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Abstract

This document describes Version 1.1 of the Toolbox of Level Set Methods, asoftware package for solving time-dependent Hamilton-Jacobi partial di�erentialequations (PDEs) in the Matlab programming environment. Level set methodsare often used for simulation of dynamic implicit surfaces in graphics, 
uid andcombustion simulation, image processing, and computer vision. Hamilton-Jacobiand related PDEs arise in �elds such as control, robotics, di�erential games, dy-namic programming, mesh generation, stochastic di�erential equations, �nancialmathematics, and veri�cation. The algorithms in the toolbox can be used in anynumber of dimensions, although computational cost and visualization di�cultymake dimensions four and higher a challenge. All source code for the toolbox isprovided as plain text in theMatlab m-�le programming language. The toolboxis designed to allow quick and easy experimentation with level set methods, al-though it is not by itself a level set tutorial and so should be used in combinationwith the existing literature.This document supercedes the documentation for Version 1.0 of the Toolbox(UBC TR-2004-09).
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Copyright
This Toolbox of Level Set Methods, its source, and its documentation are Copyright c
2007 by Ian M. Mitchell.Use of or creating copies of all or part of this work is subject to the following licensing agreement.
This license is derived from the ACM Software Copyright and License Agreement (1998), which may be foundat:

http://www.acm.org/pubs/copyright policy/softwareCRnotice.html
License
The Toolbox of Level Set Methods, its source and its documentation (hereafter, Software) is copyrighted byIan M. Mitchell (hereafter, Developer) and ownership of all rights, title and interest in and to the Softwareremains with the Developer. By using or copying the Software, the User agrees to abide by the terms of thisAgreement.
Noncommercial Use: The Developer grants to you (hereafter, User) a royalty-free, nonexclusive right to ex-ecute, copy, modify and distribute the Software solely for academic, research and other similar noncommercialuses, subject to the following conditions:

1. The User acknowledges that the Software is still in the development stage and that it is being supplied\as is," without any support services from the Developer. Neither the Developer nor his employersmake any representation or warranties, express or implied, including, without limitation,any representations or warranties of the merchantability or �tness for any particularpurpose, or that the application of the software, will not infringe on any patents or otherproprietary rights of others.2. The Developer and his employers shall not be held liable for direct, indirect, special, incidental orconsequential damages arising from any claim by the User or any third party with respect to usesallowed under this Agreement, or from any use of the Software, even if the Developer or his employershave been advised of the possibility of such damage.3. The User agrees to fully indemnify and hold harmless the Developer and his employers from and againstany and all claims, demands, suits, losses, damages, costs and expenses arising out of the User's use ofthe Software, including, without limitation, arising out of the User's modi�cation of the Software.4. The User may modify the Software and distribute that modi�ed work to third parties provided that:(a) if posted separately, it clearly acknowledges that it contains material copyrighted by the Developer(b) no charge is associated with such copies, (c) User agrees to notify the Developer of the distribution,and (d) User clearly noti�es secondary users that such modi�ed work is not the original Software.5. Any distribution of all or part of the Software or modi�ed versions must contain the above copyrightnotice and this license.6. This agreement will terminate immediately upon the User's breach of, or non-compliance with, any ofits terms. The User may be held liable for any copyright infringement or the infringement of any otherproprietary rights in the Software that is caused or facilitated by the User's failure to abide by theterms of this agreement.7. This agreement will be construed and enforced in accordance with the law of the Province of BritishColumbia applicable to contracts performed entirely within that Province. The parties irrevocablyconsent to the exclusive jurisdiction of the provincial or federal courts located in the City of Vancouverfor all disputes concerning this agreement.
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Commerical or Other Use: Any User wishing to make a commercial or other use of the Software isencouraged to contact the Developer at mitchell@cs.ubc.ca to arrange an appropriate license. Commercialuse includes (1) integrating or incorporating all or part of the source code into a product for sale or licenseby, or on behalf of, the User to third parties, or (2) distribution of a compiled or source code version of theSoftware to third parties for use with a commercial product sold or licensed by, or on behalf of, the User.
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Preface
It has been a little over two years since I made a beta release of Version 1.1 of the Toolbox.I had intended to wait a few months to see if any other bugs appeared in my experimentswith the code, test all of the old examples to make sure that none had been broken by thenew additions, and then make the o�cial release. My mistake. There was always some morepressing task than performing those regression tests, and so the o�cial release kept gettingdelayed.
I am happy to �nally make this o�cial release available. Over the intervening months since thebeta I have made a number of bug �xes, and added two small features that were not presentin the beta: a subcell �x in termReinit from [27] that signi�cantly reduces the movement ofthe interface during reinitialization, and a new routine gridnd2mesh that converts betweenthe Toolbox's ndgrid-based grid de�nition and the meshgrid-based de�nition required byseveral of Matlab's visualization routines. A full list of features added to the Toolbox sinceVersion 1.0 is given in section 4.
Not all of the code that I have written in the past two years is contained in this Version 1.1release. Where possible|in other words, where the code is clean enough that somebody elsemight be able to understand it|I have posted additional code at the Toolbox's web site [14].In particular, code to accompany [16] provides for additional explicit Runge-Kutta integratorsfrom [32] and a new motion by mean curvature approximation from [21]. Those features ofthis additional code that prove generally useful or instructive will likely be incorporated intothe Toolbox kernel or example set in future versions. Keep checking the web site, because Iplan to stick with this piecemeal policy for code pre-release in the future rather than riskinganother beta release which celebrates multiple birthdays.
I would like to thank all of the users who have sent emails with questions, feature requests,support and/or bug �xes over the past few years. Keep them coming! In particular, if youpublish articles or use the Toolbox in your business, please let me know. Your messagesnot only encourage me to keep working on the Toolbox, but also add strength to my grantproposals so that I can support students with whom I can add, test and document featuresfaster than I can alone.
Ian M. Mitchell,Vancouver, CanadaMay, 2007.
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1 Introduction
Level set methods are a collection of numerical algorithms for solving a particular class ofpartial di�erential equations (PDEs). They have proven popular in recent years for tracking,modeling and simulating the motion of dynamic surfaces in �elds including graphics, imageprocessing, computational 
uid dynamics, materials science and many others. Rather thanan explicit representation in terms of edges (a one dimensional surface in R2) or faces (atwo dimensional surface in R3 ), in level set methods the surface is represented implicitlythrough a level set function �(x). The surface itself is the zero isosurface or zero level setfx 2 Rd j �(x) = 0g. Various types of surface motion can be described by PDEs involving�. Because of the implicit representation, these methods are sometimes also referred to asdynamic implicit surfaces.
Although popularized under the name level set methods, the underlying PDE|a hyperbolicPDE with �rst order time derivatives often called a Hamilton-Jacobi (HJ) PDE|appears inmany other branches of mathematics including optimal control, zero sum di�erential games,mathematical �nance and stochastic di�erential equations.
Level set proponents often claim that a primary advantage of level set methods is their ease ofimplementation, a claim which we �nd overly optimistic. PDEs are rarely easy to implement;for example, the base Matlab installation includes only a PDE solver for one dimensionalparabolic-elliptic equations. For simple convective motion (including rigid body motion), itis far easier to implement marker particle or Lagrangian methods for evolving an interface.The advantage of level set methods, however, is that they can accomodate many types ofsurface motion without any signi�cant increase in theoretical or implementation complexity.Among these capabilities are:
� It is conceptually straightforward to move from two to three and even higher dimensions(although computational cost is exponential in dimension).
� Surfaces automatically merge and separate.
� Geometric quantities are easy to calculate: surface normal, curvature, direction anddistance to the nearest point on the surface. Surface motion can depend on thesequantities.

In contrast, it is a signi�cant undertaking to implement dynamic surfaces with marker par-ticles in three dimensions with merging, separation and calculation of surface normals andcurvatures.
Much of the level set literature has grown out of the seminal paper [25], although dynamicimplicit surfaces and the HJ PDE date back much further. Readers interested in using level
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set methods for their applications are encouraged to read both of the well written texts [28]and [24]. They discuss the basic concepts in di�erent but complementary ways, and thenproceed to cover a variety of additional topics, few of which overlap. In our (probablybiased) opinion, the strengths of the two books are their explanations of:
� Osher and Fedkiw [24]: high order accuracy methods, image processing, computationalphysics.
� Sethian [28]: fast marching methods, unstructured grids, a wide variety of applications.

Because we work with time-dependent equations on structured grids, most of the algorithmsand examples in this version of the toolbox are taken from [24].
1.1 Toolbox Objectives
The goal of this toolbox is to provide a collection of routines which implement the basiclevel set algorithms in Matlab� for any number of dimensions. In using Matlab we seekto minimize not execution time, but the combination of execution and coding time. Inour experience, the visualization, debugging, data manipulation and scripting capabilities ofMatlab make construction of numerical code so much simpler, when compared to compiledlanguages like C++ or Fortran, that the increase in execution time is quite acceptable.Readers interested in faster implementations should note that for the restricted class ofproblems that we consider in the toolbox the execution time penalty is relatively small. It isonly for more complex problems on unstructured, adaptive or localized grids that a compiledimplementation will run signi�cantly faster.
In the jargon of the level set literature, this toolbox provides routines to solve time-dependentHamilton-Jacobi and related equations on �xed, structured Cartesian grids in any number ofdimensions. More concretely, the PDE to be solved is of the form

Dt�(x; t) +H(x; t; �;r�;D2x�) = 0 for x 2 Rn; t � 0: (1)
subject to initial conditions �(x; t) = �0(x) for x 2 Rn: (2)In this PDE, x 2 Rn is the state space, � : Rn � R! R is the level set function, Dt� is thepartial derivative of � with respect to the time variable t, r� = Dx� is the gradient of �|thevector of partials of � with respect to the state space variables x|and D2x� is the Hessianmatrix of second partial derivatives with respect to the state space variables. The initial�Matlab is a product and trademark of The Mathworks Incorporated of Natick, Massachusetts. For moredetails see http://www.mathworks.com/products/matlab/. The level set toolbox described in this documentwas developed by the authors of this document, and is neither endorsed by nor a product of The Mathworks.
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conditions �0 should be bounded and continuous and H should satisfy the monotonicityrequirement [8]
H(x; t; r; p;X) � H(x; t; s; p;Y); whenever r � s and Y � X; (3)

where X and Y are symmetric matrices of appropriate dimension. Since the initial condi-tions (2) may not satisfy (1), they are the limit as t! 0 of the solution �(x; t). This PDE isalso sometimes called �rst order hyperbolic (if there is no D2x� term) or degenerate parabolic(if the term involving D2x� is not of full rank). Unless H is linear and of full rank in the high-est order derivative which is present, even with smooth initial conditions � may not remaindi�erentiable and hence (1) will have no classical solution. The algorithms of the toolbox aredesigned to approximate the viscosity solution [6], which is the appropriate weak solution formany problems that lead to equations of the form (1), although it is not the only possibleweak solution.
A key feature of the viscosity solution of (1) is that under suitable conditions � remainsbounded and continuous for all time. This property may not hold for other types of HJ PDE,such as the stationary (time-independent) equations arising in minimum time to reach prob-lems (see section 2.7). The algorithms in the toolbox make use of the continuity assumptionto achieve improved accuracy. The terms presently implemented in the toolbox, and theassumption made about their properties|essentially boundedness and (usually Lipschitz)continuity|are designed to maintain this assumption.
1.2 Contents of the Toolbox
General schemes for solving the potentially nonlinear (1) are di�cult to implement andoften sacri�ce speed, accuracy and/or ease of use to achieve convergence. Furthermore, fewpractical problems require the full generality of this equation. Consequently, the currenttoolbox implements only a variety of special cases:

0 =Dt�(x; t) (4)+ v(x; t) � r�(x; t) (5)+ a(x; t)kr�(x; t)k (6)+ sign(�(x; 0))(kr�(x; t)k � 1) (7)+H(x; t; �;r�) (8)� b(x; t)�(x; t)kr�(x; t)k (9)� trace[L(x; t)D2x�(x; t)R(x; t)] (10)+ �(x; t)�(x; t) (11)+ F (x; t; �); (12)
11



subject to constraints
Dt�(x; t) � 0; Dt�(x; t) � 0; (13)�(x; t) �  (x; t); �(x; t) �  (x; t); (14)

Note that the time derivative (4) and at least one term involving a spatial derivative (5){(10)must appear, otherwise the equation is not a time-dependent HJ PDE. Numerical approxi-mations for each type of term are provided.
� The time derivative (4) is approximated with an explicit total variation diminishingRunge-Kutta integration scheme with order of accuracy between one and three [24,chapter 3.5]. Because it is an explicit integrator, CFL conditions restrict the size ofeach timestep. An example is given in section 2.1 and a description of the toolboxroutines in section 3.5.
� Motion by a velocity �eld (5), also called advection or convection. The user providesthe velocity �eld v : Rn � R ! Rn, and the gradient r�(x; t) is approximated withan upwind �nite di�erence scheme with order of accuracy between one and �ve [24,chapter 3]. An example is given in section 2.1, a description of the toolbox routinesfor upwind �nite di�erence approximations in section 3.4.1, and a description of thetoolbox routine for approximating constant velocity 
ow �elds in section 3.6.1.
� Motion in the normal direction (6). The user provides the speed of the interface a :Rn�R! R, and r�(x; t) is approximated with an upwind �nite di�erence scheme [24,chapter 6]. An example is given in section 2.3.2 and a description of the toolbox routinein section 3.6.1.
� The reinitialization equation (7). This term is identically zero for signed distancefunctions, and can be applied to implicit surface functions in order to transform theminto signed distance functions [24, chapter 7.4]. A Godunov scheme for its solution canbe found in [12, appendix A.3], which allows this term to be stably approximated witha minimum of arti�cial dissipation. A subcell �x from [27] is optional but is used bydefault on nodes adjacent to the interface to keep the interface from moving duringreinitialization. Note that the initial conditions are used inside the signum functionin (7). Examples are given in sections 2.2.1 and 2.10 and a description of the toolboxroutine in section 3.6.1. Reinitialization is usually applied as an auxiliary step by itself;a helper routine for this process is described in section 3.7.4.
� A general Hamilton-Jacobi term (8) can treat a variety of applications, includingoptimal control and di�erential games. The user provides the analytic HamiltonianH : Rn � R� R� Rn ! R. Note that if H depends on �, the user must ensure that itsatis�es the monotonicity requirement (3). Upwind �nite di�erence approximations ofr�(x; t) are provided, and Lax-Friedrichs is used to stably approximate the H(x; t; r; p)
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function (with various options for the degree of localization when calculating the arti-�cial dissipation coe�cient) [24, chapter 5]. An example is given in section 2.2.2 and adescription of the toolbox routines in section 3.6.2.
� Motion by mean curvature (9). The user provides the speed b : Rn � R ! R+, whilethe mean curvature �(x; t) and gradient r�(x; t) are approximated by centered secondorder accurate �nite di�erence approximations [24, chapter 4]. An example is given insection 2.3.1, a description of the toolbox routines for centered �nite di�erence approx-imations in section 3.4.2, and a description of the toolbox routine for motion by meancurvature in section 3.6.3.
� Motion by the trace of the Hessian (10), which arises from the Kolmogorov or Fokker-Planck equations when working with stochastic di�erential equations [13,22]. The userprovides the matrices L;R : Rn�R! Rn�n, while the Hessian matrix of mixed secondorder spatial derivatives D2x�(x; t) is approximated by centered second order accurate�nite di�erence approximations. This feature has not yet been implemented, but willbe available in future releases.
� Discounting terms (11), which arise when solving some types of optimal control prob-lems [2] or stochastic di�erential equations [22] (in which context they relate to the\killing" process). The user provides the discount factor � : Rn �R! R. This featurehas not yet been implemented, but will be available in future releases.
� Forcing terms (12), which the user provides F : Rn � R� R ! R. If F depends on �,the user must ensure that it satis�es the monotonicity requirement (3). This featurehas not yet been implemented, but will be available in future releases.
� Constraints (13) that the implicit surface should not grow or should not shrink. Anexample is given in section 2.2 and a description of the toolbox routine in section 3.6.4.
� Constraints (14) that the implicit surface should not enter or should not exit anotherimplicit surface. The user provides  : Rn � R ! R de�ning the other implicit sur-face. Unlike most other terms, this constraint is handled in an indirect manner usingthe postTimestep option of the time integration routines. The option is discussed insection 3.5.3, and an example is given in section 2.2.3.

This collection of terms covers most of the cases arising in applications, although the toolboxis organized so that adding more types of terms is relatively straightforward.
1.3 Using the Toolbox
Running the Toolbox requires Matlab Version 6.5 or later. Only the base Matlab isrequired; no additional Matlab toolboxes are used by the kernel code or by any of the
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examples in this manual. Assuming that Matlab is operational on your system, the stepsto using the Toolbox of Level Set Methods are to download an archive of the most recentversion of the Toolbox from the web site [14] (available in zip or tarball format), unpack thearchive, and follow the instructions in the README �le.
The best way to start learning how to use the Toolbox is by looking at the examples, inparticular the annotated example described in section 2.1. Hopefully, most problems will besimilar to one or more of the examples from section 2, so that one of those routines can bemodi�ed rather than starting from scratch.
When it comes time to develop code that implements a new application, there are severalbasic steps that should be followed.

1. Determine the Hamilton-Jacobi equation.2. Pick out the relevant types of terms from (4){(14), or implement new ones if necessary.3. If upwinded approximations of �rst order derivatives are required, decide on the desiredorder of accuracy.4. Provide the other parameters needed by the HJ term approximations (velocities, speeds,matrices, discount factors, etc.).5. Decide on the desired order of accuracy for the time derivative approximation, and theCFL number.6. Pick the boundary conditions.7. Create the grid.8. Create the initial condition �(x; 0).9. Integrate forward in time, with occasional pauses to display or save the results.
1.4 Troubleshooting
Based on the author's experience, common mistakes include:
� Failure to follow the instructions in the README �le. If an error of the form Undefinedfunction or variable 'processGrid' is encountered when an example is run forthe �rst time, the most likely problem is that Matlab cannot �nd the kernel routinesbecause they have not been added toMatlab's search path using addpath. A functionaddPathToKernel is contained in the Examples/ directory, and it must be edited bythe user to provide the absolute path to the Kernel/ directory of the Toolbox beforeany of the examples can be run (older versions of Matlab have trouble with relativepath references, hence the need to provide an absolute path).
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� Too coarse a grid. Static implicit surface functions cannot resolve details of surfacefeatures that are smaller than a grid cell. Dynamic evolution of those surfaces using theschemes described here introduces numerical dissipation, so that even features whosesize is a few grid cells may be smoothed away. In general, any important featuresmust be at least three to �ve grid cells wide in each dimension in order for them to bemaintained for more than a few timesteps, even when using methods with high orderaccuracy. In some cases, a su�ciently �ne regular grid may be too computationallyexpensive to evolve and adaptive meshing may be required.
� Poor dimensional scaling. Signed distance functions and the PDE solvers includedin this toolbox work best if all the dimensions in the problem are approximately thesame size; for example, the grid ranges and cell widths should be within an orderof magnitude of one another. If dimensions involve widely di�erent scales|such asradians and thousands of feet|then the problem parameters should be scaled to bringthe dimensional ranges closer together. Care must be taken in this process to ensurethat all ranges, dynamics and other parameters (such as bounds on partial derivativemagnitudes) are scaled by the same amount.
� Incorrect initialization. If no implicit surface can be seen at t = 0, two quick checksshould be performed. First, make sure that the desired implicit surface falls withinthe bounds of the computational grid (as de�ned by the structure members grid.minand grid.max). Second, make sure that the desired implicit surface is at least two gridcells wide in each dimension (the width of a grid cell is given by the structure membergrid.dx).
� Numerical instability. The level set function may become highly oscillatory, a behaviorwhich manifests itself by the sudden appearance of many convoluted looking surfaces intwo dimensional contour or three dimensional isosurface plots. Instability can be causedby buggy boundary conditions, poor dimensional scaling, incorrect CFL restrictions (forexample, if the bounds on the partial derivative of the Hamiltonian are too small whensolving a problem with a general HJ term (8)), or bugs in the kernel.
� Sign problems. If the surface seems to be moving in the wrong direction, try switchingthe sign of the 
ow.
� Mixing up ndgrid-based and meshgrid-based grids. The Toolbox always uses ndgrid-based grids because they can be used in any dimension and because the data theygenerate is more consistent when exported to other applications. Unfortunately, someroutines in Matlab require the incompatible meshgrid-based grids. Even more dan-gerously, many of Matlab's visualization routines silently default to meshgrid-basedgrids when no spatial grid argument is provided. Consequently, the grid argumentsshould always be speci�ed with grid.xs for any Matlab visualization routine. Forexample, the correct call is surf(grid.xsf1g, grid.xsf2g, data). The incorrect callsurf(data) will silently create a meshgrid-based array with indices 1; : : : ; grid.N(d)
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for each d = 1; : : : ; grid:dim, and may 
ip some dimensions. The accidental and silentuse of meshgrid can lead to visualizations with distortions that are very hard to spot;in particular, it plays havoc with the vector �elds displayed by quiver. See section 3.1.3for more details and for a routine that converts between ndgrid-based and meshgrid-based grids.
1.5 Advanced Tips for the Toolbox
We heartily endorse attempts to modify the toolbox, add to it, or use some of its moreadvanced features (such as general Hamilton-Jacobi terms); however, we do have some rec-ommendations.
� Start with a simpli�ed example that is known to work, and add features incrementallywith tests until the full version is achieved.
� Start with low order accurate approximations on a reasonably coarse grid. If it works,improve the accuracy. Often it is more e�cient to increase the order of accuracy ofthe approximations than to re�ne the grid. On the other hand, for most examples thebiggest improvement is seen when moving from �rst to second order of accuracy; addi-tional orders of accuracy may not be worth the computational e�ort if only qualitativeor visual error is important.
� Learn how to use Matlab's debugging and visualization systems. One of the reasonsthat structures were used extensively in this version (rather than full blown classes)was to allow their contents to be examined easily during debugging at any level of thestack. Furthermore, the ability to produce contour and isosurface plots at the debuggercommand line makes debugging of two and three dimensional code merely unpleasant,instead of virtually impossible.
� Learn Matlab's cell arrays (arrays written with \fg" instead of \()"). In order tocreate dimensionally independent code, cell arrays were used extensively in the kernelcode. In particular, if data is an n dimensional (regular) array and indices is a cellvector of length n (a two dimensional cell array of size n� 1) each element of which isa regular vector, then the syntax data(indicesf:g) can be used to pick out subsetsand slices of data. For example, if data = rand([10 10 10]) and indices = f 2:9;4:6; 5 g, then data(indicesf:g) = data(2:9,4:6,5). More generally, the notationindicesf:g turns the elements of the cell array indices into a comma separated listthat can be used either to index into an array or as the parameter list for a function;for example, to call interpn in a dimensionally independent way. Another very usefulfunction for cell arrays is Matlab's deal; for example, the help text of deal showshow to collect the comma separated list of parameters returned by a function into asingle cell array.
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� Learn how to vectorize in theMatlab sense. Despite working inMatlab's interpretedprogramming environment, this toolbox can achieve nearly the performance of compiledcode. In order to achieve this performance, it is important never to loop explicitly overthe elements of the data array. Instead, all operations on the data array are writtenas element-wise sums, products (\.*") and logical comparisons. The result is not asmemory e�cient as could be achieved in a carefully constructed compiled code, but itis far better than explicit loops.
� Tell us if you �nd a repeatable bug.

