 104, 105

time to reach: 59-69

Toolbox
citing: 17
dowloading: 14
license: 2-3
other publications: 17

vector level sets: 75-79, 126-129
cell vector: 127
circular lists: 127-128
pass through protocol passVLS: 128-
129
with termRestrictUpdate: 129
with termSum: 129
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Command Index

Reading the Index: Roman page num- cellMatrixTrace: 121
bers indicate discussion of the concept or centeredFirstSecond: 103
command. Italic page numbers indicate an

) checkEquivalentApprox: 101
example of its use.

checkStructureFields: 31, 119

acoustic: H4 compareTerms: 75
acousticHamFunc: 55 convectionDemo: 19-31
acousticPartialFunc: 56 convectionTTR: 61
addGhostA11Dims: 94 convergeDoubleIntegratorTTR: 68
addGhostDirichlet: 93 convergeHolonomicTTR: 65
addGhostExtrapolate: 2/, 93 curvatureSecond: 102
addGhostNeumann: 93 curvatureSpiralDemo: 38
addGhostPeriodic: 24, 93 curvatureStarDemo: 39

addNodesAl11Dims: 94
addPathToKernel: 14, 19, 22
addSlopes: 125

doubleIntegratorTTR: 66
dumbbelll: 44

air3D: 52 ellipseError: 81
air3DHamFunc: 54 exerciseKP529: 73
air3DPartialFunc: 54 exercise(0169b: 73
airMode: 58

figureAir3D: 53

findReachSet: 58
firstDerivSpatialConverge: 85
firstDerivSpatialTestl: 85

analyticDoubleIntegratorTTR: 66
analyticHolonomicTTR: 63
analyticSumSquareTTR: 64
argumentSemanticsTest: 87

artificialDissipationGLF: 34, 45, 47, 114 ghostCell: 88

gridnd2mesh: 92
artificialDissipationLLF: 34, 45, 47, 114

hessianSecond: 102
artificialDissipationLLLF: &4, 45, 47, holonomicTTR: 62

114
initialConditionsTest1D: 82

burgersLF: 46 initialConditionsTest2D: 83

cellMatrixAdd: 97, 120 initialConditionsTest3D: 83
cellMatrixMax: 121 interp2: 91
cellMatrixMultiply: 25, 26, 97, 121 interp3: 91
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interpn: 91 scalarGridFunc: 31, 40, 109

isNearInterface: 124 schemeFunc: 28, 42, 52, 105, 109, 118
terminalEventFunc: 107, 12/

laplacianSecond: 103 velocityFunc: 26, 31, 111

laxFriedrichsDemo: 34

laxFriedrichsDemoHamFunc: 34 quiver: 16

laxFriedrichsDemoPartialFunc: 35 reinitiD: 79

linearAdditiveSDE: 70 reinitCircle: 80

maskAndKeepMin: 37 reinitDemo: 33

maskDemo: 37
meshgrid: 15-16, 91-92

reinitDemoFigures: 34
reinitEllipse: 80
reinitTest: 87
ndgrid: 15-16, 91-92

nonconvexLF: 47 shapeComplement: 98

normalStarDemo: 41 shapeCylinder: 95

shapeDifference: 98

odeCFL1: 28, 104 shapeHyperplane: 96

odeCFL2: 28, 105 shapeHyperplaneByPoints: 97
odeCFL3: 28, 105 shapeIntersection: 98
odeCFLcallPostTimestep: 108 shapeRectangleByCenter: 96
odeCFLget: 107 shapeRectangleByCorners: 96
odeCFLmultipleSteps: 108 shapeSphere: 95

odeCFLn: 29, 105 shapeUnion: 98

odeCFLset: 28, 106 signedDistancelterative: 87, 123

VLS: 128 smerekaSpirals: 77
pass :

inAnimation: 125
postTimestepMask: 58, 121 spininimation

inStarD 1 42
postTimestepReinit: 77, 122 spinstarDemo

postTimestepTTR: 62, 66, 122
processGrid: 24, 90

spiralFromEllipse: 39
spiralFromPoints: 39
switchValue: 26, 30-31, 40

prototypes
derivFunc: 28, 110 termConvection: 28, 37, 42, 57, 70, 78
dissFunc: 34, 45, 47, 113, 114 109. 111

hamFunc: 34, 46, 48, 49, 54, 55, 113
matrixGridFunc: 116
partialFunc: 39, 46, 48, 50, 54, 56,

termCurvature: 38, 42, 44, 115
with vector level sets: 77

113 termDiscount: 73, 117
postTimestepFunc: 37, 58, 62, 66, 107, termForcing: 117
121-122 terminalEventConverge: 124
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termLaxFriedrichs: 34, 49, 47, 49, 52,
54, 62, 66, 112-115
termNormal: 40, 42, 111
with vector level sets: 77
termReinit: 33, 79, 111

termRestrictUpdate: 49, 52, 54, 57, 118
with vector level sets: 129

termSum: 42, 119
with vector level sets: 77, 129

termTraceHessian: 70, 72, 73, 116
testLinearAdditiveSDE: 71
tripleSine: 43

unsignedDistanceFromPoints: 123
upwindFirstEN02: 28, 85, 99
upwindFirstEN03: 28, 99, 100
upwindFirstENO3a: 85, 100
upwindFirstENO3aHelper: 101
upwindFirstENO3b: 85, 100
upwindFirstENO3bHelper: 101
upwindFirstFirst: 26, 85, 99
upwindFirstWENO5: 28, 100
upwindFirstWENObSa: &5, 101
upwindFirstWENO5Sb: 85, 101

visualizeLevelSet: 29, 30, 125

visualizeOpenCurve: 79
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