1.6 Other Publications about the Toolbox
Publications currently available describing the Toolbox and/or its applications include:
� Applications in control, simulation and veri�cation of continuous and hybrid systems [20].
� Design and implementation so that the Toolbox can easily be used to test new level setschemes in the �eld of numerical analysis [16].

Although there is some slight overlap between these papers and this manual, most of thematerial in these papers is complementary to the material covered here. These other papersmay also include schemes and/or examples which are not part of the base Toolbox downloaddiscussed here. In those cases, code is available as separate downloads from the Toolbox website [14].
1.7 Citing the Toolbox
It may seem a bit silly to discuss citations, a cross referencing system designed for paperpublications, when talking about software available on the Internet. Nevertheless, citationsmatter to the author's academic career. Consequently, users (particularly those in academia)are encouraged to provide a bibliographic entry in articles which make use of the Toolbox,because alternative methods of attribution|such as plain text footnotes or the Toolbox'sURL|are not so easily identi�ed by automated cross-referencing systems.
Users should cite whichever publication is most appropriate to their application from amongthose available [16,18,20]. Thanks!
One additional note about citations. Almost all of the schemes in the original version ofthe Toolbox were drawn from [24]. In the rush to produce documentation, references to theprimary literature on these schemes was mostly omitted. These omissions are de�nitely a
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bug in the documentation, and hence reports of missing citations are welcome. Like all bugreports, it is important to provide as much information as possible; for missing citations, thatmeans speci�c papers. As the Toolbox is updated, citations to the primary literature will beadded for both the new schemes and the old.
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2 Level Set Examples
Our examples fall into three categories: those that are motivated by speci�c examples takenfrom papers or texts, those that demonstrate the basic capabilities of the toolbox, and thosedesigned to test aspects of the implementation. The code implementing most of the examplesin the former two categories follows a similar structures, so as a starting point, we providean extensively annotated script �le which shows how to implement motion by an externalvelocity �eld.
The �rst step to running the examples described in this section is to modify the script�le Examples/addPathToKernel so that it contains the absolute path name for the Kerneldirectory. The absolute path name is required because current versions of Matlab appearunable to create function handles involving relative path names. Once this modi�cationis performed, it should be possible to enter into any of the example subdirectories, startMatlab, and execute one of the examples by typing its name at the Matlab prompt.
2.1 Getting Started: Convective Motion (5)
In this section we examine in detail how to implement motion by an external velocity �eld (5)using the �le Examples/Basic/convectionDemo. The implementation of many of the otherexamples follows the same basic framework.
[ data, g, data0 ] = convectionDemo(flowType, accuracy, displayType): Demon-strate motion by an external velocity �eld. The three input parameters are strings; theoptions for the �rst two are explained in the help text and the options for displayTypecome directly from the helper routine visualizeLevelSet. All three input parame-ters are optional. The returned parameters are the �nal �(x; tmax) function data, thecomputational grid g and the initial �(x; 0) function data0.
Figure 1 shows the results of running convectionDemo('linear', 'medium'). Beyond thethree input parameters, there are many other options to the way this example runs and isdisplayed. These options can be easily modi�ed by editing the source of convectionDemodirectly.
� Initial and �nal time.
� Whether to display intermediate results. If so, how many intermediate results, whetherto display results in a single �gure or as a sequence of subplots, whether to pausebetween visualizations, and whether to remove visualizations from previous timestepsbefore displaying the next.
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Figure 1: Result of running convectionDemo('linear', 'medium'). Shows motion by aconstant rotational external velocity �eld.
� Grid parameters: dimension, resolution, periodic or extrapolating boundary conditions.
� Details of the velocity �eld.
� Shape and location of the initial surface.

For more details, see the commentary below. Increasing accuracy will increase executiontime. Table 1 shows the execution times for each of the accuracy options with flowType ='linear'. In order to get better resolution of the execution time, the grid resolution wasdoubled to g.dx = 0.01 (see below for details on how to make this change). The compu-tational platform was a Pentium 4 with plenty of memory running Matlab 6.5 in WindowsXP Professional. Examining the �gures, the low accuracy run had clearly lost area by theend of the full rotation (at tmax) but the remaining choices were visually indistinguishable.A quantitative error comparison will be performed when somebody has the time to write thescripts.
We now examine the components of the source code for convectionDemo. Notice that mostof the �le is concerned with initialization, since the toolbox and Matlab handle the realwork.

1 function [ data, g, data0 ] = convectionDemo(flowType, accuracy, displayType)2 % convectionDemo: demonstrate a simple convective flow field.
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Accuracy Temporal Spatial Execution TimeParameter Accuracy Accuracy seconds relativelow 1 1 140 1medium 2 ENO 2 684 5high 3 ENO 3 2433 17very high 3 WENO 5 2585 18
Table 1: Execution time for convectionDemo('linear', accuracy) with the various choicesof accuracy on a 1013 grid with extrapolated boundary conditions.

3 %4 % [ data, g, data0 ] = convectionDemo(flowType, accuracy, displayType)5 %6 % This function was originally designed as a script file, so most of the7 % options can only be modified in the file.8 %9 % For example, edit the file to change the grid dimension, boundary conditions,10 % flow field parameters, etc.11 %12 % Parameters:13 %14 % flowType String to specify type of flow field.15 % 'constant' Constant flow field xdot = k (default).16 % 'linear' Linear flow field xdot = A x.17 % 'constantRev' Constant flow field, negate at t_half.18 % 'linearRev' Linear flow field, negate at t_half.19 % accuracy Controls the order of approximations.20 % 'low' Use odeCFL1 and upwindFirstFirst (default).21 % 'medium' Use odeCFL2 and upwindFirstENO2.22 % 'high' Use odeCFL3 and upwindFirstENO3.23 % 'veryHigh' Use odeCFL3 and upwindFirstWENO5.24 % displayType String to specify how to display results.25 % The specific string depends on the grid dimension;26 % look at the helper visualizeLevelSet to see the options27 % (optional, default depends on grid dimension).28 %29 % data Implicit surface function at t_max.30 % g Grid structure on which data was computed.31 % data0 Implicit surface function at t_0.3233 % Ian Mitchell, 2/9/043435 %---------------------------------------------------------------------------36 % You will see many executable lines that are commented out.37 % These are included to show some of the options available; modify
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38 % the commenting to modify the behavior.39
Standard opening comments, including the help text. The blank line 32 ensures that sub-sequent comment lines are not included in the help entry. Notice the options for inputparameters flowType and accuracy.

40 %---------------------------------------------------------------------------41 % Make sure we can see the kernel m-files.42 run('../addPathToKernel');43
To make sense of the function calls and function handles encountered in the remainder of the�le, the kernel directories must be onMatlab's path. The script Examples/addPathToKerneladds the Kernel directory and all its subdirectories toMatlab's path if they are not alreadypresent (so repeated executions of addPathToKernel are safe). We use the functional formof run in order to access the parent directory.

44 %---------------------------------------------------------------------------45 % Integration parameters.46 tMax = 1.0; % End time.47 plotSteps = 9; % How many intermediate plots to produce?48 t0 = 0; % Start time.49 singleStep = 0; % Plot at each timestep (overrides tPlot).5051 % Period at which intermediate plots should be produced.52 tPlot = (tMax - t0) / (plotSteps - 1);5354 % How close (relative) do we need to get to tMax to be considered finished?55 small = 100 * eps;5657 %---------------------------------------------------------------------------58 % What level set should we view?59 level = 0;6061 % Pause after each plot?62 pauseAfterPlot = 0;6364 % Delete previous plot before showing next?65 deleteLastPlot = 0;6667 % Plot in separate subplots (set deleteLastPlot = 0 in this case)?68 useSubplots = 1;69
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Figure 2: Result of running convectionDemo('linearRev', 'low') with internal parameteruseSubplots = 0. Shows rigid body rotation about the origin, clockwise for the �rst halfof the simulation and then counter clockwise for the remainder. The loss of area associatedwith using low accuracy methods is obvious from the fact that the two sets of circles do notoverlap.
All of these parameters are meant to be modi�ed by the user except tPlot and small. Thedi�erence tMax�t0 controls the length of the simulation, and tMax=2 is the time at which thetime dependent 
ow �elds constantRev and linearRev reverse directions (see below). Thenumber of intermediate plots includes the plots of the initial and �nal conditions, so chooseplotSteps � 2. The time between plots is controlled by tPlot and depends on the length ofthe simulation and the number of plots. The parameter small takes care of the fact that the�nal timestep often comes up a little short of the �nal time, but so close that taking anothertimestep is not worth the e�ort. The boolean parameter singleStep can be turned on toforce visualization of the surface after every CFL constrained timestep. It is mostly useful fordebugging, and we recommend choosing deleteLastPlot = 1 and useSubplots = 0 if youchoose singleStep = 1. If useSubplots = 0, then all visualizations are done in a singlefull �gure axis. Figure 2 shows the results of running convectionDemo('linearRev','low')when the source is modi�ed to set the internal parameter useSubplots = 0. The parameterlevel chooses which isosurface of � is visualized when using contour plots (in 2D) or surfaces(in 3D).

70 %---------------------------------------------------------------------------71 % Use periodic boundary conditions?72 periodic = 0;
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(a) (b)
Figure 3: Running convectionDemo in other dimensions by modifying the internal parameterg.dim. These are not exactly the �gures generated during the run: the subplots generatedduring the run have had their axis bounds adjusted to be consistent across all nine subplotsin each case. Figure 3(a): The implicit surface function � for a one dimensional example runby convectionDemo('constantRev', 'veryHigh'). Figure 3(b): An isosurface plot for athree dimensional example run by convectionDemo('linear', 'medium').

7374 % Create the grid.75 g.dim = 2;76 g.min = -1;77 g.dx = 1 / 50;78 if(periodic)79 g.max = (1 - g.dx);80 g.bdry = @addGhostPeriodic;81 else82 g.max = +1;83 g.bdry = @addGhostExtrapolate;84 end85 g = processGrid(g);86
This block of code creates the computational grid. The user may modify the boolean 
agperiodic to choose whether periodic or extrapolation boundary conditions are used (orchoose something else by setting g.bdry). Dimension is set with g.dim and resolution withg.dx. Since all dimensions have the same resolution, bounds and boundary conditions, itis only necessary to store scalars and single function handles in the �elds. The call toprocessGrid automatically extends all �elds (except g.dim) to their full vector length. Miss-
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ing �elds are given inferred values (such as g.N) or defaults (such as g.bdryData). Figure 3shows the results of running this example in dimensions one and three.
87 %---------------------------------------------------------------------------88 % Most of the time in constant flow case, we want flow in a89 % distinguished direction, so assign first dimension's flow separately.90 constantV = 0 * ones(g.dim);91 constantV(1) = 2;92 constantV = num2cell(constantV);9394 % Create linear flow field xdot = A * x95 linearA = 2 * pi * [ 0 1 0 0; -1 0 0 0; 0 0 0 0; 0 0 0 0 ];96 %linearA = eye(4);97 indices = { 1:g.dim; 1:g.dim };98 linearV = cellMatrixMultiply(num2cell(linearA(indices{:})), g.xs);99
Flow �elds are de�ned by cell vectors. Element i of the cell vector gives the motion in theith dimensions. Element i can be either a scalar|if the 
ow �eld does not depend on x|oran array of size grid.shape, each element of which gives the motion in dimension i for thecorresponding node of the grid. While Matlab has many ways to generate regular vectors,matrices and arrays, there are few ways to similarly populate cell arrays. This block of codedemonstrates a few, including the very useful num2cell.
The constant 
ow �eld v(x) = constantV demonstrates a spatially independent 
ow �eld,in this case a 
ow �eld with speed two along the �rst dimension. The linear 
ow �eldv(x) = Ax = linearV demonstrates the spatially dependent 
ow �eld. In order to allow forvariable dimension, the array A = linearA is de�ned up to dimension 4. Line 95 providesa de�nition of A which generates rotation about the origin in the x1-x2 plane. Line 96 canbe uncommented to generate an exponentially growing surface. The magic is performed inline 98, where cellMatrixMultiply computes Ax at every node x in the grid. In particular,the appropriate g:dim � g:dim subset of linearA is picked out by indicesf:g, which turnsthe indices cell vector into a comma separated list that can be used as an argument to afunction or (in this case) an index into an array. This \f:g" construction is used extensivelythroughout the toolbox to provide dimensionally independent code.

100 %---------------------------------------------------------------------------101 if(nargin < 1)102 flowType = 'constant';103 end104105 % Choose the flow field.106 switch(flowType)
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107108 case 'constant'109 v = constantV;110111 case 'linear'112 v = linearV;113114 case 'constantRev'115 v = @switchValue;116 schemeData.one = constantV;117 schemeData.two = cellMatrixMultiply(-1, constantV)118 schemeData.tSwitch = 0.5 * tMax;119120 case 'linearRev'121 v = @switchValue;122 schemeData.one = linearV;123 schemeData.two = cellMatrixMultiply(-1, linearV)124 schemeData.tSwitch = 0.5 * tMax;125126 otherwise127 error('Unknown flowType %s', flowType);128129 end130
This block of code picks out which velocity �eld will be used in the run. The default 
ow�eld is determined by line 102. The �rst two cases of 
ow �eld 'constant' and 'linear'are straightforward, and show how to create a time independent 
ow �eld using a constantcell vector. For time dependent 
ow �elds, a function handle is passed instead. The func-tion switchValue is described below. It requires that the schemeData structure have someadditional �elds beyond those required by termConvection: one, two, and tSwitch (theseadditional �elds will be ignored by termConvection). Note the use of cellMatrixMultiplywith a scalar parameter to reverse the direction of the 
ow �elds for the second half of thesimulation.

131 %---------------------------------------------------------------------------132 % What kind of display?133 if(nargin < 3)134 switch(g.dim)135 case 1136 displayType = 'plot';137 case 2138 displayType = 'contour';139 case 3140 displayType = 'surface';
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141 otherwise142 error('Default display type undefined for dimension %d', g.dim);143 end144 end
The default visualization style for each of dimensions 1{3 is set by this block of code. Whilethe toolbox is almost entirely dimensionally independent, and the version of convectionDemodescribed here will work computationally for dimensions up to four, visualization is challeng-ing for dimensions greater than three.

145 %---------------------------------------------------------------------------146 % Create initial conditions (a circle/sphere).147 % Note that in the periodic BC case, these initial conditions will not148 % be continuous across the boundary unless the circle is perfectly centered.149 % In practice, we'll just ignore that little detail.150 center = [ -0.4; 0.0; 0.0; 0.0 ];151 radius = 0.35;152 data = zeros(size(g.xs{1}));153 for i = 1 : g.dim154 data = data + (g.xs{i} - center(i)).^2;155 end156 data = sqrt(data) - radius;157 data0 = data;158
The initial conditions are a sphere in dimension grid.dim of radius radius centered atcenter. Note the vectorized use of g.xs to determine the initial implicit surface function (infact, this is a signed distance function).

159160 %---------------------------------------------------------------------------161 if(nargin < 2)162 accuracy = 'low';163 end164165 % Set up spatial approximation scheme.166 schemeFunc = @termConvection;167 schemeData.velocity = v;168 schemeData.grid = g;169170 % Set up time approximation scheme.171 integratorOptions = odeCFLset('factorCFL', 0.5, 'stats', 'on');172173 % Choose approximations at appropriate level of accuracy.
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174 switch(accuracy)175 case 'low'176 schemeData.derivFunc = @upwindFirstFirst;177 integratorFunc = @odeCFL1;178 case 'medium'179 schemeData.derivFunc = @upwindFirstENO2;180 integratorFunc = @odeCFL2;181 case 'high'182 schemeData.derivFunc = @upwindFirstENO3;183 integratorFunc = @odeCFL3;184 case 'veryHigh'185 schemeData.derivFunc = @upwindFirstWENO5;186 integratorFunc = @odeCFL3;187 otherwise188 error('Unknown accuracy level %s', accuracy);189 end190191 if(singleStep)192 integratorOptions = odeCFLset(integratorOptions, 'singleStep', 'on');193 end194
This block sets up function handles for both the spatial approximation scheme schemeFuncand the time integration scheme integratorFunc. The default accuracy is determined byline 162. The meaning of each level of accuracy is determined by the switch/case statement.The 
ow �eld information which was determined earlier is stored into schemeData.velocity.In line 192, notice that an existing odeCFLn option structure is modi�ed if single steppinghas been requested.

195 %---------------------------------------------------------------------------196 % Initialize Display197 f = figure;198199 % Set up subplot parameters if necessary.200 if(useSubplots)201 rows = ceil(sqrt(plotSteps));202 cols = ceil(plotSteps / rows);203 plotNum = 1;204 subplot(rows, cols, plotNum);205 end206207 h = visualizeLevelSet(g, data, displayType, level, [ 't = ' num2str(t0) ]);208209 hold on;210 if(g.dim > 1)211 axis(g.axis);
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212 daspect([ 1 1 1 ]);213 end214
This block of code performs basic display initialization. If subplots have been requested,the layout of the subplot array must be determined. Before calling visualizeLevelSet toperform the actual visualization, we make current the appropriate �gure axis with eitherfigure or subplot. The current time is passed in a string for use as the title of the �gure.As a side e�ect, visualizeLevelSet will �nish with a call to drawnow to ensure that theresults are shown before computation proceeds. Because this call to drawnow is performedbefore the modi�cations in lines 211{212, they may not be immediately visible.

215 %---------------------------------------------------------------------------216 % Loop until tMax (subject to a little roundoff).217 tNow = t0;218 startTime = cputime;219 while(tMax - tNow > small * tMax)220221 % Reshape data array into column vector for ode solver call.222 y0 = data(:);223224 % How far to step?225 tSpan = [ tNow, min(tMax, tNow + tPlot) ];226227 % Take a timestep.228 [ t y ] = feval(integratorFunc, schemeFunc, tSpan, y0,...229 integratorOptions, schemeData);230 tNow = t(end);231232 % Get back the correctly shaped data array233 data = reshape(y, g.shape);234
This is the heart of the simulation, where all of the work is accomplished. Integration ofthe underlying PDE is accomplished entirely by lines 228{229. Lines 222 and 233 massagethe array data that stores the implicit surface function � into the shape required by theintegrator functions integratorFunc = @odeCFLn and back again. Lines 219, 225 and 230keep track of the passage of simulation time.

235 if(pauseAfterPlot)236 % Wait for last plot to be digested.237 pause;238 end
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239240 % Get correct figure, and remember its current view.241 figure(f);242 figureView = view;243244 % Delete last visualization if necessary.245 if(deleteLastPlot)246 delete(h);247 end248249 % Move to next subplot if necessary.250 if(useSubplots)251 plotNum = plotNum + 1;252 subplot(rows, cols, plotNum);253 end254255 % Create new visualization.256 h = visualizeLevelSet(g, data, displayType, level, [ 't = ' num2str(tNow) ]);257258 % Restore view.259 view(figureView);260261 end262263 endTime = cputime;264 fprintf('Total execution time %g seconds', endTime - startTime);265266267
These remaining lines complete the while loop that manages simulation time and the convectionDemofunction as a whole. They are devoted to visualization.

268 %---------------------------------------------------------------------------269 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%270 %---------------------------------------------------------------------------271 function out = switchValue(t, data, schemeData)272 % switchValue: switches between two values.273 %274 % out = switchValue(t, data, schemeData)275 %276 % Returns a constant value:277 % one for t <= tSwitch;278 % two for t > tSwitch.279 %280 % By setting one and two correctly, this function can implement
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281 % the velocityFunc prototype for termConvection;282 % the scalarGridFunc prototype for termNormal, termCurvature and others;283 % and possibly some other prototypes...284 %285 % Parameters:286 % t Current time.287 % data Level set function.288 % schemeData Structure (see below).289 %290 % out Either schemeData.one or schemeData.two.291 %292 % schemeData is a structure containing data specific to this type of293 % term approximation. For this function it contains the field(s)294 %295 % .one The value to return for t <= tSwitch.296 % .two The value to return for t > tSwitch.297 % .tSwitch The time at which the switch between flow fields occurs.298 %299 % schemeData may contain other fields.300301 checkStructureFields(schemeData, 'one', 'two', 'tSwitch');302303 if(t <= schemeData.tSwitch)304 out = schemeData.one;305 else306 out = schemeData.two;307 end308
This subfunction switchValue within convectionDemo is an example of a function satisfyingthe velocityFunc prototype for the term approximation termConvection (see section 3.6.1).It implements a time dependent 
ow �eld by choosing one of two constant 
ow �elds basedon the current time. This simple time dependent function also satis�es the scalarGridFuncprototype (assuming that schemeData.one and schemeData.two are set appropriately), andis used in the examples normalStarDemo and curvatureStarDemo in section 2.3. Much morecomplex time dependent velocity �elds are possible with this framework.
2.2 Basic Examples
This section discusses functions found in the directory Examples/Basic. This directoryprovides an example for each of the types of spatial terms (7){(14) with the exception ofmotion by mean curvature (9). Examples for the omitted terms can be found elsewhere:section 2.1 for motion by a constant velocity �eld (5) and section 2.3 for motion in the normaldirection (6) and motion by mean curvature (9). Since terms (11){(14) do not include a
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(a) �(x; 0) (b) �(x; tmax) (c) kr�(x; t)k
Figure 4: Comparing initial (left) and �nal (center) implicit surface functions forreinitDemo('star', 'medium', 'surf'). The right �gure shows how the magnitude ofthe gradient of the �nal �(x; tmax) (solid line) is much more consistent and close to unitythan that of the initial �(x; 0) (dashed line). All of these �gures were generated with thesubcell �x.
spatial derivative, examples for these terms naturally include a combination with other typesof term.
2.2.1 The Reinitialization Equation (7)
This section describes the function Examples/Basic/reinitDemo.
Reinitialization is the process of converting an implicit surface function into a signed distancefunction|modifying � such that kr�k � 1 without moving its zero isosurface. Reinitializa-tion was �rst proposed in [5], and the PDE formulation now called the reinitialization equa-tion was introduced by [33]. The reinitialization equation is a general HJ PDE with spatialterm (7), and unlike other methods for reinitialization it does not require explicitly locatingthe current zero isosurface of �. The numerical approximation used in the Toolbox for thereinitialization equation is a Godunov scheme from [12, appendix A.3]. By default a �rstorder accurate subcell �x from [27] is applied to the nodes adjacent to the zero isosurface inorder to reduce movement of that isosurface during reinitialization, but this �x is optional.For more details on the �x and additional reinitialization examples, see section (2.10).
Under normal circumstances the reinitialization equation is solved in a pseudo-time that takesplace between timesteps of the regular dynamic surface integration by an auxiliary integrationroutine that hides the details; for example, see signedDistanceIterative in section 3.7.4and reinitTest in section 2.11.3. However, for the purposes of demonstrating and testingthe term approximation function termReinit, we provide the following routine.
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(a) fx j �(x; t) = 0g (with subcell �x) (b) fx j �(x; t) = 0g (without subcell �x)
Figure 5: Examining the e�ect of reinitialization on the implicit surface (the zero isosurfaceof �(x; t)). There is much less movement of the interface with the �rst order accurate subcell�x from [27] than without.
[ data, g, data0 ] = reinitDemo(initialType, accuracy, displayType): Demonstratethe reinitialization equation. The three input parameters are strings; the last two arethe same as for convectionDemo. The initialType can be either 'circle' (an o�center circle) or 'star' (a centered seven pointed star). All three input parameters areoptional. The returned parameters are the �nal �(x; tmax) function data, the compu-tational grid g and the initial �(x; 0) function data0. Edit the �le to modify the gridsize or to choose not to apply the subcell �x.
The internals of reinitDemo are virtually identical to convectionDemo, so we discuss themno further here.
In the 'circle' case, the initial implicit surface function for an o� center circle is not a signeddistance function because of the periodic boundary conditions. In the 'star' case, the initialimplicit surface function does not have unit magnitude gradient (see (16) in section 2.3 for theinitial implicit surface equation). Figure 4 shows the results for the 'star' case, includinghow the reinitialization procedure successfully adjusts the gradient magnitude to be close tounity. Figure 5 shows the e�ect of reinitialization on the zero isosurface. Without the subcell�x from [27], there is a small but visually identi�able movement; with the �x the interfaceappears to be stationary. These results were calculated on a relatively coarse grid (g.dx =0.02) using accuracy = 'medium'.
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A script �le reinitDemoFigures is provided, which runs reinitDemo and generates most ofthe plots for �gures 4 and 5. To generate the contour plot without the subcell �x in �gure 5,reinitDemo must be edited and run a second time.
2.2.2 General HJ Terms (8)
This section describes the function Examples/Basic/laxFriedrichsDemo.
General Hamilton-Jacobi equations are challenging but useful in a wide variety of applica-tions. In this section we look at how convective motion can be formulated as a general HJ,which is perhaps the simplest example of such equations. Since the methods for general HJgenerally require the addition of arti�cial dissipation, this formulation is not usually appro-priate for convective 
ow; instead, the specialized upwinded convection schemes should beused (see the example in section 2.1). More ambitious examples of general HJ can be foundin sections 2.5 and 2.6.
[ data, g, data0 ] = laxFriedrichsDemo(flowType, initShape, accuracy, dissType,displayType):Demonstrate an implementation of time independent convective 
owusing a general HJ solver. The four input parameters are strings. The parametersaccuracy and displayType have the same options as the identically named parame-ters of convectionDemo. The parameter flowType allows the time-independent 
ow�elds permitted by convectionDemo. The parameter initShape speci�es the shape ofthe initial implicit surface. The parameter dissType speci�es which of the types ofarti�cial dissipation functions to use to stabilize the Lax-Friedrichs solver. All �ve in-put parameters are optional. The returned parameters are the �nal �(x; tmax) functiondata, the computational grid g and the initial �(x; 0) function data0.
The internals of laxFriedrichsDemo are the same as convectionDemo, with the excep-tion that functions for the prototypes hamFunc and partialFunc must be provided. Inaddition, it demonstrates the use of termLaxFriedrichs and the routines implementingthe dissFunc prototype: artificialDissipationGLF, artificialDissipationLLF, andartificialDissipationLLLF.
Formulating convection by 
ow �eld v(x) as a general HJ leads to Hamiltonian

H(x; p) = v(x) � p
This simple dot product is calculated by the subfunction laxFriedrichsDemoHamFunc (foundin the �le laxFriedrichsDemo), which implements the hamFunc prototype. To scale thedissipation, we need �i(x) = maxp

����@H(x; p)@pi
���� = jvi(x)j: (15)
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(a) (b)
Figure 6: Using Lax-Friedrichs to approximate rotational convective 
ow in two di-mensions with laxFriedrichsDemo. Figure 6(a): The individual time steps forlaxFriedrichsDemo('linear', 'cube', 'low'). Figure 6(b): Comparing the �nal im-plicit surface calculated by Lax-Friedrichs when using approximation schemes of di�erentaccuracies. Note that the results of this example are independent of the arti�cial dissipationscheme chosen (so the default dissType = 'global' was used).
This optimization over partials is performed by the subfunction laxFriedrichsDemoPartialFunc,which implements the partialFunc prototype. Note that the partials of H with respect to pare independent of p; consequently the range of p in the maximization is irrelevant and the dif-ferent types of dissipation function (chosen by the parameter dissType of laxFriedrichsDemo)will all produce the same results.
Do not be fooled by the simplicity of these hamFunc and partialFunc examples. Usuallythey are much more di�cult to compute. In most interesting cases the partial derivative ofH with respect to p will depend on p (otherwise the Hamiltonian represents a convective 
ow�eld), so the maximization in (15) will be nontrivial. Fortunately, it can be overapproximatedif the optimization is too challenging, at the cost of additional dissipation. For more details,see section 3.6.2.
Figure 6 shows the results of running this example in two dimensions for a rigid body rotationof a square. The dissipation which smooths away the corners of the square has two sources:errors in the calculation of the �rst derivative and the Lax-Friedrichs' arti�cial dissipationterm. By using an approximation scheme of higher order accuracy, the former can be reduced.The approximate execution time (relative to accuracy = 'low') for the four schemes were:
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(a) (b)
Figure 7: Applications of the PostTimestep option of odeCFLn to a convection example.Figure 7(a) shows how a constraint of the form (14) can be used to mask out a portion ofthe state space into which the evolving set cannot enter. Figure 7(b) shows the masking set,as well as mint �(x; t), which is computed and recorded inside the PostTimestep functionmaskAndKeepMin.
'low' = 1, 'medium' = 4, 'high' = 12 and 'veryHigh' = 17.
2.2.3 Constraints on � (14)
This section describes the function Examples/Basic/maskDemo.
Most of the examples deal with terms in the HJ PDE that e�ect � only through its temporalor spatial dervatives; in contrast, the constraint (14) involves � directly. Consequently, itis implemented in a di�erent manner in the toolbox. Users should not be discouraged byits unusual treatment, since this form of constraint has many useful applications, and themechanism by which it is implemented is even more general than it may �rst appear.
In its simplest form, (14) can be used to mask out regions of the state space, as shown in�gure 7. Suppose that there exists a set S into which an evolving set|represented by the zerosublevel set of �(x; t)|should not enter. Given an implicit surface representation  (x) forthe complement of the forbidden set S{, enforcing the constraint �(x; t) �  (x) will ensurethat the forbidden set is not entered. In �gure 7(b), S is the small circle centered at theorigin. In �gure 7(a) the initial circular evolving set is cut in half as it moves to the right
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under a constant convective 
ow �eld. Because the evolving set is represented implicitly, nospecial treatment is required when it breaks apart.
The standard odeCFLn and term approximation algorithms of the toolbox allow � to bemodi�ed only through its temporal derivative. However, direct modi�cation of � is supportedusing the PostTimestep option of odeCFLn, accessed through odeCFLset (see section 3.5.3).This option allows the user to specify a function which will be called after each timestep; thefunction must conform to the PostTimestepFunc prototype. The function will have accessto the same parameters as a term approximation routine (t, y, and schemeData). It maythen modify y and/or schemeData. The constraint (14) is implemented by modi�cation ofy, and the constraint function  can be stored in schemeData.
Figure 7 is generated by the following function, which demonstrates the use of termConvectionand the PostTimestep option of odeCFLn. The subfunction maskAndKeepMin containedwithin follows the postTimestepFunc prototype.
[ data, g, data0 ] = maskDemo(accuracy, displayType): Demonstrates applicationsof the PostTimestep option of odeCFLn, using a simple convective 
ow �eld. Theparameters accuracy and displayType are as normal. Plotting routines at the end ofthe function are specialized to two dimensional grids, and demonstrate the e�ects ofthe PostTimestep calls. The �gure 7(b) is generated by these plotting routines.
The PostTimestepmechanism is more general than just constraints of the form (14). Changesto the term approximation parameters in schemeData can e�ect the evolution of the interface;however, there are often ways to achieve the same e�ect directly in the term approximationroutine. A better use is to record information about the changes to � during the integration.This application is demonstrated in maskDemo as well, where the �eld schemeData.min isused to record mint �(x; t) as the integration proceeds.
Users should note that modi�cation of schemeData can carry a sign�cant performancepenalty, since all of its large �elds (such as schemeData.grid) will be copied at each timestep.Consequently, this modi�cation mechanism should be used only when no other mechanismcan achieve the same result.
2.3 Examples from Osher & Fedkiw [24]
This section describes functions in the directory Examples/OsherFedkiw/.
This section provides routines which recreate some examples from [24]. Several of theseexamples involve a star-shaped initial interface. The initial level set function for this curvein R2 is given by (the implementation uses polar coordinates)

�(x; 0) = kxk � s�cos�� arctan�x2x1
��+ �� (16)
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Figure 8: Motion by mean curvature (compare with [24, �gure 4.1]). The initial implicitsurface function is generated from an ellipse in polar coordinates, rather than the originalpoint cloud description of the problem [24,25].
where s is a scale controlling the size of the star, � is the number of points, and � is ano�set the controls the relative size of the points compared to the main body. For the actualparameters chosen, see the example �les.
2.3.1 Motion by Mean Curvature (9)
This section describes the functions curvatureSpiralDemo, curvatureStarDemo, spiralFromEllipseand spiralFromPoints in the directory Examples/OsherFedkiw/.
The �rst example of motion by mean curvature is a classic taken from [25] and shown in�gure 8: motion of a two dimensional wound spiral interface. This example and the nextdemonstrate the use of termCurvature.
[ data, g, data0 ] = curvatureSpiralDemo(accuracy, initial, displayType): Demon-strates motion by mean curvature on a two dimensional wound spiral interface. Theaccuracy and displayType parameters are as normal. The string parameter initial
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(a) (b)
Figure 9: Motion by mean curvature. Figure 9(a) shows motion with constant multiplier b,the result of curvatureStarDemo with default parameters (compare with [24, �gure 4.2]).Figure 9(b) uses a time and spatially varying multiplier b(x; t) (by choosing splitFlow ==1).

chooses how to construct the initial implicit surface function. The options are 'ellipse'(the default) and 'points'. These initial conditions are speci�cally designed for twodimensional grids.
Two choices are given for generating the initial implicit surface function. The default choiceinitial = 'ellipse' generates an ellipse in an extended polar coordinate frame, where theparameters of the ellipse were chosen to try to match the shape of the original spiral. Thechoice initial = 'points' uses the original point cloud description of the spiral from [25].In this release, the latter option is not operational, because the helper routines to generatea signed distance function from a point cloud have not yet been created. The actualgeneration of the initial implicit surface functions for the spiral is performed in the helperroutines spiralFromEllipse and spiralFromPoints.
The second example of motion by mean curvature is evolution of the star shaped interface,as shown in �gure 9. In addition to a di�erent shape, this example shows how to implementa time and spatially varying motion parameter.
[ data, g, data0 ] = curvatureStarDemo(accuracy, splitFlow, displayType): Demon-strates motion by mean curvature with multiplier b(x). The accuracy and displayTypeparameters are as normal. The boolean parameter splitFlow speci�es whether themultiplier should be constant (the default) or varying in time and space. The initialconditions (16) are speci�cally designed for two dimensional grids.
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(a) (b)
Figure 10: Motion in the normal direction, starting with a star shaped interface. Figure 10(a)shows motion at a constant positive speed, the result of normalStarDemo with default pa-rameters (compare with [24, �gure 6.1]). Figure 10(b) uses the same speed, but reverses itssign at the midpoint of the simulation (by choosing reverseFlow == 1).
The initial conditions and constant multiplier b0 were chosen to try to match the resultsof [24, �gure 4.2]. For the time and spatially varying case splitFlow == 1, the multiplier isgiven by (the actual implementation uses polar coordinates)

b(x; t) =
8<
:b0

�1� x1kxk� ; for t � ts;b0 �1 + x1kxk� ; otherwise:
The switch time ts is the midpoint of the simulation. In practical terms, this multipliercauses faster motion on the left side of the interface for the �rst half of the simulation, andthen switches sides. The end result should be very similar to the e�ect of using constantmultiplier everywhere. This multiplier is implemented using the subfunction switchValue,which follows the scalarGridFunc prototype.
2.3.2 Motion in the Normal Direction (6)
This section describes the function Examples/OsherFedkiw/normalStarDemo.
Evolution of a star shaped interface by motion in the direction normal to the interface isshown in �gure 10, and is generated by the following function, which demonstrates the use oftermNormal. The subfunction switchValue contained within follows the scalarGridFuncprototype.
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(a) (b)
Figure 11: Combining motion in the normal direction with rotational convection. Figure 11(a)shows the results of a rigid body rotation (choose rigid == 1). Figure 11(b) multiplies thespeed of rotation by the square of the distance to the origin (compare with [24, �gure 6.2]).Both �gures are generated with accuracy = 'medium' on 2012 grids.
[ data, g, data0 ] = normalStarDemo(accuracy, reverseFlow, displayType): Demon-strates motion in the surface normal direction at speed a(x). The accuracy anddisplayType parameters are as normal. The boolean parameter reverseFlow spec-i�es that the spatially constant speed �eld should reverse direction halfway throughthe simulation. The initial conditions (16) are speci�cally designed for two dimensionalgrids.
The initial conditions and speed were chosen to try to match the results of [24, �gure 6.1](when reverseFlow == 0). Note that when reverseFlow == 1 is chosen, the initial condi-tions are not recovered at the �nal time. This loss of information occurs because of regular-ization along the concave portions of the front during the �rst half of the simulation. Foranother example of this regularization process, see section 2.4.1.
2.3.3 Normal Motion Plus Convection
This section describes the function Examples/OsherFedkiw/spinStarDemo.
Evolution of a star shaped interface by a combination of rotational convection and motion inthe direction normal to the interface is shown in �gure 11. It is generated by the following
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function, which demonstrates the use of termSum, termNormal, and termConvection. Be-cause termNormal and termConvection follow the schemeFunc prototype, they can be usedinside of termSum.
[ data, g, data0 ] = spinStarDemo(accuracy, rigid, displayType): Demonstratesthe combination of motion in the normal direction and convective rotation. Theaccuracy and displayType parameters are as normal. The boolean parameter rigidspeci�es whether the rotation �eld should be a rigid body rotation; otherwise, it willbe faster further from the origin (the default behavior). The initial conditions (16) and
ow �elds are speci�cally designed for two dimensional grids.
Although the caption of [24, �gure 6.2] claims that it shows rigid body rotation, the tips ofthe star are clearly moving faster than the inner portions. Consequently, spinStarDemo isdesigned to show both actual rigid body rotation, or to recreate the �gure using a rotationalspeed that increases as the square of the distance from the origin.
2.4 Examples from Sethian [28]
This section provides routines which recreate some examples from [28]. The lack of quantita-tive parameters in that text|such as �gure axis scales with which to reconstruct the initialconditions|makes it challenging to exactly recreate the results.
Before proceeding to the implemented examples, we mention that [28, �gure 12.4] uses thesame motion as the flowType = 'linear' option of the convectionDemo routine discussedin section 2.1, and hence could be recreated with minor modi�cations of that code.
2.4.1 Regularization and the Viscous Limit
This section describes the function Examples/Sethian/tripleSine.
Many discussions of viscosity solutions of �rst order HJ PDEs make the point that they arethe limit of the classical solutions of a linear second order PDE as the second order termvanishes; for example, see [28, chapter 2.4] or [10, chapter 10]. In [28, �gures 2.6 and 2.7]this claim is examined experimentally on a two dimensional example using motion in thenormal direction with speed a(x) = 1 � b�(x), where b � 0 is a constant and �(x) is thelocal curvature. In the case b > 0, this motion is a combination of spatial terms (6) and (9).Figure 12 shows the attempted recreation for three values of b. Data for the �gure is generatedby tripleSine, which demonstrates the use of termNormal, termCurvature and termSum.
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(a) b = 0:25 (b) b = 0:025 (c) b = 0
Figure 12: The viscous limit of motion by mean curvature. All three �gures show motionin the normal direction with speed a(x) = 1 � b�(x), where each �gure uses the speci�edvalue for b. The initial conditions are the lowest curve, and the remaining curves show theevolution of the implicit surface at equally spaced time intervals. For b > 0, the solutionremains di�erentiable for all time. For b = 0, the solution quickly develops kinks in theconcave regions, but the result can be seen as the limit of the di�erentiable solution as b! 0.Compare with [28, �gures 2.6 and 2.7]
[ data, g, data0 ] = tripleSine(b, accuracy): Demonstrates the evolution of a sineshaped interface under a combination of curvature and normal motion. The accuracyparameter has the usual options. The multiplier for the curvature dependence bmust benonnegative. As b! 0, this function demonstrates how motion in the normal directionis the viscous limit of a curvature dependent motion
The di�erence between the b = 0:025 and b = 0 cases is subtle, and lies in the bottom ofthe valleys of the implicit surface: for the b = 0 case, the implicit surface quickly develops avisible sharp corner, while the b = 0:025 case remains di�erentiable for all time. Lagrangianor particle based methods to approximate the motion of the surface in the b = 0 case wouldproduce a \swallowtail" solution (see [28, �gure 2.3]), which corresponds in some sense toa multivalued solution of the HJ PDE. The upwinded derivatives used in level set methodsfor motion in the normal direction (the component of the motion independent of �(x)) aredesigned to produce this regularized and single valued viscosity solution, which generates anintersection free implicit surface.
2.4.2 Motion by Mean Curvature and Surface Separation
This section describes the function Examples/Sethian/dumbbell1.
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(a) (b)
Figure 13: Motion by mean curvature of a three dimensional dumbbell, demonstrating theability of level set methods to easily handle the separation of implicit surfaces. Figure 13(a)shows how the handle of the dumbbell shrinks faster due to its higher curvature, and hencethe implicit surface pinches o� into two separate objects. Figure 13(b) shows contour plotsat the same timesteps on a slice through the middle of the dumbbell evolving under the samemotion (compare with [28, �gure 14.2]).
One of the strengths of implicit surface evolution that the level set community often cites isthe ability to handle the merging and separation of the surfaces without any mathematical oralgorithmic e�ort. A classic example of the latter is evolution of the dumbbell shape undermotion by mean curvature; for example, see [28, �gure 14.2]. Figure 13 shows two views ofthe evolution. Data for the �gure is generated by dumbbell1, which demonstrates the use oftermCurvature.
[ data, g, data0 ] = dumbbell1(accuracy): Demonstrates the evolution of a three di-mensional dumbbell under motion by mean curvature. The accuracy parameter hasthe usual options. Two �gures are produced: a three dimensional isosurface showingthe whole dumbbell, and a two dimensional contour of the dumbbell sliced through themiddle.
This example also demonstrates another bene�t of the implicit surface representation thatis not given as much attention. Construction of the three dimensional dumbbell's initialconditions is accomplished in only four lines of code. This feat is possible because simpleshapes|such as spheres, polygons and cylinders|can be created by simple mathematicalfunctions, and unions, intersections and complements of implicitly represented sets can beaccomplished by taking the minimum, maximum and negation respectively of their implicitsurface functions.
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As an example, the dumbbell is created by
 left(x) =q(x1 + o)2 + x22 + x23 � r;
 right(x) =q(x1 � o)2 + x22 + x23 � r;
 center(x) = max �(jx1j � o) ;�qx22 + x23 � w�� ;

�(x; 0) = min [ left(x);  right(x);  center(x)] ;
where o is the o�set of the center of the lobes of the dumbbell from the origin, r is the radius ofthe lobes, and w is the radius of the center cylinder. The left and right lobes are constructedfrom a spherical implicit surface function. The center portion is a cylinder aligned with thex1 axis, capped at the ends by intersection (using the max operator) with halfspaces o�setfrom the origin so as to align with the center of the lobes. The dumbbell as a whole is theunion (using the min operator) of these three implicit surfaces.
2.5 General HJ Examples from Osher & Shu [26]
This section describes functions in the directory Examples/OsherShu/.
The method for treating general Hamilton-Jacobi terms (8) adopted by this toolbox and [24]is basically drawn from [25], and so in this section we provide code for both versions ofexamples 1 and 2 from that paper.
2.5.1 Convex Hamiltonian (Burgers' equation)
This section describes the function burgersLF in the directory Examples/OsherShu/, whichimplements Dt�(x; t) +H(r�(x; t)) = 0; 1 � x < 1;�(x; 0) = � cos(�x) (17)
where H(p) is the convex function

H(p) =
��+Pgrid.dimi=1 pi�22 ; (18)

which makes (17) Burgers' equation. Results in one and two dimensions are shown in �g-ure 14, and are generated by the following function, which demonstrates the use of termLaxFriedrichsand the routines implementing the dissFunc prototype: artificialDissipationGLF, artificialDissipationLLF,and artificialDissipationLLLF.
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(a) (b)
Figure 14: Solving Burgers' equation with Lax-Friedrichs schemes. Figure 14(a) comparesthe exact solution (solid) with the third order ENO-LLF approximation on a grid of 10 points(circles); compare with [25, �gure 1(d)]. Figure 14(b) shows a two dimensional version ofBurgers with an ENO-LLF approximation on a 402 grid; compare with [25, �gure 3(b)].
[ data, g, data0 ] = burgersLF(accuracy, dissType, gridDim, gridSize, tMax): Demon-strates solution of Burgers' equation (17) and (18), which in this context is a generalHJ PDE with convex Hamiltonian. The accuracy parameter choices are the usual.The dissType parameter must be one of 'global', 'local' or 'locallocal', whichchoose arti�cial dissipation using the (regular) Lax-Friedrichs, Local Lax-Friedrichs orLocal-Local Lax-Friedrichs schemes from [25] respectively. The gridDim and gridSizeinputs specify parameters of the computational grid. The tMax parameter speci�es the�nal time of simulation, and defaults to 1:5=�2 (when the solution has discontinuousderivative).
Within the �le burgersLF, the subfunction burgersHamFunc implements the hamFunc pro-totype for (18). Subfunction burgersPartialFunc implements the partialFunc prototypesolving (47) with Hamiltonian (18). Note that the dissipation parameter �i(x) is di�erentfrom the problem parameter �.

�j(x) = maxp
����@H(p)@pj

���� = maxp
������+

grid.dimX
i=1 pi

����� ;
where the range over which p is optimized depends on the type of arti�cial dissipation chosen.For all of the types of arti�cial dissipation available, the range is a product of intervals, sothe optimization over p can be performed by examining each component's interval endpointsindependently.
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(a) (b)
Figure 15: Solving a non-convex general HJ PDE with Lax-Friedrichs schemes. Figure 15(a)compares the exact solution (solid) with the third order ENO-LF approximation on a gridof 10 points (circles); compare with [25, �gure 2(d)]. Figure 15(b) shows a two dimensionalversion of the same equation with an ENO-LF approximation on a 402 grid; compare with [25,�gure 3(d)]. There may be slightly more dissipation in these solutions than in those of [25](see the discussion of nonconvexPartialFunc below).
2.5.2 Non-Convex Hamiltonian
This section describes the function nonconvexLF in the directory Examples/OsherShu/,which implements (17), where H(p) is the non-convex function

H(p) = � cos �+ grid.dimX
i=1 pi! : (19)

Results in one and two dimensions are shown in �gure 15, and are generated by the followingfunction, which demonstrates the use of termLaxFriedrichs and the routines implementingthe dissFunc prototype: artificialDissipationGLF, artificialDissipationLLF, andartificialDissipationLLLF.
[ data, g, data0 ] = nonconvexLF(accuracy, dissType, gridDim, gridSize, tMax):Demonstrates solution of (17) and (19). The accuracy parameter choices are the usual.The dissType parameter must be one of 'global', 'local' or 'locallocal', whichchoose arti�cial dissipation using the (regular) Lax-Friedrichs, Local Lax-Friedrichs orLocal-Local Lax-Friedrichs schemes from [25] respectively (although the choice turnsout to be irrelevant; see the discussion of nonconvexPartialFunc below). The gridDim
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and gridSize inputs specify parameters of the computational grid. The tMax parame-ter speci�es the �nal time of simulation, and defaults to 1:5=�2 (when the solution hasdiscontinuous derivative).
Within the �le nonconvexLF, the subfunction nonconvexHamFunc implements the hamFuncprototype for (19). Subfunction nonconvexPartialFunc implements the partialFunc pro-totype solving (47) with Hamiltonian (19). In this version we conservatively choose

�j(x) = maxp
����@H(p)@pj

���� = maxp
�����sin

 �+ grid.dimX
i=1 pi!

����� � 1
as an upper bound on the maximum of the magnitude of the partials. This choice is notparticularly accurate, but it will maintain numerical stability. Because it does not dependon the range of p, all of the dissipation methods will give the same result.
2.6 Examples of Reachable Sets
As engineering systems have become more complex, a formal methods community has devel-oped to study methods of validating or verifying the correct behavior of such systems. Modelchecking is one major thrust of this community, and is a veri�cation method in which thestate space of the design is explored in order to determine whether the system|or at leastits mathematical model|can enter into an unsafe or incorrect state. Many model checkingalgorithms attempt to compute a reachable set, which comes in two 
avors. The forwardsreachable set is the set of states that can be reached by system trajectories which start in agiven set of initial states. The backwards reachable set is the set of states that can give rise totrajectories which subsequently pass through some given set of target states. In [17,19,35] wedeveloped a method of computing robust backwards reachable sets for nonlinear continuousand hybrid systems using an HJ PDE. For more discussion of reachable sets and alternativealgorithms for their computation, we suggest [17,19] and the references contained therein.
This toolbox contains several examples of script �les to compute reachable sets. We havenot yet created an automatic method of computing reachable sets from a Simulink blockdiagram or Matlab m-�le description of a system. Instead, we outline the steps needed toencode a reachable set computation as an HJ PDE in the toolbox.
Consider �rst the backwards reachable set from a target set T of a continuous system withdynamics _x = f(x; a; b), where x 2 Rn is the state of the system, T � Rn, a 2 A � Rna isan input seeking to keep the system from entering T , and b 2 B � Rnb is an input seeking todrive the system into T . In many examples, T is an unsafe set so that a should be consideredcontrols keeping the system safe, and b consists of disturbances or model uncertainties which
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are assumed to try to make the system unsafe (a robust but conservative treatment). In someexamples a and/or b may not be present.
Computation of the backwards reachable set is normally encoded as a terminal value HJPDE|the same as an initial value PDE, but time runs backwards. The terminal valueencodes the target set, so �(x; 0) should be an implicit surface function representation of T .Evolution of the backwards reachable set is accomplished by solving

Dt�(x; t) + min[0; H(x;Dx�(x; t))] = 0 (20)
backwards in time, where H(x; p) = maxa2A minb2B pT f(x; a; b): (21)
The solution �(x; t) is an implicit surface representation of the �nite time backwards reachableset. While the toolbox is designed for solving initial value and not terminal value PDEs, forautonomous systems (f does not depend on t) converting to the initial value PDE form usedin the toolbox simply requires multiplying the output of H(x; p) in (21) by �1.
Consideration of (20) reveals that the minimization with zero component is equivalent toconstraining the sign of the temporal derivative to be positive (13). This constraint keeps thereachable set from shrinking as time progresses, and is implemented with the spatial termapproximation routine termRestrictUpdate, which appears in all of the examples below.
If the model involves no inputs or nondeterministic parameters, then (21) degenerates toconvection under 
ow �eld v(x) = f(x) and can be treated as an example of the form (5).This type of continuous dynamics is encountered in section 2.6.3|although the discrete partof this system has inputs, the continuous part (which gives rise to the HJ PDE) does not.However, most cases involve at least one of the inputs a or b, and so (21) must be treatedas a general Hamiltonian (8) using termLaxFriedrichs. The other examples in this sectioninvolve inputs and consequently require the latter treatment.
As described in section 3.6.2, use of termLaxFriedrichs requires providing functions whichsatisfy the derivFunc, dissFunc, hamFunc, and partialFunc prototypes. The �rst is chosenfrom among the upwind approximations of the �rst derivative described in section 3.4.1. Thesecond is chosen from among the arti�cial dissipation functions described in section 3.6.2.The �nal two must be provided by the user.
The function satisfying the hamFunc prototype must compute the solution of (21). Sincethe optimization over inputs a and b is done for �xed x and p = r�(x; t), it can often beperformed exactly. If exact optimization over the continuous ranges of A and/or B is notpossible, they can be sampled discretely. However, users should keep in mind that if H isoverestimated|for example, if the truly optimal value of b is not found|then the reachableset will be underestimated. Furthermore, care should be taken if the e�ects of a and b arenot separable. In that case, the order of the optimizations in (21) demands that the value of
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a be �xed before the minimization over b is performed (a robust but conservative choice if ais the controls and b is the disturbances).
Coding the function satisfying the partialFunc prototype is often the most challenging partof computing a reachable set. This function must solve (47), which in this context translatesto �i(x) = maxp

���� @@piH(x; p)���� = maxp
���� @@pi

�maxa2A minb2B pT f(x; a; b)
����� ; (22)

where the hyperrectangular range over which p is optimized is an argument to partialFunc.The order of the optimizations cannot be modi�ed. Underestimation of this value can lead tonumerical instability and toolbox failure. Overestimation will lead to a numerically benign in-crease in the amount of arti�cial dissipation introduced by the Lax-Friedrichs approximation.Such dissipation will round sharp corners in the reachable set and, in the worst case, maycause its underestimation; however, since the optimization in (22) can rarely be performedexactly, overestimation is the preferable form of error.
Before proceeding to speci�c examples, we examine the mathematics of a particularly commonform of dynamics. A nonlinear system's inputs enter linearly if we can separate its dynamicsinto the form f(x; a; b) = fx(x) + Fa(x)a+ Fb(x)b; (23)where fx : Rn ! Rn, Fa : Rn ! Rna�n and Fb : Rn ! Rnb�n.y We also assume that theinput constraints are hyperrectangles

ai 2 Ai = [Ai;Ai]; A = naY
i=1Ai;

bi 2 Bi = [Bi;Bi]; B = naY
i=1Bi:

Then the optimal inputs to the Hamiltonian (21) can be determined analytically
a�i (x; p) =

(Ai; if Pnj=1 pjFaji(x) � 0;Ai otherwise;
b�i (x; p) =

(Bi; if Pnj=1 pjFbji(x) � 0;Bi otherwise:
(24)

Futhermore, de�ning
Amaxi = max �jAij ; ��Ai��� ; Bmaxi = max �jBij ; ��Bi��� ;yLinear systems clearly satisfy this property, since in that case fx(x) = Ax where A 2 Rn�n, while Faand Fb are constant matrices.
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the terms (22) for the partialFunc routine can be slightly overestimated by
�j(x) � ��fxj (x)��+ naX

i=1
��Faji(x)��Amaxi + nbX

i=1
���Fbji(x)���Bmaxi : (25)

Section 2.6.1 examines a system which satis�es these separability assumptions.
The extension to hybrid system reachable sets is very much an ad hoc process in the currenttoolbox. The discrete iteration proposed in [34] and repeated with minor modi�cationsin [17,35] can be coded manually into an m-�le, as is done in section 2.6.3. The avoid portionof the reach-avoid operator is implemented by masking the evolving reachable set againstthe escape set using the PostTimestep option of the odeCFLn integrators. For autonomoussystems, we no longer believe that the escape set itself need be evolved. A revised hybridsystem reachable set algorithm|based on variational inequalities|is under development andwill be integrated into the toolbox once it is complete.
2.6.1 The Game of Two Identical Vehicles
This section describes the functions air3D and figureAir3D in the directory Examples/Reachability/.The game of two identical vehicles has also been called the three dimensional aircraft collisionavoidance example.
You've seen this example in virtually every publication on the topic of computing reachablesets using HJ PDEs; recent appearances include [17,19,35]. Now you too can have it runningon your very own computer! How much would you pay for this amazing reachable set, youask? Wait, there's more! Because of recent advances in Matlab visualization, you can plotnot one but two or even three semitransparent isosurface visualizations all in a single �gureframe! We'll even throw in a script �le to do all the work for you! All this for only a fewbillion compute cycles! And if you can �nd a better alternative algorithm, we'll gladly refund110% of your purchase price!z
The coordinate system is shown in �gure 16. The vehicles are shown as aircraft, although thesimple kinematic model is appropriate to cars or bicycles as well. The state of each vehicleis a position on the plane and a heading. Each vehicle has a �xed forward velocity and anadjustable angular velocity. The game is played between an evader vehicle which is tryingto escape collision and a pursuer which is trying to cause one. Collision occurs if the twovehicles get within a distance r of each other. Because collision only depends on their relativelocations, the game is solved in relative coordinates with the evader �xed at the origin facingzO�er valid only when purchase price is $0.
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Figure 16: Relative coordinate system for game of two identical vehicles.
right. The target set T is the set of collided states, which is a cylinder of radius r centeredon the x3 axis. The relative dynamics are

_x = ddt
2
4x1x2x3

3
5 =

2
4�va + vb cosx3 + ax2vb sinx3 � ax1b� a

3
5 = f(x; a; b); (26)

where va 2 R is the �xed linear velocity of the evader, vb 2 R is the �xed linear velocity of thepursuer, a 2 A � R is the angular velocity of the evader and is the \control" input trying toavoid T , and b 2 B � R is the angular velocity of the pursuer and is the \disturbance" inputtrying to reach T . The routines below assume va > 0, vb > 0, A = [�Amax;Amax], Amax > 0,B = [�Bmax;Bmax] and Bmax > 0, although the algorithm will work for any combination ofparameters. In particular, if va = vb and Amax = Bmax, then the two vehicles are consideredidentical.
The reachable set for the game of two identical vehicles with r = 5, va = vb = 5 andAmax = Bmax = 1 is shown in �gure 17. The data for the �gure is generated by the follow-ing function, which demonstrates the use of termLaxFriedrichs and termRestrictUpdate.Because termLaxFriedrichs follows the schemeFunc prototype, it can be used inside oftermRestrictUpdate.
[ data, g, data0 ] = air3D(accuracy): Demonstrate the (now infamous) three dimen-sional reachable set for the game of two identical vehicles. The accuracy parameter isas usual. The vehicle parameters and visualization technique can be modi�ed withinthe m-�le.
The visualization for �gure 17 can be recreated by the following routine.
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(a) (b)
Figure 17: The target and reachable sets for the game of two identical vehicles as visualized byfigureAir3D. Figure 17(a) shows the target cylinder representing the set of collision states.Figure 17(b) shows the �nal reachable set at t = 2:8, computed by air3D('medium').
hs = figureAir3D(g, data, data0, superimpose): Visualize the three dimensional reach-able set, and possibly the initial collision/target set. The �rst three arguments corre-spond to the arguments returned by air3D. The �nal argument superimpose is aboolean specifying that the target and reachable sets should be displayed in a single�gure window using a transparent isosurface for the reachable set. The �nal two argu-ments are optional. If data0 is omitted, no target set is plotted. The default value ofsuperimpose is zero. The return value hs is a vector of handles to the isosurfaces thatwere generated.
Before moving on to the next example of reachable sets, we examine the mathematical detailsof this example a little more. Notice that (26) can be put into the form (23).

fx(x) =
2
4�va + vb cosx3vb sinx30

3
5 ; Fa(x) =

2
4 x2�x1�1

3
5 ; Fb(x) =

2
4001
3
5 :

It is easy to determine from (24) that
a�(x; p) = Amax sign(p1x2 � p2x1 � p3);b�(x; p) = �Bmax sign(p3);

and the resulting optimal Hamiltonian is
H(x; p) = �p1va + p1vb cosx3 + p2vb sinx3 +Amaxjp1x2 � p2x1 � p3j � Bmaxjp3j:
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This Hamiltonian, multiplied by �1 to transform the terminal value PDE into an initialvalue PDE, is implemented by the subfunction air3DHamFunc, which implements the hamFuncprototype.
The partials of the Hamiltonian can also be determined from (25)

�1(x) � j � va + vb cosx3j+Amaxjx2j;�2(x) � jvb sinx3j+Amaxjx1j;�3(x) � Amax + Bmax:
These equations are implemented by the subfunction air3DPartialFunc which implementsthe partialFunc prototype.
2.6.2 Acoustic Capture
This section describes the function Examples/Reachability/acoustic.
The example is a variation of the classical homicidal chau�er problem. The version of thegame studied here is taken from [4] and we recreate the results in [17]. The reachable set iscalculated in relative coordinates with the pursuer �xed at the origin, leading to dynamics

ddt
�xy
� =Wp � 0�1

�+ WpR
� y�x

� b+ 2Wemin�px2 + y2; S� a = f(z; a; b); (27)
where the state is z = (x; y) 2 R2 and the problem parameters are the pursuer's speed Wp,the evader's speedWe, the pursuer's turn radius R and the evader's radius of maximum speedS. The input constraints a 2 A and b 2 B are

A = fa 2 R2 j kak � 1g � R2 B = [�1;+1] � R:
The pursuer's capture set T is a wide but shallow horizontal rectangle near the origin.
The reachable set for the acoustic capture game with We = 1:3, Wp = 1:5, R = 0:8 andS = 0:5 is shown in �gure 18. The unusual feature of this problem is the development of thehole in the reachable set, a hole which does not anywhere touch the target set T . Because itdoes not touch T , �nding its boundary by Lagrangian methods|for example, by followingtrajectories backwards from the target set|would prove very challenging.
The �gure is generated by the following function, which demonstrates the use of termLaxFriedrichsand termRestrictUpdate.
[ data, g, data0 ] = acoustic(accuracy): Demonstrate the reachable set for the acous-tic capture game. The accuracy parameter is as usual. The vehicle parameters andvisualization technique can be modi�ed within the m-�le.
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Figure 18: Evolution of the acoustic capture game's reachable set.
Unlike the previous example, (27) cannot be put into the form (23) because the bounds oninput a are not dimensionally separable. However, it is relatively easy to �nd the optimalHamiltonian

H(z; p) = maxa2A minb2B �pT f(z; a; b)� ;
= maxkak�1minjbj�1

2
4�p2Wp+bWpR (p1y � p2x)+ (pTa)(2We)min�px2 + y2; S�

3
5 ;

= �p2Wp � WpR jp1y � p2xj+ kpk(2We)min�px2 + y2; S� ;
where we choose inputs

a�(z; p) = pkpk ; b�(z; p) = � sign(p1y � p2x):
This Hamiltonian, multiplied by �1 to transform the terminal value PDE into an initial valuePDE, is implemented by the subfunction acousticHamFunc, which implements the hamFuncprototype.
Computing the partials of the Hamiltonian is also complicated by the dimensionally mixedbounds on input a. However, since we only need to overestimate these partials, we can safely
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Figure 19: Hybrid automata for the three mode protocol.
assume that the bounds on the norm of a apply to each of its individual components. Thenan overestimation of the partials is possible.

�1(z) � WpR jyj+ 2Wemin(px2 + y2; S);
�2(z) �Wp + WpR jxj+ 2Wemin(px2 + y2; S);

These equations are implemented by the subfunction acousticPartialFunc which imple-ments the partialFunc prototype.
2.6.3 Multimode Collision Avoidance
This section describes the function Examples/Reachability/airMode.
As an example of a hybrid system reachable set we take the three mode collision avoidanceexample from [15, 17]. Like the game of two identical vehicles in section 2.6.1, this is acollision avoidance scenario played with two simple kinematic vehicles. In this case, however,the angular velocities of the two vehicles are �xed and equal, so that their relative angle nevervaries. Therefore the computation can be performed in two dimensions.
The hybrid automata for the example is shown in �gure 19. The only input to the systemis the decision � to initiate the collision avoidance protocol, and after that point all switchesand motion is synchronized between the vehicles. The relative location of the vehicles alwaysfollows one of two dynamics:
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Figure 20: Reachable set in the �rst mode for the three mode collision avoidance protocol.The solid region is the set of states within which collision is inevitable. Outside the solidcontour the protocol can be safely initiated. The dashed contour shows the edges of theunsafe set if no protocol is initiated.
� Straight motion: both vehicles move with constant linear velocities and zero angularvelocities. The dynamics are

_z = ddt
�xryr
� = ��va + vb cos rva sin r

� = fs(z);
where va and vb are �xed (although not necessarily equal).
� Curved motion: both vehicles move with constant linear velocities and a constant, equalangular velocity. The dynamics are

_z = ddt
�xryr
� = ��va + vb cos r + !yrva sin r � !xr

� = fc(z);
where va, vb and ! are �xed.

Because the continuous dynamics involve no inputs, we can simplify the computation byusing convection by constant 
ow �elds within each of the individual modes.
The reachable set for this multimode protocol with va = 3, vb = 4,  = �4�=3 and ! = 1is shown in �gure 20. The �gure is generated by the following function, which demonstratesthe use of termConvection and termRestrictUpdate.
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[ reach, g, avoid, data0 ] = airMode(accuracy): Demonstrate the three mode colli-sion avoidance protocol reach set computation. The accuracy parameter is as usual.The vehicle parameters and visualization technique can be modi�ed within the m-�le.The return parameter reach is an implicit surface function for the set of states wherea collision is inevitable, and the parameter avoid is an implicit surface function for theset of states in which the protocol can be safely initiated.
The computation of the reach sets in each individual mode is relatively straightforward (allthe more so because of the convective dynamics), and is accomplished by the subfunctionfindReachSet. The tricky and entirely ad hoc component is how to keep track of the in-teraction between the modes. For this speci�c example, four reach set computations areperformed.
� The set of states which lead to collision in the �nal mode. This is simple convection ofthe target set (a circle) according to the constant linear velocity dynamics fs.
� The set of states which lead to collision in the second mode. This is simple convectionof the target set according to a constant rotational 
ow �eld fc.
� The set of states which, when rotated through the second mode, lead to collision inthe third mode. This set is computed starting with the third mode's unsafe states andusing the rotational 
ow �eld fc. However, this computation does not restrict the signof the temporal derivative in the HJ PDE. Such a restriction would mark states asunsafe if they merely passed into and then out of the third mode's unsafe states whilestill in the protocol's second mode. Instead, states should only be marked as unsafe ifthey pass through the collision set in the second mode, or switch into the third modewhile in the third mode's unsafe states.
� The set of states in which a collision is inevitable whether the protocol is initiated or not.This computation involves the reach-avoid operator. The escape set is all those statesin which it is safe to initiate the protocol; speci�cally, the complement of the union ofthe states which lead to collision in the second mode (the second reach set computed)and the states which go through the second mode and lead to collision in the third (thethird reach set computed). This escape set is used to mask the evolution of the reach setvia a constraint of the form (14) The reach set's evolution is otherwise identical to theevolution in the third mode above. The masking is performed by postTimestepMask,which implements the postTimestepFunc protocol.

For more general reach and reach-avoid computation algorithms, see [35] and the citationswithin.
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2.7 Examples of Cost to Go and Time to Reach Stationary HJ Equations
This section describes functions in the directory Examples/TimeToReach/.
The time-dependent initial value PDE discussed in sections 1.1 and 1.2 is not the only typeof equation often given the moniker \Hamilton-Jacobi." Another common class of equationsgiven this name is exempli�ed by

G(x; #(x);r#(x)) = 0 in Rd n T ;#(x) = 0 on @T ; (28)
where T � Rd is closed. Note that this equation is a boundary value problem with no timevariable. This class of time-independent equations is also often called stationary or static.A generalization which allows for second order derivative terms D2x#(x) is called degenerateelliptic [8].
Clearly this PDE is not of a form directly supported by the toolbox|it does not even containa temporal derivative. However, following [23] we can solve an auxiliary time-dependent HJPDE using the toolbox and extract an approximation of the solution to (28). To summarizethose results, assume that the boundary conditions are noncharacteristicdX

i=1 pi@G(x; #; p)@pi 6= 0 on @T : (29)
A time-dependent HJ PDE is found by making the changes of variables

#(x) t and r#(x) r�(x; t)Dt�(x; t)in (28) and algebraic manipulation of the resulting equation into the form
Dt�(x; t) +H(x; t;r�(x; t)) = 0; (30)

where (29) ensures that this manipulation is locally feasible. The corresponding initial con-ditions are v �(x; 0) = 0 on @T ;�(x; 0) < 0 inside T ;�(x; 0) > 0 on Rd n T ; (31)
with �(x; 0) a continuous and strictly monotone function of distance to T near its boundary.Typically �(x; 0) is chosen as a signed distance function for T . Terms (4) and (8) from thetoolbox can then be applied to solve (30), and from this solution we can extract

#(x) = ft j �(x; t) = 0g: (32)
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As a concrete example of this process, let T be the closed target set of a system evolvingaccording to dynamics _x = f(x; b). The single input parameter b 2 B, where B � Rdb iscompact and b(�) : [0; T ] ! B is measurable, is attempting to minimize the cost to go toarrive at the target #(x) = minb(�)
Z T
0 `(x(t); b(t))dt; (33)

where the running cost `(x; b) > 0 is continuous and T = minft � 0 j x(t) 2 T g is the timeof arrival at the target set. If ` � 1, then #(x) is the minimum time to reach function.
Following standard procedures [2] it can be shown that the cost to go function is the viscositysolution of the HJ PDE ~H(x;Dx#(x)) = `(x; b) in Rd n T ;#(x) = 0 on @T ;~H(x; p) = minb2B p � f(x; b):

(34)
This equation is an example of (28), and following the procedure outlined above leads to thetime-dependent HJ PDE (30) with Hamiltonian

H(x; t; p) = minb2B p � f(x; t)`(x; b) : (35)
The condition (29) in this case requires thatr�(x; 0)�f(x; b) 6= 0 on @T , which is equivalent torequiring that the vector �eld f not be tangent to the target set. This condition ensures thatthe resulting # function is continuous (although not necessarily Lipschitz, as is demonstratedin section 2.7.2).
Interestingly, in the case of cost to go with no discount, it is possible to derive the same HJPDE (30) with Hamiltonian (35) starting from the reach set theory [19], but without thenoncharacteristic assumption (29). The resulting � function is still continuous in time andspace, but it may be constant with respect to t at �xed x; consequently, we cannot uniquelyde�ne # using (32). Choosing #(x) = minft j �(x; t) = 0g is a reasonable alternative, althoughthis # will no longer be continuous and hence the standard viscosity solution theory does notapply.
A variety of di�erent algorithms have been proposed for approximating minimum time toreach, cost to go or general stationary HJ PDE solutions for systems with inputs and non-linear dynamics [3,11,29,36]. Because the explicit time-dependent solvers of the toolbox aretimestep restricted by a CFL condition, it is likely that the method described above is theslowest of the algorithms. However, it is quite general|although not derived above, thismethod works for zero sum di�erential games, where (33) and (35) are modi�ed to includea maximization over an input a 2 A which may appear in both the dynamics f and therunning cost `. The resulting Hamiltonian is nonconvex in r�. Furthermore, because the
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function � on which derivative approximations are taken is continuous, this algorithm has thepotential for better accuracy than those methods which depend on di�erentiating the some-times discontinuous # function directly. Quantitative comparisons are challenging, becauseimplementations of the other algorithms are not publicly available at the present time.
Solution of (30) requires straightforward application of the toolbox techniques discussed else-where in this document. In order to avoid storing the entire time history �(x; t), extractionof # from � using (32) can be accomplished on the 
y by the postTimestepTTR routine(see section 3.7.3) and modi�cation of the schemeData structure. The simplest example isprovided by convectionTTR. The dynamic system in this case has no inputs, so the generalHamiltonian term in (30) can be replaced by motion by convection (5).
[ mttr, data, gridOut, data0 ] = convectionTTR(front, accuracy, gridIn): Demon-strate time to reach computation for a system without inputs. The target set is every-thing to the right of a curve running essentially perpendicular to x1. The dynamics are_x = f(x) = �1 0 � � � 0�T . The parameter front can be used to choose a speci�cshape for the target set. The parameter accuracy has the usual string choices. Theparameter gridIn can be used to modify the default two dimensional grid. Parametermttr is the minimum time to reach function #(x) out to the maximum integration timetmax (as speci�ed in the source code); nodes that were not reached within tmax are setto NaN. Parameters data and data0 are �(x; tmax) and �(x; 0) respectively. ParametergridOut = gridIn (or the default grid, if gridIn is unspeci�ed).
The analytic solution to this problem is given by max(0, data0), so this routine can be usedto validate the operation of postTimestepTTR. Otherwise, convectionTTR is not particularlyinteresting.
The remaining examples in this section treat problems with ideal target sets that are ill-posed for this time-dependent formulation, and the convergence results are not surprisinglysomewhat poor. We are still looking for compelling examples with well-posed target sets andanalytic solutions.
2.7.1 Time to Reach for a Holonomic System
As the �rst detailed example of a time to reach function, we consider the holonomic twodimensional system _x = f(x; b) = bfor x 2 R2, b 2 R2 with kbkk � 1, and k 2 f1; 2;1g. Trajectories for this system can travelin any direction, with the speed of travel bounded in the k norm. Di�erent results can begenerated by choosing di�erent k. If the target set T is the origin, then
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� k = 1 will generate a # with diamond shaped level sets.
� k = 2 will generate a # with circular level sets.
� k =1 will generate a # with square level sets.

Futhermore, the analytic solution in each of these cases is just #(x) = kxkk.
The stationary formulation of the problem is

~H(x;Dx#(x)) = 1 in Rd n T ;#(x) = 0 on @T ;~H(x; p) = minkbkk�1 p � b:
Note that the noncharacteristic condition (29) will be satis�ed for any T . Since `(x; b) � 1,by (35) the Hamiltonian for the time-dependent equation is identical to that for the stationaryequation H(x; p) = ~H(x; p). After choosing the optimal input kbkk � 1, the result is

H(x; p) =
8><
>:
�(maxi jpij); if k = 1;�kpk2; if k = 2;�Pi jpij; if k =1:

The resulting time-dependent HJ PDE is implemented in the following routine, which demon-strates the use of termLaxFriedrichs and postTimestepTTR.
[ mttr, attr, data, gridOut, data0 ] = holonomicTTR(whichNorm, accuracy, gridIn):Compute the minimum time to reach function for the simple holonomic system. Theinput to the system is bounded kbkk � 1; the argument whichNorm provides severalmethods of specifying k. The string argument accuracy has its usual options. ThegridIn argument optionally allows the calling function to specify a grid di�erent fromthe default|useful for convergence studies (see convergeHolonomicTTR below); how-ever, the routine is not designed to work in dimensions other than R2. Parameter mttris the numeric approximation of the minimum time to reach function #̂(x) generated bypostTimestepTTR out to the maximum integration time tmax (as speci�ed in the sourcecode); nodes that were not reached within tmax are set to NaN. Parameter attr is theanalytic minimum time to reach function #(x) for all nodes of the grid, generated byeither analyticHolonomicTTR or analyticSumSquareTTR (as speci�ed in the sourcecode). Parameters data and data0 are �(x; tmax) and �(x; 0) respectively. ParametergridOut = gridIn (or the default grid, if gridIn is unspeci�ed).
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(a) k = 1 (b) k = 2 (c) k =1
Figure 21: Contour plots of the numeric approximation #̂r(x) of the minimum time to reachfunction for the simple holonomic system with the three di�erent choices of norm boundson the input kbkk � 1. The innermost contour in each case is the target set Tr, and theremaining contours have a spacing of 0.1 units.
Unfortunately, after this translation to time-dependent form, we discover that the initialconditions (31) rule out any target set that cannot be represented by an implicit surfacefunction. The origin of R2 is of codimension 2, so we must choose a larger set|speci�cally, aset with an interior. A parameter whichIC within the source code for holonomicTTR can bemodi�ed to choose either a circle or a square of a given size is used as the initial condition;however, the analytic solution for such choices is, in general, no longer so easy to determine.
In order to analyze the accuracy of postTimestepTTR, a third choice for whichIC is 'analytic'.This option computes the analytic solution #0(x) for the chosen norm k and with the originas the target set T0. A target set with nonempty interior is generated byTr = fx j #0(x) � rg;where r > 0 is the e�ective radius of the target set. The analytic solution #r(x) with targetset Tr is then simply #r(x) = max(0; #0(x)� r);where the maximization is required because minimum time to reach functions are never neg-ative. It is this function #r(x) which is returned by parameter attr of holonomicTTR in thecase whichIC is set to 'analytic' in the source code. Note that using whichIC = 'circle'and whichNorm = '2' or whichIC = 'square' and whichNorm = 'inf' will produce sim-ilar results. Examples of the numerical approximations #̂r(x) returned by parameter mttrfor each of the three choice of k are shown in �gure 21. Calculation of the analytic solution#0(x) is performed by the following routine.
mttr = analyticHolonomicTTR(whichNorm, grid): Compute the analytic minimum timeto reach the origin for the simple holonomic system in two dimensions. Parameter

63



(a) (b)
Figure 22: Results for the simple holonomic system with square target set and one normbounded input. Figure 22(a) shows contour plots of the analytic solution (solid) and numeri-cal approximation (dashed). Figure 22(b) shows a surface plot of the numeric approximation.

whichNorm speci�es the norm k in which the system input is bounded kbkk � 1. Theparameter grid should be in R2. The solution #0(x) = kxkk is returned in mttr.
Despite the ease of �nding the analytic solution #r(x), some readers might object to thevalidity of a convergence analysis on the approximation of the solution #̂r(x) to a stationaryprimal problem when the analytic solution to that problem is used as the initial conditionfor the auxiliary time-dependent equation. Consequently, the analytic solution for a slightlydi�erent problem was also determined.
mttr = analyticSumSquareTTR(radius, grid): Compute the analytic minimum time toreach a square centered at the origin whose sides are of length 2 * radius for thesimple holonomic system with input bounded in the one norm kbk1 =Pi jbij � 1. Thisanalytic solution #s(x) is returned in mttr. The parameter grid should be in R2.
The level sets of #s(x) are essentially diamonds, except that the corners are replaced byaxis aligned segments of the same length as the target square. The user can select eitheranalyticHolonomicTTR or analyticSumSquareTTR to generate the analytic solution insideholonomicTTR by modifying the source code. When using analyticSumSquare, the usershould choose whichIC = 'square' and whichNorm = 'sum'. In this case, the initial condi-tions �(x; 0) for the time-dependent equation are not related to the analytic solution of the
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(a) maximum error (b) average error
Figure 23: Convergence of the numeric solution to the analytic solution for the simple holo-nomic system with square target set and one norm bounded input. A variety of accuraciesfor the time-dependent solver are shown, as is the grid cell size for comparison. Note thatthe vertical axes of the two plots are not the same.
problem. The solution is shown in �gure 22. Note how the dissipation from the Lax-Friedrichssolver causes the corners of the numeric solution to become rounded. Approximately �rst or-der convergence of the numeric solution in both maximum and average error is demonstratedin �gure 23. Higher order convergence cannot be expected because postTimestepTTR useslinear interpolation to approximate (32). The convergence analysis is performed by the fol-lowing script.
convergeHolonomicTTR: Script �le that runs holonomicTTR for a variety of grid resolutionsand accuracies, and compares the resulting numeric and analytic minimum time toreach functions in order to demonstrate convergence of the numeric solution to theanalytic solution as the grid is re�ned. Results are stored in the structure err. Mostproblem parameters must be set in advance in the source code for holonomicTTR.
This script can be used with either of the analytic solutions analyticHolonomicTTR oranalyticSumSquareTTR, as chosen inside holonomicTTR.
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2.7.2 Time to Reach for a Double Integrator
A more challenging example is the well studied double integrator. The two dimensions areposition x1 and velocity x2, and the input b 2 B is a scalar. The system parameters are

f(x; b) = �x2b
� ; T = ��00

�� ;
`(x; b) = 1; B = [�1;+1];�(x; 0) = kxk2:

The analytic solution when the target set is the origin is given by [1]
#(x) =

8><
>:
x2 +p4x1 + 2x22; if x1 > 12x2jx2j;�x2 +p�4x1 + 2x22; if x1 < 12x2jx2j;jx2j if x1 = 12x2jx2j: (36)

This system satis�es (29) and is small time controllable when the target is the origin, so #(x)is continuous; however, as can be seen from the square root term in (36), it is not Lipschitzcontinuous on the curve x1 = 12x2jx2j. Calculation of this analytic solution is performed bythe following routine.
mttr = analyticDoubleIntegratorTTR(grid): Compute the analytic minimum time toreach the origin for the double integrator with unit bounded input, as given in (36).This solution is returned in mttr, which is de�ned on the grid given by grid.
Returning to the numerical approximation, the Hamiltonian is easy to derive

H(x; p) = minjbj�1(p1x2 + p2b) = (p1x2 � jp2j): (37)
The challenge of accurate approximation, as in the previous section, comes down to thetarget set. The origin is again a codimension 2 object, and cannot be represented by theinitial conditions �(x; 0). Two options are available: using a small circle around the origin, orusing a sublevel set of the analytic solution. The numerical approximation is generated by thefollowing routine, which demonstrates the use of termLaxFriedrichs and postTimestepTTR.The target set is chosen by setting variable whichIC within the source code.
[ mttr, attr, data, gridOut, data0 ] = doubleIntegratorTTR(accuracy, gridIn):Compute the minimum time to reach function for the classical double integrator withunit bounded input. The string argument accuracy has its usual options. The gridInargument optionally allows the calling function to specify a grid di�erent from the
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(a) (b)
Figure 24: Contour plots of the minimum time to reach a target centered at the origin for adouble integrator with unit magnitude input. The largest contour represents a time to reachof 2.4. In �gure 24(a), the target is a circle of radius less than a grid cell. In �gure 24(b),the target is the square of width 0.4.

default|useful for convergence studies (see convergeDoubleIntegratorTTR below);however, the routine is not designed to work in dimensions other than R2. Parametermttr is the numeric approximation of the minimum time to reach function #̂(x) gener-ated by postTimestepTTR out to the maximum integration time tmax (as speci�ed inthe source code); nodes that were not reached within tmax are set to NaN. Parameterattr is the analytic minimum time to reach function #(x) for all nodes of the grid, gen-erated by analyticDoubleIntegratorTTR. Parameters data and data0 are �(x; tmax)and �(x; 0) respectively. Parameter gridOut = gridIn (or the default grid, if gridInis unspeci�ed).
Using a small circle as the target is an appealing solution, since it is easy to create a signeddistance function for �(x; 0) for such a target. While a target of nonzero size may breakassumption (29) and may give rise to a discontinuous #(x), as discussed earlier it is possibleto derive the same time-dependent HJ PDE from reach set theory without this assumptionfor time to reach examples. Figure 24 shows the results for two target sets: one whose sizeis small relative to the grid size, and one whose radius is much larger. The contour lines forthe latter case become very tightly packed along the curves where the analytic #(x) wouldbe discontinuous. Unfortunately, the analytic solution (36) no longer applies for a target ofnonzero radius and hence quantitative analysis of the accuracy of the approximation for this
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(a) (b)
Figure 25: Convergence of the numeric solution to the analytic solution for the double in-tegrator when approximating the origin as the target set using the 0.4 sublevel set of theanalytic solution. A variety of accuracies for the time-dependent solver are shown, as is thegrid cell size for comparison. The error is large, but converging. Possible reasons for the poorresults are discussed in the text.
target option is not currently available. Direct quantitative comparison with (36) generatespoor results even if the target circle size is reduced toward zero.
For the purposes of demonstrating convergence, we are therefore stuck using a sublevel setof the analytic solution as target. Quite apart from the validity argument presented in theprevious section, this option is poor because the analytic solution is not Lipschitz and henceis not a well behaved implicit surface function to use as an initial condition. Attempts tocreate a signed distance version of this target set using signedDistanceIterative havefailed due to large motions of the target set's boundary in the regions where the function isnot Lipschitz. Direct use of the analytic solution's 0.4 sublevel set generates the convergenceresults shown in �gure 25. The errors are large|usually greater than a grid cell|but areconverging. This convergence study was generated with the following routine.
convergeDoubleIntegratorTTR: Script �le that runs doubleIntegratorTTR for a varietyof grid resolutions and accuracies, and compares the resulting numeric and analyticminimum time to reach functions in order to demonstrate convergence of the numericsolution to the analytic solution as the grid is re�ned. Results are stored in the struc-ture err. Most problem parameters must be set in advance in the source code fordoubleIntegratorTTR.
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There are at least three potential origins of these poor results. The �rst is the fact that theinitial conditions for the time-dependent HJ PDE were not Lipschitz continuous. The secondis that the solution we are trying to approximate is not Lipschitz continuous. The third is thearti�cial dissipation introduced by the Lax-Friedrichs approximation of the Hamiltonian (37).The true reach set at any �xed time for the double integrator has two very sharp corners inthe upper left and lower right. All three of these error sources will tend to blunt the numericalapproximation of these corners, and since the optimal trajectories discovered by the HJ PDEfrom all points in the state space travel through one of these corners, errors introduced herewill propagate throughout the state space. In fact, it is likely that all three error sources playa role, and we will continue to investigate this challenging example in the hopes of improvingthe accuracy of this method of solving stationary HJ PDEs.
2.8 Expectations of Stochastic Di�erential Equations
This section describes functions in the directory Examples/SDE/.
Many systems are not amenable to deterministic models because their evolution is in
uencedby parameters whose exact value is not known. Knowledge about the nondeterministic pa-rameters comes in several di�erent varieties. Sections 2.6 and 2.7 examine systems in whichthe time varying parameters are drawn at each instant from some bounded set|a model ofnondeterminism often used for control signals that steer a system's evolution toward somedesired state.
In this section we examine systems in which the nondeterministic parameters are drawn prob-abilistically from a known distribution. More speci�cally, the system will evolve according tothe stochastic di�erential equation (SDE)

dx(t) = f(x(t); t) dt+ �(x(t); t) dB(t); x(t0) = x0; (38)
where B(t) is a Brownian motion process of appropriate dimension, the drift term f repre-sents the deterministic component of the system evolution, and the di�usion term � dB(t)represents the probabilistic component of the system evolution. The functions f and � mustbe continuous in x and t. We interpret (38) in the Itô sense [22]. We note in passing thatthis model can be extended to allow for magnitude bounded time varying parameters, whichleads to a stochastic di�erential game; for more details and examples of using the toolbox toanalyze such stochastic systems, see [20]
Given f , � and x0, there are methods to simulate sample trajectories of the system (38) [13].Here, however, we concentrate on expected outcomes. Unfortunately, SDE theory is complex,and this section is not designed as an introduction to it. Instead, we refer the reader to [9,22],and move on to some examples with which we seek to demonstrate the power of the toolboxto those who have selected an appropriate PDE formulation for the expected outcome of theirSDE problem.
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Actually, the toy routines below are mostly designed to test the toolbox, and are essentiallyone dimensional. The toolbox is designed to be far more general, and so we would verymuch like to hear about interesting SDE examples in 1{3 dimensions with which we coulddemonstrate the toolbox's features, particularly if they have analytic solutions against whichto test.
In the examples below, the astute reader will notice that in some cases the sign of thediscounting and trace of the Hessian terms are opposite to those given in (11) and (10)respectively. Consequently, the PDEs will appear to violate the monotonicity requirement (3).However, in these cases the stated PDEs are terminal value problems, and so reversing timeto put them into the initial value format required by the toolbox will introduce the necessarynegative sign.
2.8.1 A Linear SDE with Additive Noise
Perhaps the simplest nontrivial case of (38) is the system

dx = ax dt+ b dB; x(t0) = x0; (39)
where a and b are constants. Given some continuous terminal payo� function g(x), theexpected terminal payo� at time T > t0 can be de�ned as

�(x0; t0) = E [g(x(T ))] ;
where x(t) solves (39). In particular, we can pick out the expected terminal state E[x]with g(x) = x and the variance Var(x) in the expected terminal state using g(x) = x2 andVar(x) = E[x2]� E[x]2.
The expected payo� function � is the solution to the second order PDE

Dt�(x; t) + ar�(x; t) + 12 trace �b2D2x�(x; t)� = 0: (40)
with terminal condition �(x; T ) = g(x). Note that we need not appeal to viscosity solutions inthis restricted case if b 6= 0, because the PDE is linear parabolic. However, we will solve thisPDE using the toolbox. The following routine demonstrates the use of termTraceHessianand termConvection.
[ data, g, data0 ] = linearAdditiveSDE(payoff, a, b, tf, dim, accuracy): Demon-strate the expected outcome of a linear ODE with additive stochastic noise. Inputparameter payoff speci�es the terminal payo� function g(x) whose expectation willbe determined: either 'x' for g(x) = x or 'x^2' for g(x) = x2. The parameters aand b respectively specify the drift and di�usion terms for the SDE (39). The time
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(a) Expected state. (b) Variance in expected state.
Figure 26: Output of testLinearAdditiveSDE, showing the expected terminal state andexpected terminal variance of the state, as computed with the toolbox and analytically. Onthe top of the left plot, note that the approximation and the analytic solution are indistin-guishable, while on the top of the right plot the scale of the vertical axis is about 10�7.

interval T � t0 is speci�ed by tf. Normally this example is run in one dimension, butfor testing purposes it can be run in two dimensions, in which case system evolutionis governed by (39) in the x1 + x2 direction, and no evolution occurs in the x1 � x2direction (similar to the two dimensional general HJ examples from section 2.5). Theaccuracy input parameter has its usual choices. The �rst return parameter data isthe expected terminal payo� �(x; t) for trajectories starting from time t = T � tf. Theremaining output parameters are the computational grid in g and the terminal payo�function �(x; T ) = g(x) in data0.
For this simple SDE (39), there is an analytic solution against which to check our calculations.

E[x] = eatE[x(T )];Var[x] = 12a �(b2 + 2aVar[x(T )])e2at � b2� :
Such testing is performed using the following script, where we assume E[x(T )] = x andVar[x(T )] = 0. The results are shown in �gure 26.
testLinearAdditiveSDE: Runs the linearAdditive routine for a �xed set of parameters,and compares the results against the analytic solution. Intermediate results with payoff= 'x' and payoff = 'x^2' are shown during simulation, and then the analytic andnumeric E[x] and Var[x] are shown.
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Figure 27: Results of running exerciseKP529. The analytic and numeric solutions arevisually indistinguishable in the upper plot, as can be deduced from the error shown in thelower plot. The pattern of error suggests that the nonphysical boundary conditions are asigni�cant source.
2.8.2 An Example from Kloeden & Platen [13]
This example is taken from [13, exercise 17.1.2, p. 531]. Translated into the toolbox's notation,the general PDE is Dt�+ 12 trace �D2x��+ V (x; t)� = 0 (41)with terminal conditions �(x; T ) = g(x). Starting from the left, the terms in this equation area temporal derivative (4), a second order di�usion (10) which is just the Laplacian operator,and a discounting term (11) with potentially state and time dependent rate V (x; t). For thisspeci�c exercise, the authors select

g(x) = 1; V (x; t) = �12x2;(there is a typo in [13]|the V (x; t) stated there should be negated) and state the solution
�(x; t) = exp"12(T � t) + 12

 1� e2(T�t)1 + e2(T�t)
!x2 + 12 ln

� 21 + e2(T�t)
�#

for x 2 R and 0 � t � T .
The following script solves (41) with the toolbox, and compares the approximation againstthe analytic solution. In the process it demonstrates the application of termTraceHessian
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to approximate a Laplacian (although in this case it is in one dimension), and the applicationof termDiscount with state dependent discount rate. Results are shown in �gure 27.
exerciseKP529: Approximate the solution to the PDE (41) in [13, exercise 17.1.2, p. 531]numerically using the toolbox. This function is a script, so all parameters must be setby modifying the �le and all variables will appear in the top level workspace. A �gureshowing the evolution of the solution is generated, as is a �gure demonstrating the errorin the solution at the �nal time.
2.8.3 An Example from �ksendal [22]
This example is technically drawn from [22, exercise 8.6, pp 169{170], although a number ofsimilar SDEs appear in nearby exercises. In connection with the Black-Scholes formula forpricing �nancial options, we arrive at the PDE

Dt�+ ��� �xr�� 12�2x2D2x� = 0 (42)
with initial conditions �(x; 0) = max(0; x�K), where � > 0, �, �, and K > 0 are constants.Starting from the left, the terms in this equation are a temporal derivative (4), a discountingterm (11) with constant discount rate �, a convection term (5) with state dependent velocity�x, and a second order di�usion (10) with state dependent rate 12�2x2. Financially, theconstants � and � are related to deterministic rates of interest, and � to the stock's volatility.
The exercise also gives the solution as the integral

�(x; t) = e��tp2�t
Z
R

max �0; x exp ���� 12�2� t+ �y��K� exp��y22t � dy: (43)
The following routine solves (42) with the toolbox, and (43) with Matlab's quadrature rou-tine quad. In the process it demonstrates the application of termTraceHessian, termDiscount,and termConvection.
[ data, g, data0 ] = exerciseO169b: Approximate the solution to the PDE in [22, ex-ercise 8.6, pp. 169{170] numerically using both direct application of the toolbox to thePDE (42), and numerical quadrature on the integral solution (43). This function wasdesigned as a script, but converted into a function only to allow helper subfunctions tobe stored in the same �le|all parameters must be set within the function itself. Thereturn parameters have their usual interpretation.
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Figure 28: Results of running exerciseO169b. Only the initial condition is plotted fort = 0. The PDE and quadrature approximations are indistinguishable until t = 1, wherethey have separated near the upper boundary of the computational domain, likely due toerrors introduced by the nonphysical boundary conditions.
The results are shown in �gure 28. The toolbox approximation of the solution to the PDEand Matlab's quadrature approximation to the integral are indistinguishable for small t,but begin to separate near the upper boundary of the computational domain by t = 1. Thiserror may be due to the dubious boundary condition imposed by exerciseO169b.
For simulation with smaller plotting intervals, another discrepancy was noted between thetwo approximations. Near the kink in the initial conditions at K, the quadrature solutiondeviated from the PDE solution and continued to display a kink for small t > 0. Since the truesolution is known to be smooth for t > 0, we believe it is the quadrature approximation that isincorrect rather than the toolbox. This belief is supported by the fact that the discrepancy isoccuring near the kink in the initial conditions, where quadrature's interpolating polynomialswill do a poor job of approximating the integrand. Further support comes from tests withsmooth functions replacing the max(0; x �K) in the initial conditions and integrand; testsin which the PDE and quadrature approximations agree visually for all time.
This routine has not been well tested. This example is closely related to many in �nan-cial mathematics, and deserves further exploration and improvements; however, its prelimi-nary form successfully serves the purpose of demonstrating the new features of the toolbox,and so in the interests of early release we have not fully validated or investigated it.
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2.9 Vector Level Sets
This section describes functions in the directory Examples/Vector/.
While they handle topological surface changes very well, the scalar level set functions used inmost of the toolbox's examples are restricted in that they can only represent closed surfacesof codimension one. This restriction rules out, for example, closed curves in R3 (codimensiontwo) or open curves in R2. As explained in [24, chapter 10], this constraint can be overcomeby solving a system of interacting HJ PDEs, and working with intersections of the level andsublevel sets of the solutions.
At the present time, we have only implemented the open curves in R2 example detailedbelow. We do not anticipate trouble implementing the closed curves in R3 example using thesame framework, although it will require new term approximation routines for the tangent,normal and binormal vectors. For another example|one that uses the toolbox's vector levelset formulation to analyze a stochastic hybrid system model of the Internet's TransmissionControl Protocol (TCP)|see [20].
As an initial test of the vector level set code, we compare convective motion by a �xed ve-locity �eld (5) using upwinded (termConvection) and Lax-Friedrichs (termLaxFriedrichs)approximations. The evolution equations for the two level sets do not depend on one another,so this comparison does not technically require vector level sets; however, it serves as a usefultest and keeps the two simulations in temporal lockstep.
[ dataC, dataH, g, data0 ] = compareTerms(flowType, initShape, accuracy, dissType,displayType): Test the vector level set code in odeCFLn by two independent sim-ulations of convective motion: one by upwinding with termConvection and one byLax-Friedrichs with termLaxFriedrichs. All parameters have defaults. ParameterflowType speci�es one of a list of possible 
ow �elds. Parameter initShape spec-i�es what type of initial level set should be convected. Parameters accuracy anddisplayType have their usual options. Return parameter dataC contains the �nal timevalue of the level set function evolved with termConvection, and dataH the level setfunction evolved with termLaxFriedrichs. Return parameters g and data0 containthe computational grid and initial conditions respectively.
Figure 29 shows the results of running compareTerms('linear', 'cube', 'medium'). Overthe timespan t 2 [0; 1] and for the options available in compareTerms, there appears to bevery little di�erence in results between upwinding and Lax-Friedrichs. Whether this is anindictment of the poor accuracy of upwinding or a testimony to the impressive accuracy ofLax-Friedrichs is not clear.
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Figure 29: Results of running compareTerms('linear', 'cube', 'medium'). The up-winded and Lax-Friedrichs results are indistinguishable. The di�erence in the values of thetwo level set functions at t = 1 is less than 10�10, even on a relatively coarse 1012 grid.
2.9.1 Open Curves for Spiral Crystal Growth
This section describes the routines smerekaSpirals and visualizeOpenCurve in the direc-tory Examples/Vector/.
This example comes from [31] and is mentioned brie
y in [24, chapter 10.3]. Crystals areobserved to grow in spiral patterns under a variety of growth conditions. The mechanismof this growth is believed to be a step discontinuity of the crystal surface which grows ina direction normal to itself, but is anchored at its ends to screw dislocations in the crystalstructure. The model proposed is motion in the direction normal to the step-line at speed

vn(x) = v1(1� ��(x));
where v1 is the speed of a straight step-line, � is a �xed parameter, and �(x) is the localcurvature of the step-line. If the step-lines were closed curves, this motion could be easilysimulated using the basic toolbox and a scalar implicit surface representation of the step-linein R2; however, because the step-lines terminate at �xed locations in the state space, we turnto vector level sets.
The idea is simple: use one level set function �(x; t) to track the motion of the true step-linecurve and an arti�cial step-line curve, the union of which is a closed curve. The sign of
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a second level set function  is used to distinguish between the physical and the arti�cialstep-lines. Mathematically, the physical step-line is represented by
�(t) = fx 2 R2 j �(x; t) = 0 ^  (x; t) > 0g: (44)

The screw dislocations which anchor the ends of the physical step-line are those locationswhere both � and  are zero. Motion of the step-line is then simulated by solving the pairof HJ PDEs
Dt�� v1 sign( ) [� sign( )�(�)� 1] kr�k = 0;Dt � v1 sign(�) [� sign(�)�( ) + 1] kr k = 0; (45)

where �(�) is the local curvature of the level set function �(x; t). Note that (45) is in aslightly di�erent form than [31, equations (9) and (10)]|we have 
ipped a sign in the latterequation, and then rearranged to regain the symmetry in the two equations. For �, this PDEis simply motion by mean curvature (9) with speed b(x; t) = v1� sign( (x; t))2 and motion inthe normal direction (6) with speed a(x; t) = v1 sign( (x; t)). For  , the same motions applyafter substituting sign(�(x; t)) and negating a(x; t). Note that we do not assume sign(�)2 = 1,since we use the molli�cation
sign(�) =

8><
>:
+1; � > �;�=�; j�j � �;�1; � < ��:

In our simulations, we choose � = 4�x, where �x = maxi grid:dx(i).
The following routine implements (45) and can be used to recreate selected �gures from [31].In the process it demonstrates the use of termCurvature, termNormal, and termSum withvector level sets. The postTimestep routine postTimestepReinit is also demonstrated; it isused to run a single iteration of the reinitialization equation (7) on � and  after each stepof simulating (45). Note that v1 = 1 in all of these examples.
[ dataCurve, dataMask, g, tPlot ] = smerekaSpirals(whichFig, exactCopy, accuracy,tMax): Demonstrate the evolution of open curves in R2 using vector level sets. All in-put parameters have defaults. The � parameter in (45), plot times, and the initialconditions are drawn from among selected �gures in [31]; the user may choose withwhichFig. The user may also specify whether to recreate the exact sample times inthe �gure or to just show evenly spaced sample times using the boolean parameterexactCopy. The usual options are available for accuracy. The optional parametertMax can be used to terminate the simulation early or late. The return parametersdataCurve and dataMask are � and  respectively. If the user does not request returnparameter tPlot, dataCurve and dataMask are arrays containing � and  at the �naltime. If the user requests tPlot, then dataCurve and dataMask are cell vectors whose
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(a) Counter-rotating spirals (b) Co-rotating spirals
Figure 30: Spiral motions of step lines demonstrating the use of vector level sets for opencurve evolution in two dimensions. Compare with [31, �gures 4 and 12].

elements are � and  at each plot time. The return parameter g returns the computa-tional grid. The return parameter tPlot is a vector of times at which the solution wasplotted; requesting it also controls the form of the output parameters dataCurve anddataMask as described above.
Recreations of [31, �gures 4 and 12] are shown in �gure 30. Resolution of the tight spiralingpatterns demands a �ne grid; for the �gures we used grid:N = 4012. The combinationof �ne grid and motion by mean curvature (with timestep proportional to (�x)�2) meansthat these systems take a long time to simulate fully|the co-rotating spirals took nearly24 hours. Consequently, we have not yet tried the resolution of 5012 recommended in [31](which would take roughly twice as long). Nor have we yet tracked down the source of thediscrepancy in our recreation of [31, �gure 12]. The initial conditions used in smerekaSpiralsfor whichFig = 12 are not the same as those suggested in [31, equation (21)] (we could notget the de�nition of  (x; 0) given there to work), so it is not clear whether the di�erence inresults springs from the slightly coarser grid or from di�erences in initial conditions.
The spirals in �gure 30 are not trivial to generate, since �(t) in (44) cannot be directly visu-alized with Matlab's contour plotters. Following [31], we use Matlab's contour functionto visualize the 12�x isocontour of the function

�(x; t) = (j�(x; t)j;  (x; t) � 0;+1;  (x; t) < 0:
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The resulting curves are actually two contour lines very close together, but for the gridresolutions used the two lines are indistinguishable unless we zoom in on the plot. Computing� and plotting the result are accomplished with the following routine.
[ hCurve, hAll ] = visualizeOpenCurve(grid, curve, mask, showAll, titleStr): Vi-sualize an open curve de�ned by two level set functions according to (44). Plotting isperformed in the current �gure window and axis. The grid is given by grid, and theparameters curve and mask are arrays of size grid.shape containing � and  respec-tively. If the optional boolean parameter showAll is true, then the entire zero levelset of � is plotted in addition to the open curve (the two portions are distinguished bycolor). The optional string argument titleStr causes a title to be added to the plot.The return arguments hCurve and hAll are graphics handles to the contours created.If showAll is false (or missing) then hAll will be the empty vector [].
2.10 Reinitialization Examples from Russo & Smereka [27]
This section describes functions in the directory Examples/RussoSmereka/.
Reinitialization using the reinitialization PDE (7) has a number of advantages over compet-ing methods like fast marching: there is no need to �nd the front explicitly and schemes withhigh orders of accuracy can be applied to approximate the temporal and spatial derivatives.Unfortunately, despite smoothing of the signum function there is usually some movement ofthe interface; for example, see �gure 5. In [27], the authors propose a scheme intermedi-ate between explicitly locating the interface and the plain reinitialization equation. In thismodi�ed scheme, the reinitialization equation is solved as usual for all nodes except thoseadjacent to the interface, where adjacent means that they have at least one neighbour nodeon the other side of the interface. For nodes adjacent to the interface, the distance to theinterface is approximated and an alternative update is used that results in less movement ofthe interface.
The �rst order accurate version of this \subcell �x" is implemented by termReinit. Inthis section we demonstrate the advantages of this modi�cation by recreating some of theexamples from [27]. All of these codes use termReinit directly (they do not call a helperfunction such as signedDistanceIterative).
[ data, g, data0 ] = reinit1D(apply fix, accuracy): Recreates [27, �gures 2 and 5].Adjusting the axis bounds on these �gures can generate [27, �gures 3 and 6]. Theboolean apply fix parameter determines whether or not the subcell �x is applied. Theaccuracy parameter choices are as usual; however, it should be noted that the subcell�x is itself only �rst order accurate. The results of running this code are shown in�gure 31.
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(a) Without subcell �x. (b) Without subcell �x (zoomed view).

(c) With subcell �x. (d) With subcell �x (zoomed view).
Figure 31: One dimensional reinitialization problem from [27, sections 2 and 3], as recreatedby reinit1D with accuracy = 'low'. The dashed line is the initial implicit surface. Thehorizontal line represents the grid and the circles on this line are the node locations. The othersolid lines are iterations 3, 6, 9, and 12 of the reinitialization. Compare with [27, �gures 2, 3, 5and 6].
[ data, g, data0 ] = reinitCircle(apply fix, accuracy, show nodes, grid anisotropy,dim): Recreates [27, �gures 7 and 8]. The boolean apply fix parameter determineswhether or not the subcell �x is applied. The accuracy parameter choices are as usual.The boolean show nodes determines whether the (rather coarse) grid is shown by lightgrey dots. The double grid anisotropy parameter allows the example to be run ongrids that have di�erent node spacing in the horizontal direction (the analysis and ex-amples in [27] assume an isotropic grid). The integer dim allows for either two or threedimensional runs. Figure 32 shows the results of two sample runs of this code.
[ data out, g ] = reinitEllipse(apply fix, accuracy, num nodes, do figure 9): Recre-ates [27, �gure 9]. The boolean apply fix parameter determines whether or not thesubcell �x is applied. The accuracy parameter choices are as usual. The num nodes pa-rameter controls the resolution of the grid; the default setting of 200 is taken from [27].The boolean do figure 9 determines whether the user wants graphical output (to recre-
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(a) Without subcell �x. (b) With subcell �x.
Figure 32: A two dimensional reinitialization problem from [27, section 4] as recreated byreinitCircle(apply fix, 'low', 1, 2, 2), where apply fix 2 f0; 1g. The initial con-ditions are a signed distance function representing a circle, so reinitialization should notmodify the function or its zero isosurface. Both �gures show contours at iterations 160i fori = 0; 1; : : : ; 5. The case without the subcell �x shows that over many iterations the zeroisosurface shrinks, while the contours are indistinguishable when the subcell �x is applied.The two subplots correspond to [27, �gures 7 and 8], except that the grid is denoted by smalldots and the grid nodes have twice the spacing in the horizontal direction as in the vertical.

ate [27, �gure 9]), or just error information (to recreate [27, �gures 10 and 11]; seeellipseError below). The return parameter data out is a structure containing infor-mation about the error at each timestep of the reinitialization. The results of runningreinitEllipse with the default settings are shown in �gure 33.
ellipseError: A script �le which uses multiple calls to reinitEllipse to recreate [27,�gures 10 and 11]. With some editing, it can also recreate [27, �gure 15]. Results areshown in �gure 34.
The fact that the recreations are not exact matches has several possible causes. First, thescheme used here for solving the reinitialization equation away from the front is the schemefrom [12], which is not the same as what was used in [27]. Second, the default Matlabvisualization methods (linear interpolation) are used to generate the �gures here, while [27]used cubic splines in at least a few of the examples. Third, it is not clear in [27] whether theexamples use the \robust" distance approximation scheme; all of the recreations above domake use of the robust version. Fourth, some of the parameters given in the text of [27] clearly
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Figure 33: A more challenging two dimensional reinitialization problem from [27, section 4],as recreated by the default settings of reinitEllipse. The thicker line in the middle of thecontours is the zero isosurface. In the left-most subplot the implicit surface function startswith regions where the gradient magnitude is both large and small, but by the �nal iterationin the right-most subplot, the contours are evenly spaced and hence the gradient magnitudeis roughly equal everywhere. Compare with [27, �gure 9].
disagreed with the �gures, and so parameter settings were altered to make the recreationscloser to the �gures (most notably the contours and iterations in �gure 33).
The source of the discrepancy in the interface location absolute error metric of the recreationin �gure 34 of [27, �gure 11] is not known.
2.11 Testing Routines
This section describes functions in Examples/Test.
2.11.1 Initial Conditions
Several script-like functions were written to test the initial condition routines for basic shapesand set operations for constructive solid geometry (see section 3.3). Some of the outputs fromthese scripts are shown in �gure 35.
initialConditionsTest1D(): Creates a sequence of shapes de�ned by implicit surfacefunctions in a one dimensional state space. In one dimension, an implicitly de�nedshape is always an interval, although one or both endpoints may be in�nite. Plottingthe intervals is not terribly exciting, so the entire implicit surface function for eachshape is displayed as a function plot, state vs function value. The implicitly de�nedinterval for each plot is the region in which the function value is negative.
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(a) Average error, �rst order accu-racy throughout. (b) Interface error, �rst order accu-racy throughout. (c) Average error, second order ac-curacy away from interface.
Figure 34: Demonstration that the reinitialization PDE with the subcell �x eventually reachesa �xpoint for the ellipse problem shown in �gure 33, a �xpoint which may not be achievedwithout the �x. Compare with [27, �gures 10, 11 and 15], but note that the vertical axes maynot be the same. The vertical axes are log-scale error, and the horizontal axes are integrationtime. The dashed line corresponds to reinitialization without the subcell �x on a 2002 grid.The three solid lines correspond to reinitialization with the subcell �x on grids of size 502,1002 and 2002. The left two subplots are generated by ellipseError, and use �rst order ofaccuracy approximations throughout. To generate the right subplot, ellipseError must beedited to set accuracy = 'medium', which then uses second order of accuracy in time andfor nodes not adjacent to the interface.
initialConditionsTest2D(): Creates a sequence of shapes de�ned by implicit surfacefunctions in a two dimensional state space. The two dimensional implicit surfacesare shown in one �gure window by contour plots, while the implicit surface functionsthemselves appear in a separate window as surface plots.
initialConditionsTest3D(): Creates a sequence of shapes de�ned by implicit surfacefunctions in a three dimensional state space. The three dimensional implicit surfacesare shown as isosurfaces, because the implicit surface functions themselves are ratherchallenging to visualize.
2.11.2 Derivative Approximations
Do the high resolution (high order) approximation schemes live up to their billing? A pairof routines were designed to test the functions (see section 3.4.1) and determine their errors,convergence rates and execution times. Given proper input data, solutions of the time-dependent HJ PDEs that we solve with this toolbox should remain continuous, althoughthey may not be di�erentiable everywhere. In order to test whether the approximationschemes correctly handle this situation, the test function is chosen to be continuous but withdiscontinuities in the derivative.
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(a) (b)

(c) (d)
Figure 35: Examples of implicitly de�ned surfaces and sets built by constructive solid geom-etry operations from basic shapes. The top row is generated by initialConditionsTest2Dand the bottom row by initialConditionsTest3D. Figure 35(a) shows a square subtractedfrom a circle, while �gure 35(b) shows a nonconvex polygon constructed by intersections andunions of hyperplanes. Figure 35(c) shows the union of a sphere and a cube, and �gure 35(d)shows an octohedron constructed by the intersection of eight hyperplanes.
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[ errorL, errorR, time ] = firstDerivSpatialTest1(scheme, dim, whichDim, dx):Computes the errors in the left and right approximations for a single scheme on a sin-gle grid. The scheme is speci�ed by the function handle scheme. The dim dimensionalgrid has periodic boundary conditions in every dimension and grid spacing dx. Thederivative is taken in dimension whichDim. Letting xd be the whichDim component ofthe state vector x, the test function is
f(x) =

8><
>:
sin �2�xd + �4 � ; for 0 � xd < 14 ;sin �2�xd � �4 � ; for 14 � xd < 12 ;sin (2�xd) + 1; for 12 � xd < 1:

Note that the test function is constant in all dimensions other than whichDim. Inorder to correctly catch the discontinuities, dx should be an integer division of 1=4.Calling this function without output arguments will generate a �gure showing the testfunction, its analytic derivative, and the approximations. Statistics on the quality ofthe approximation will be displayed. There will be no display if any of the outputparameters is requested. The outputs errorL and errorR will be structures with thescalar �elds maximum (maximum error over the nodes), average (average error over allnodes), rms (root mean square error over all nodes), and jumps (average error overthe three nodes that lie on a jump, assuming that dx was correctly chosen). Theoutput time will be the time (in seconds) required to evaluate scheme, as reported bycputime. This procedure is appended Test1 in the hopes that additional procedureswith the same interface but di�erent test functions f(x) will be implemented.
firstDerivSpatialConverge: A script �le to demonstrate the convergence rate of the vari-ous �rst derivative approximation schemes. The schemes, grid sizes and grid dimensionscan be speci�ed inside the script �le. The function firstDerivSpatialTest1 is used togenerate the error estimates, although alternative procedures with di�erent test func-tions could easily be substituted. Four �gures are generated, showing the convergencerate in maximum error, average error, root-mean-square error, and average jump error(maximum jump error is not computed, since it is almost always the overall maximumerror). Execution times are also displayed.
As a demonstration, �gure 36 shows the results of running firstDerivSpatialConverge onall of the upwind approximations from section 3.4.1: upwindFirstFirst, upwindFirstENO2,upwindFirstENO3a, upwindFirstENO3b, upwindFirstWENO5a, and upwindFirstWENO5b. Theerrors for the two forms of ENO3 and WENO5 turn out to be indistinguishable. The schemesbehave as expected, with the exception of the WENO5 schemes. They do not achieve �fth or-der accuracy, although they do show higher order convergence than the basic ENO3 scheme.Furthermore, although they consistently outperform the ENO3 scheme in average error, theWENO5 schemes are worse in maximum error and errors near the jumps (quantities whichtend to be closely related).
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(a) Maximum error. (b) Average error.

(c) Average error at derivative discontinuities. (d) Root mean square error.
Figure 36: Convergence rates demonstrated by the various upwind approximations of the�rst deriviative from section 3.4.1, as generated by firstDerivSpatialConverge on the testfunction in firstDerivSpatialTest1 in two dimensions. The short lines in the middle ofthe bottom of each �gure show the slopes corresponding to �rst, second, third and �fth orderconvergence.
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RelativeExecutionScheme TimeupwindFirstFirst 1upwindFirstENO2 5upwindFirstENO3a 12upwindFirstENO3b 25upwindFirstWENO5a 20upwindFirstWENO5b 28
Table 2: Approximate speeds of the upwind approximation schemes from section 3.4.1 (rel-ative to the speed of upwindFirstFirst), as measured by firstDerivSpatialConverge ona two dimensional example.
The choice of scheme will be driven primarily by desired accuracy and the need for speed.The relative speeds of the six schemes on the N = 1280 grid is shown in table 2, although re-sults will vary depending on the hardware, dimension and grid size. In most simple interfacemotion examples, the spatial derivative approximation plays the largest roll in determin-ing the overall computation time and the accuracy of the results, so choosing an appropriatescheme is important. Clearly, the ENO3b and WENO3b schemes should not be used for com-plex examples, since they deliver the same results as ENO3a and WENO5a (respectively)at signi�cantly higher computational cost. For that reason, the functions upwindFirstENO3and upwindFirstWENO5 are wrappers for upwindFirstENO3a and upwindFirstWENO5a re-spectively. Beyond that, however, the user must determine the appropriate tradeo� betweenaccuracy and speed. In practice, we often run initial tests with low resolution schemes, andsave the high resolution schemes for producing �nal results.
2.11.3 Other Test Routines
Some miscellaneous testing routines.
[ data, g, data0 ] = reinitTest(initialType, accuracy, displayType): Demonstratesthe signedDistanceIterative helper routine. The parameters and results are identi-cal to those of reinitDemo from section 2.2.1, except that this routine uses signedDistanceIterativeto handle the main loop of the PDE approximation.
argumentSemanticsTest(loops, matSize): Matlab's programming language uses pass-by-value semantics, but purports to achieve pass-by-reference speed by avoiding thecreation of copies until absolutely necessary; for example, when an input argument ismodi�ed. This routine can be used to demonstrate the veracity of that claim, as wellas test whether array reshaping (through either reshape or (:)) is inexpensive.
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ghostCell: A script �le to test the routines for adding ghost cells implementing varioustypes of boundary conditions to data arrays in dimensions one and two. The resultsmust be examined manually to determine whether the correct ghost cell values wereadded in the correct places. Because the �le is a script, parameters can only be modi�edby editing the �le directly; however, all the internal variables of the script are availablein the base workspace at the completion of the script (useful for debugging).
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3 Code Components
This section discusses the routines in the directory Kernel. It is designed primarily as areference, although the best reference is probably the help entries for the routines themselves,which are found at the top of each function's source m-�le and can be accessed withMatlab'shelp command.
3.1 Grids
This section discusses functions found in the directory Kernel/Grids.
The goal of this toolbox is to allow simple solution of simple interface motion problems.Because the computational grid a�ects virtually every operation in a hyperbolic PDE solver,nowhere is the decision to pursue simplicity over generality more de�ning than in our choiceof grids. While there are many problems that cannot be solved to high accuracy or withinreasonable computational time without resorting to adaptive and/or unstructured grids, thecomplexity of the data structures for such grids makes them poorly suited for simple problemsor the Matlab interpreted programming environment.
Consequently, we have adopted a very simple grid structure: a �xed rectangular Euclideanmesh. The grid cells are of �xed size, although the spacing for each dimension may be chosenindependently. A grid is represented by a structure with �elds:
grid.dim: The dimension of the grid. Typically between one and four, although the codeshould work in any dimension.
grid.min: A column vector specifying the lower left corner of the computational domain.
grid.max: A column vector specifying the upper right corner of the computational domain.
grid.bdry: A cell column vector. Each element is a function handle pointing to the bound-ary condition (see section 3.2), which provides data values for nodes which fall outsidethe computational domain in that dimension.
grid.bdryData: A cell column vector. Each element provides parameters for the corre-sponding grid.bdry element.
grid.N: A column vector specifying the number of grid nodes in each dimension.
grid.dx: A column vector specifying the grid cell spacing in each dimension.
grid.vs: A cell column vector. Each element contains a regular column vector giv-ing the node locations in the corresponding dimension. Generated by grid.vsfdg= linspace(grid.min(d), grid.max(d), grid.N(d)).
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grid.xs: A cell column vector. Each element contains an array giving the node loca-tions for each node in the entire grid. Generated by [ grid.xsf1:grid.dimg ] =ndgrid(grid.vsf:g).
grid.axis: A row vector specifying the computational domain boundary in a format suit-able to pass to Matlab's axis command.
grid.shape: A row vector specifying the number of nodes in each dimension in a formatsuitable to pass to Matlab's reshape command. Speci�cally

grid:shape = ([grid:N 1]; if grid:dim = 1;grid:N0; otherwise:
The special case for one dimensional grids is required becauseMatlab does not supporttrue one dimensional arrays. If data is a data array de�ned on grid, then grid.shape== size(data).

3.1.1 Creating A Grid
Manually entering all of the �elds that de�ne a grid would be tedious and prone to in-consistencies. Therefore, most will be automatically generated by a call to processGrid.Typically, only the �elds grid.dim, grid.min, grid.max, grid.bdry, grid.bdryData andone of grid.N or grid.dx need be supplied by the user.
gridOut = processGrid(gridIn, data): Fill in the �elds missing from a grid structure.Where possible, missing �elds in gridIn will be automatically generated. Some con-sistency checking is also performed on the �elds that already exist. Some �elds havedefault values, which can be seen in the help entry. This function can be safely calledmultiple times on the same grid structure (the second call will only invoke consistencychecks), although it can be rather slow to execute. The optional second argument is onlychecked to ensure that ndims(data) and size(data) are consistent with gridIn.dimand gridIn.N respectively.
The user should ensure that processGrid is called before a grid structure is passed into any ofthe other routines in this toolbox. The resulting grid will be a grid.dim dimensional arraywith grid.N(d) nodes in dimension d for d = 1; : : : ; grid:dim.
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3.1.2 Allocating, Passing and Saving Grids
The grid.xs �eld will generally be much larger than any other in grid, since it will havea total of grid.dim * prod(grid.N) entries. While it is large, alternative schemes forvectorizing the level set computations inevitably lead to allocating multiple copies of similarlylarge state arrays at di�erent levels in the call stack, and so it was decided to include thissingle copy of the state array in the grid structure. The large size of this �eld will not reducecomputational e�ciency as long as the grid structure and its �elds are not modi�ed withinany of the functions to which it is passed; so far we have found no reason to do so within anyof our examples.
When saving a grid to disk, the command sequence

grid = rmfield(grid;0 xs0);save(0someFilename0; grid);
can be used to remove this �eld and hence enormously reduce the size of the resulting �le.The �eld can be easily regenerated when loading by using the command sequence

grid = load(0someFilename0);grid = processGrid(grid);:
3.1.3 Other Grid Functions
There are two incompatible methods provided by Matlab for generating state arrays of thesort stored in the grid.xs �eld: meshgrid and ndgrid. Matlab's indexing system grew outof matrix indexing, which is given in the order rows (vertical) and then columns (horizontal).This index ordering is incompatible with the ordering usually used in visualization, whichin two dimensions would be x (horizontal) and then y (vertical). To get around this incom-patibility, Matlab's default method for generating location arrays|meshgrid|e�ectivelyswaps the order of its �rst two arguments. This swapping works �ne when working in di-mensions two and three in Matlab, but it begins to make less sense when transfering datato external applications and in higher dimensions; in fact, meshgrid only works in dimensionthree or less. For grids which are indexed consistently in any dimension, Matlab providesndgrid, which is equivalent to meshgrid but does not perform the dimension swap. Becauseit is designed for arbitrary dimension, the Toolbox's grid structure is set up by processGridusing ndgrid.
This choice means that interpn (which requires ndgrid-based grids) should be used whenworking in dimension two or higher for interpolating data generated by the Toolbox, ratherthan interp2 or interp3 (which require meshgrid-based grids). In one dimension, interp1(or even spline) can be used.
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The choice of ndgrid-based grids also causes two visualization issues. The �rst is that someMatlab visualization routines require that their data be laid out in a meshgrid-based array;for example, contourslice, slice, and isonormals. To handle such routines, the followingfunction is provided:
[ mesh xs, mesh data1, mesh data2, ...] = gridnd2mesh(grid, nd data1, nd data2,...): Converts an ndgrid-based grid and its associated implicit surface function dataarrays into a meshgrid-based grid. The ndgrid-based grid is speci�ed with a stan-dard Toolbox grid structure in grid. The optional grid.dim dimensional array(s)nd data1, nd data2, . . . store the corresponding implicit surface function(s). The out-put mesh xs is a cell vector of length grid.dim containing the meshgrid-based equiv-alent of grid.xs. The decision to return only the grid.xs component of the gridstructure was purposeful, to try to ensure that all grid structures are ndgrid-based inthe Toolbox. For the purpose of callingMatlab visualization routines, mesh xs shouldbe su�cient. Any Toolbox visualization routines will use the grid structure directly.The other output parameter(s) mesh data1, mesh data2, . . . contain the appropriatelymodi�ed versions of the input parameter(s) nd data1, nd data2, . . . when those areprovided.
For an example of how gridnd2mesh is used, look at the three dimensional visualizationoptions in the source code of visualizeLevelSet (section 3.7.6).
A more subtle problem with the incompatibility between grid types is that almost allMatlabvisualization routines in dimensions two or higher silently call meshgrid when they are notprovided with grid arguments. Consequently, users should always explicitly pass the grid (inthe form of the grid.xs cell vector) when calling any Matlab visualization routine. Formore comments, see section 1.4.
These grid incompatibility visualization issues do not arise if visualization is performed byvisualizeLevelSet (see section 3.7.6). Users interested in examples of correct calls toMatlab's visualization routines should look at the source code for visualizeLevelSet.
3.2 Boundary Conditions
This section discusses functions found in the directory Kernel/BoundaryCondition.
The computational domain is �nite, and so the �nite di�erence stencils we use to approximatethe spatial derivatives of the HJ PDE will extend beyond the edge of the grid when workingon nodes near that edge. In order to manage this process, every face of the computationaldomain must be associated with a boundary condition. This association is represented by
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function handles passed in the grid.bdry �eld of the grid structure described in section 3.1.In general, each dimension can have its own boundary conditions, although the upper andlower boundaries in a particular dimension must use the same boundary condition function.
The boundary condition functions are called by the spatial derivative approximations (seesection 3.4). When called for a particular dimension, they add an appropriate number of ghostnodes|the stencil width speci�ed by the spatial derivative approximation|to the upper andlower sides of the data array in that dimension. The values placed in these ghost nodes aredetermined by the type of boundary condition.
addGhostPeriodic: Values from the lower end of the array are copied to the upper ghostnodes, and vice versa. This boundary condition requires no additional parameters.
addGhostDirichlet: A constant value is placed into the ghost nodes. Di�erent constantsmay be chosen for the upper and lower ghost nodes. The values are passed as parame-ters.
addGhostNeumann: The ghost nodes are �lled with data linearly extrapolated from thecomputational boundary so as to have a constant speci�ed derivative normal to theboundary. Di�erent constants may be chosen for the upper and lower ghost nodes. Theconstants are passed as parameters.
addGhostExtrapolate: The ghost nodes are �lled with data linearly extrapolated from thecomputational boundary so as to have a slope towards or away from the zero levelset. The choice of towards or away from the zero level set is passed as a parameter.While this is not a traditional PDE boundary condition, it proves quite useful in levelset computations for domains with in
ow boundaries that have no physically appropri-ate boundary conditions. By choosing to extrapolate away from zero, the ghost cellswill never falsely imply the existence of a \ghost" interface beyond the computationaldomain, and hence lend stability to a potentially unstable nonphysical computationaldomain boundary. All of the examples use this boundary condition when the periodicboundary condition cannot be justi�ed.
For more details on the parameters required by each boundary condition function, see theindividual help entries. All four boundary condition functions use the same call structure,which we demonstrate with addGhostExtrapolate.
dataOut = addGhostExtrapolate(dataIn, dim, width, ghostData): Adds width ghostcells in dimension dim to the top and bottom of the data array dataIn. These ghostcells are �lled with data linearly extrapolated from the two nodes nearest the bound-ary in the appropriate dimension. The sign of the extrapolation is chosen so as toextrapolate away from or towards the zero level set, as speci�ed by the boolean �eld
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ghostData.towardZero (defaults to false). For example, if dataIn is two dimen-sional of size grid.shape, then dim = 2, width = 1 and ghostData.towardZero =0 would result in a two dimensional dataOut of size grid.shape + [ 0, 2 ]T withvalues generated by
dataOut(:; 1) =dataIn(:; 1)+ sign(dataIn(:; 1))jdataIn(:; 1)� dataIn(:; 2)jdataOut(:; 2 : end� 1) =dataIn(:; 1 : end)dataOut(:; end) =dataIn(:; end)+ sign(dataIn(:; end))jdataIn(:; end)� dataIn(:; end� 1)j

Function handles to the boundary condition functions described above are passed as the ele-ments of the cell vector grid.bdry of the grid structure. Each is called on a single dimensionat a time. While this one dimension at a time method reduces the memory requirements ofadding ghost cells when working with the one dimension at a time �rst order spatial deriva-tive approximations in section 3.4.1, it is sometimes necessary to create ghost cells on everyside of the data array at once. Two helper routines are provided for this purpose.
dataOut = addGhostAllDims(grid, dataIn, width): Adds width ghost cells to the topand bottom of every dimension of the data array dataIn, according to the boundaryconditions speci�ed in grid.bdry.
[ vs, xs ] = addNodesAllDims(grid, width): Creates vs and xs cell vectors that cor-respond to those in grid.vs and grid.xs, but include the states of all the ghost nodesas well as the regular grid nodes. Note that xs can be very large, and hence this functioncan be expensive to evaluate.
The process of creating and releasing the memory for the ghost nodes at each timestepis clearly not the most e�cient way to handle boundary conditions. Unfortunately, thealternative would be to preallocate su�cient memory in the data array for the ghost cells.The size of the preallocation would depend on the spatial derivative approximation, andwould necessitate an o�set indexing system to retrieve the true data from the array. Thus,we decided to use the slower method of repetitive ghost cell allocation rather than destroy theintuitively simple layout of the data array. A future object oriented version of this toolboxmay be able to revisit this decision and achieve both goals with a single implementation.
3.3 Initial Conditions
This section describes functions in Kernel/InitialConditions.
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A major advantage of implicit surface representations is the ease with which complex shapescan be created through operations from constructive solid geometry. Simple algebraic func-tions can create implicit surface functions for basic shapes|circles, spheres, cylinders, squares,cubes, rectangles, hyperplanes, and polygons, to name just a few. These shapes can then becombined by unions, intersections, complements and set di�erences to form more complexshapes. When sets are represented by implicit surface functions, each of these set operationshas a simple corresponding mathematical operation.
In many cases, including most of the examples in this toolbox, the initial conditions involveimplicit surfaces so simple that their implicit surface functions are computed explicitly inthe main routine. However, for those not so familiar with implicit surface functions, thefunctions in this section were recently added to the toolbox to simplify the construction ofinitial conditions. They may also be used for other tasks, such as masking functions (seesection 2.2.3).
3.3.1 Basic Shapes
This section describes functions in Kernel/InitialConditions/BasicShapes.
Routines are currently provided to create implicit surface functions for spheres (includingcircles), cylinders, rectangles (including cubes and squares) and hyperplanes. Future shapescould include cones and ellipses, among others. At present the cylinders and rectangles mustbe aligned with the coordinate axes, although that restriction could be removed.
The sphere and cylinder routines both produce signed distance functions. Cylinders must becoordinate axis aligned.
data = shapeSphere(grid, center, radius): Constructs a signed distance function onthe computational grid grid for a grid.dim dimensional sphere centered at centerof radius radius. The parameter center should be a vector of length grid.dim andradius should be a positive scalar. In two dimensions this shape will be a circle, whilein one dimension it will be an interval. The default values for center and radiusgenerate a unit ball centered at the origin.
data = shapeCylinder(grid, ignoreDims, center, radius): Constructs a signed dis-tance function for an unbounded cylinder. In two dimensions this shape will be a slab,while in one dimension it will be an interval. More formally, a cylinder is a prism witha spherical cross-section. It could also be viewed as a sphere in which some dimensionsof the state space are ignored. These dimensions are listed in the vector ignoreDims;the remaining parameters are the same as for shapeSphere. If ignoreDims is theempty vector, then a true sphere will be generated. For example, a traditional three
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dimensional cylinder oriented vertically with unit radius with axis running through theorigin would be created by shapeCylinder(grid, 3, [ 0; 0; 0 ], 1), where gridis a three dimensional grid. The default values for ignoreDims, center and radiuswill generate a unit ball centered at the origin.
Two routines are provided for creating a rectangle, depending in which format the userprefers to describe the rectangle's size and location. Both versions require that the rectanglebe aligned with the coordinate axes. Both allow for certain dimensions to be unbounded.Both are implemented using intersection operations on axis aligned hyperplanes, and so donot return true signed distance functions|inside the rectangle the implicit surface functionwill be a signed distance function, but outside the cones around the corners will not be signeddistance (although they will have unit magnitude gradients).
data = shapeRectangleByCorners(grid, lower, upper): Constructs an implicit surfacefunction for an axis aligned (hyper) rectangle on the computational grid grid. Thevectors lower and upper (of length grid.dim) specify diagonally opposite corners ofthe rectangle, where lower(i) < upper(i). The rectangle may be unbounded in selecteddimensions by choosing components of lower as -Inf or components of upper as +Inf.The default values for lower and upper generate a unit cube whose lower left corner isat the origin.
data = shapeRectangleByCenter(grid, center, widths): Constructs an implicit sur-face function for an axis aligned (hyper) rectangle on the computational grid grid.The vector center (of length grid.dim) speci�es the center of the rectangle, whilethe vector widths (of length grid.dim) speci�es the full width of each dimension ofthe rectangle. This function is equivalent to calling shapeRectangleByCorners withlower = center � width=2 and upper = center + width=2. The default values forcenter and width generate a unit cube centered at the origin.
A hyperplane is de�ned by its outward normal n and a point through which it passes x0.Given these two parameters, a signed distance function for the hyperplane is given by

�(x) = nT (x� x0)knk :
Hyperplanes can be combined using intersection (see section 3.3.2) to form convex polygons.
data = shapeHyperplane(grid, normal, point): Constructs a signed distance functionfor a hyperplane on the computational grid grid. The vectors normal and pointshould be of length grid.dim. The vector normal speci�es the outward normal of thehyperplane, while point speci�es a point through which the hyperplane passes.
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data = shapeHyperplaneByPoints(grid, points, positivePoint): Constructs a signeddistance function for a hyperplane on the computational grid grid. Each of thegrid.dim rows of matrix points is a grid.dim dimensional vector specifying a pointthrough which the hyperplane passes. The direction of the normal vector of thehyperplane|in other words, on which side of the hyperplane the implicit surface func-tion is positive|can be speci�ed in one of two ways. First, if the optional grid.dimdimensional vector parameter positivePoint is supplied, then the normal directionis chosen so that the implicit surface function has a positive value at the point rep-resented by positivePoint. Note that positivePoint must not be too close to thehyperplane, and must be within the bounds grid. If positivePoint is not provided,then the points in points are assumed to be given in clockwise order and the normalwill be chosen to point out of the face of the clock. The output array data of sizegrid.size contains the implicit surface function. This routine has not been welltested.
Examination of the code in shapeHyperplane and shapeHyperplaneByPoints provides goodevidence of how cellMatrixMultiply and cellMatrixAdd can be used to simplify spa-tially dependent matrix algebra, particularly with respect to the vector x which is storedin grid.xs.
3.3.2 Set Operations for Constructive Solid Geometry
This section describes functions in Kernel/InitialConditions/SetOperations.
Given sets G1, G2 and G3 de�ned by the implicit surface functions �1(x), �2(x) and �3(x)respectively, the set operations of intersection, union, di�erence and complement have corre-spondingly simple mathematical descriptions in terms of the implicit surface functions.

G3 = G1 \ G2 () �3(x) = max(�1(x); �2(x));G3 = G1 [ G2 () �3(x) = min(�1(x); �2(x));G3 = G1 n G2 () �3(x) = max(�1(x);��2(x));G3 = G{1 () �3(x) = ��1(x):
It should be noted that the operations intersection, union and di�erence do not necessarilyproduce signed distance functions even if both of the input shapes are described by signeddistance functions. That said, the outputs of these operations in this case are still implicitsurface functions and, because they retain a gradient of unit magnitude, they are generallyvery well behaved numerically.
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data = shapeIntersection(shape1, shape2): Given implicit surface functions shape1and shape2 (which must be arrays of the same size), returns the implicit surface functionfor the intersection of the two shapes. If both implicit surface functions are signeddistance, then the output function will be signed distance within the intersection, butmay not be outside of it.
data = shapeUnion(shape1, shape2): Given implicit surface functions shape1 and shape2(which must be arrays of the same size), returns the implicit surface function for theunion of the two shapes. If both implicit surface functions are signed distance, then theoutput function will be signed distance outside of the union, but may not be inside ofit.
data = shapeDifference(shape1, shape2): Given implicit surface functions shape1 andshape2 (which must be arrays of the same size) describing sets G1 and G2, returns theimplicit surface function for G1 n G2 = G1 \ G{2 . If both implicit surface functions aresigned distance, then the output function will be signed distance within the resultingdi�erence, but may not be outside of it.
data = shapeComplement(shape1): Given an implicit surface function shape1, returnsthe implicit surface function for its complement. Unlike the binary set operations, withcomplement if the implicit surface function is signed distance, then the output functionwill be signed distance.

3.4 Spatial Derivative Approximations
This section discusses functions found in the directory Kernel/SpatialDerivative.
Level set equations, and more generally HJ PDEs, are �rst order hyperbolic PDEs relatedto conservation laws; consequently, care must be taken when computing derivatives in orderto keep the numerical solution stable. In particular, certain types of terms|notably thoseinvolving the gradient or the surface normal|must either use upwinding or introduce arti�cialdi�usion in order to maintain stability. Derivative approximations for the former case aredealt with in section 3.4.1.
If the HJ PDE contains su�cient di�usion, arising either naturally from second order terms orarti�cially from methods like Lax-Friedrichs (see section 3.6), then either upwind or centeredapproximations can be safely employed. Section 3.4.2 treats centered approximations forboth �rst and second order di�erential terms, including mean curvature.
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3.4.1 Upwind Approximations of the First Derivative
This section discusses functions found in the directory Kernel/SpatialDerivative/UpwindFirst.
The �rst derivative (in the form of r�(x; t)) appears in the terms (5){(9) of the HJ PDE.The last of these terms, curvature dependent motion, includes the dissipative mean curvature�(x), and hence centered di�erences can be used for the gradient in this case. In the remainingcases|motion by constant velocity, motion in the normal direction, reinitialization, and thegeneral HJ|either upwinded approximations or arti�cial dissipation must be used in orderto maintain stability. If the upwind direction can be determined, upwind approximations willgenerally yield more accurate results than arti�cial di�usion.
To take advantage of these cases, a large number of upwind approximations have been de-veloped for the �rst derivative. This package includes four approximations that operate oneach dimension separately (which consequently requires that the upwind direction must bedetermined for each dimension separately). For each dimension, the left approximation isused for 
ow that comes from nodes with lower index, and the right approximation for 
owthat comes from nodes with higher index. Note that higher order approximations may in-clude nodes on both sides in their stencil. The four approximations provide a range of orderof accuracy.
upwindFirstFirst: The basic �rst order approximation. For dimension d, the left D�d �(xi)and right D+d �(xi) approximations at node i are

D�d �(xi) = �(xi)� �(xi�1)�xd ;
D+d �(xi) = �(xi+1)� �(xi)�xd :

These are the D1i�1=2 and D1i+1=2 entries respectively of the �rst divided di�erences of� in dimension d. For more details, see [24, chapter 3.2].
upwindFirstENO2: A second order approximation. The second order correction to the�rst order approximation is the neighboring entry in the second divided di�erencesof � with minimum modulus. In other words, there are two possible second orderapproximations to both the left and right, and this scheme chooses the least oscillatoryof those two. Mathematically, it is equivalent to including up to the Q02(xi) term (3.22)in the derivative approximation (3.18) from [24, chapter 3.3].
upwindFirstENO3: A third order Essentially Non-Oscillatory (ENO) approximation. Thereare three possible third order approximations to both the left and right, and this schemechooses the least oscillatory among them. Mathematically, it is equivalent to includingup to the Q03(xi) term (3.24) in the derivative approximation (3.18) from [24, chap-ter 3.3].
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upwindFirstWENO5: A �fth order Weighted Essentially Non-Oscillatory (WENO) approxi-mation. This approximation blends together the three third order approximations fromthe ENO3 scheme so that in regions where � is smooth, a �fth order approximation isachieved. In regions where � is not smooth, WENO5 e�ectively becomes ENO3. Formore details, see [24, chapter 3.4].
All four approximation functions use the same call structure, which we demonstrate withupwindFirstENO3.
[ derivL, derivR ] = upwindFirstENO3(grid, data, dim, generateAll): Constructsleft and right upwind approximations to the �rst derivative in dimension dim of the func-tion stored in array data, which exists on grid grid. The approximations are returnedin the arrays derivL and derivR respectively, which are the same size as data. Theapproximations are determined by �rst constructing three third order approximationsin each direction, and then choosing the least oscillatory based on the magnitude ofentries in the second and third divided di�erences of �. The optional boolean parametergenerateAll is primarily used for debugging purposes, and can generally be left at itsdefault value generateAll == 0. If generateAll == 1, then derivL and derivR willbe cell vectors of length three, where each cell contains one of the three third orderapproximations in the appropriate direction (no attempt is made to pick out the leastoscillatory approximation in this case).
In addition to the functions listed above, a number of helper functions appear in this directory.
upwindFirstENO3a: Constructs the third order approximations using a divided di�erencetable, which is more e�cient than directly applying equations (3.25){(3.27) from [24,chapter 3.4], although it is somewhat more complicated to code. This function hasthe same calling sequence as upwindFirstENO3 (in fact, the latter function is just awrapper for this function).
upwindFirstENO3b: Constructs the ENO3 approximations using equations (3.25){(3.27)from [24, chapter 3.4]. The least oscillatory approximation is chosen by evaluatingthe smoothness estimates (3.32){(3.34) and picking (for each node) the third orderapproximation corresponding to the smallest smoothness estimate. This function hasthe same calling sequence as upwindFirstENO3. The algorithm is less e�cient than adivided di�erence table; in particular, it requires that the left and right approximationsare independently computed even though they share many of the same terms. However,the code is somewhat easier to understand. The resulting derivative approximationshould be equivalent to that produced by upwindFirstENO3a.
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upwindFirstWENO5a: Constructs the WENO5 approximations using a divided di�erencetable, which is more e�cient that directly applying equations (3.25){(3.41) from [24,chapter 3.4], although somewhat more di�cult to code. The smoothness estimates areconstructed from the �rst divided di�erences. Several choices of � terms (including onecorresponding to (3.38), which is unfortunately rather slow to evaluate) are availableby modifying parameters in the �le. This function has the same calling sequence asupwindFirstWENO5 (in fact, the latter function is just a wrapper for this function).
upwindFirstWENO5b: Constructs the WENO5 approximations using equations (3.25){(3.41)from [24, chapter 3.4]. This function has the same calling sequence as upwindFirstWENO5.The algorithm is slightly less e�cient than a divided di�erence table, although the speeddi�erence between the two WENO5 schemes is less pronounced than the di�erencebetween the two ENO3 schemes. Once again, the code is somewhat easier to under-stand. The resulting derivative approximation should be equivalent to that producedby upwindFirstWENO5a.
upwindFirstENO3aHelper: A helper routine that constructs the divided di�erence table andthe third order approximations. It is used by upwindFirstENO3a and upwindFirstWENO5a.
upwindFirstENO3bHelper: A helper routine that constructs the third order approximationsaccording to (3.25){(3.27), the smoothness estimates according to (3.32){(3.34) andthe � term (3.38), all from [24, chapter 3.4]. It is used by upwindFirstENO3b andupwindFirstWENO5b.
checkEquivalentApprox: A helper routine that checks whether two derivative approxima-tions are equivalent to within some relative and absolute error bounds. Since the ENOand WENO schemes involve so many di�erent approximations to the �rst derivative,it should come as no surprise that some of them should be equivalent, in the sensethat they include the same terms from the divided di�erence table. A debugging op-tion that can be set inside the �les of these approximation functions will automaticallycheck whether these approximations are actually equivalent. Normally, this check willnot be performed.
For a discussion of the relative accuracy and speed of the various approximation schemes, seesection 2.11.2.
3.4.2 Other Approximations of Derivatives
This section discusses functions found in the directory Kernel/SpatialDerivative/Other.
Many of the terms in HJ PDEs require upwind �rst order derivatives, and it is these termsthat cause many of the practical di�culties in numerical solutions. Because there are so many
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viable options for approximating these derivatives, the previous section outlined a collectionof interchangable routines implementing some of these options.
In contrast, the toolbox at present o�ers few options for the remaining types of derivativeterms. Each of the functions is specialized to a particular type of term, and hence we examineeach separately. The �rst two have corresponding term approximations in section 3.6.
[ second, first ] = hessianSecond(grid, data): Constructs a second order accu-rate approximation to the mixed second order partial derivative matrix D2x�(x) of�(x) = data:

D2x�(x) =
2666664

@2�(x)@x21 @2�(x)@x1@x2 � � � @2�(x)@x1@xd@2�(x)@x2@x1 @2�(x)@x22 � � � @2�(x)@x2@xd... ... . . . ...@2�(x)@xd@x1 @2�(x)@xd@x2 � � � @2�(x)@x2d

3777775 ;

where d is the dimension of the grid. Note that D2x�(x) depends on x, so ideally thisfunction would return a d � d matrix each of whose entries was an array the size ofdata. Since that result is challenging to encode in Matlab, we instead return a d� dcell matrix, each element of which is an array the size of data containing a second ordermixed partial approximation for the entire grid. In other words,
secondfi; jg = @2�(x)@xi@xj

over all nodes x in the grid. Because D2x�(x) is symmetric, only its lower left half iscomputed and returned. Therefore, even though secondfi,jg = [] for i < j, the ap-propriate approximation can be found in secondfj,ig. Since a centered approximationof the gradient is computed while �nding D2x�(x), it is optionally returned in the cellvector first. Note that this centered approximation should not be used in place of anupwind approximation for advective terms.
[ curvature, gradMag ] = curvatureSecond(grid, data): Constructs a second orderaccurate approximation to the mean curvature of the isosurfaces of the function �(x) =data:

�(x) = r � � r�(x)kr�(x)k
� ;

= Pdi=1 @2�(x)@x2i Pj 6=i �@�(x)@xi �2 � 2Pj<i @�(x)@xi @�(x)@xj @2�(x)@xi@xjkr�(x)k3 ;
where d is the dimension of the grid. The output curvature is an array the same size asdata. For more details, see [24, chapter 1.4] or [28, chapter 6.7]. Since an approximation
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of the gradient magnitude (using centered �rst order di�erences) is computed while�nding �, it is optionally returned in the array gradMag, which is also the same size asdata. Note that this centered di�erence approximation of kr�k should not be used inplace of an upwind approximation for motion in the normal direction.
The remaining two derivative approximations do not yet have corresponding term approxima-tions in section 3.6, primarily because we have not yet found a practical use for them. Theyare provided primarily to demonstrate how additional derivative approximations can be con-structed. The main challenge in constructing corresponding term approximation functions isdetermining the appropriate CFL condition|consider it an exercise left to the reader.
laplacian = laplacianSecond(grid, data): Constructs a second order accurate approx-imation to the Laplacian of the function �(x) = data:

��(x) = r � r�(x);
= dX

i=1 @
2�(x)@x2i ;

where d is the dimension of the grid. The output laplacian is an array the same sizeas data. In theory, if � is a signed distance function kr�k = 1, the Laplacian can besubstituted for the mean curvature �, and it is much quicker to calculate. However,since most � are only approximately signed distance functions, this substitution is notrecommended.
deriv = centeredFirstSecond(grid, data, dim): Constructs a centered second orderaccurate approximation to the �rst derivative in dimension dim of the function �(x) =data. The output deriv is the same size as data. Repeated calls with di�erent dim canbe used to construct an approximation of the gradient; however, since the approximationis centered, it should not be used in place of upwind approximations for advective orsimilar terms in the HJ PDE.
Other derivative approximations that might prove useful but are not yet coded include theGaussian curvature [28, chapter 6.7] and the second derivative of curvature (so a fourth orderderivative) [28, chapter 14.6].
3.5 Time Derivative Approximations
This section discusses functions found in the directory Kernel/ExplicitIntegration/Integrators.
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The time derivative (4) is treated by the method of lines. We assume that approximationsfor all the other terms (5){(12) can be collapsed into a single function G(x; �(x; t)), and thensolve the ODE Dt�(x; t) = G(x; �(x; t)) pointwise at each state x. Note that G will havethe opposite sign of the terms (5){(12) because it has been moved onto the opposite side ofthe equation. Furthermore, G is usually nonlinear, so we will use explicit Runge-Kutta (RK)integrators that can determine �(x; t+�t) knowing only �(x; t) and G(x; �(x; t)).
The downside of using explicit solvers is that we will need to choose our timestep �t smallenough to satisfy a Courant-Friedrichs-Lewy (CFL) condition. In practical terms, this meansthat the timestep will be related to the grid resolution: �t proportional to (�x)2 if there aresecond order derivative terms (9) or (10), otherwise �t proportional to �x. The particularCFL timestep restriction is generated by the term approximations described in section 3.6;the RK integrator routines described below merely enforce these restrictions.
Even if CFL timestep conditions are met, the time integrator must still be chosen carefullyin order to guarantee stability. Consequently, we have chosen to use a collection of TotalVariation Diminishing (TVD) RK schemes proposed in [30] and described in [24, chapter 3.5].Note that these schemes are only TVD if the underlying spatial approximation is likewiseTVD; consequently, they provide no theoretical guarantees when used with ENO and WENOspatial approximations. In practice they seem to work well with all the approximationsdescribed in section 3.6.
3.5.1 Explicit Integration Routines
The basic �rst order explicit TVD RK scheme is simply forward Euler

�(x; t+�t) = �(x; t) + �tG(x; �(x; t)):
The call parameters look very similar to Matlab's basic ODE suite integrators, such asode23 and ode45.
[ t, y, schemeData ] = odeCFL1(schemeFunc, tspan, y0, options, schemeData): In-tegrates the ODE Dty = G(t; y) from time tspan(0) to time tspan(end) using a CFLtimestep constrained forward Euler integrator that is �rst order accurate. The functionhandle schemeFunc describes G(t; y), while the initial conditions are provided by y0.Integration options|set by a call to odeCFLset|are passed in options. Parametersfor the underlying ODE can be passed in schemeData. All arguments are mandatory,but the last two may be replaced with [] if they are not needed.
In most circumstances, the schemeData parameter will not be modi�ed and therefore itsreturned value can be ignored. It can be modi�ed either through the PostTimestep option
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discussed in section 3.5.3, or by the term approximation functions that satisfy the schemeFuncprototype. The prototype for the function handle schemeFunc matches the approximationfunctions given in section 3.6.
[ ydot, stepBound, schemeData ] = schemeFunc(t, y, schemeData): Calculate ydot =G(t; y), using the parameters provided in schemeData. Note that y is passed as acolumn vector and ydot should be returned as a column vector. The return scalarstepBound provides the maximum CFL timestep permitted (use stepBound = inf ifthere is no CFL restriction). The return structure schemeData is usually identical tothe input parameter of the same name, but may be a modi�ed version.
Two higher order accurate integrators are also provided, with the same call structure asodeCFL1.
odeCFL2: Second order accurate TVD RK integrator, also known as the midpoint or modi�edEuler method. It computes two forward Euler steps and hence about twice as muchwork as odeCFL1.
odeCFL3: Third order accurate TVD RK integrator. It requires three forward Euler stepsand hence about three times as much work as odeCFL1.
In the discussion below, we refer to these three integrators interchangably as odeCFLn. TVDRK integrators of fourth and higher order accuracy have been described in the literature, butwe have not yet implemented them.
3.5.2 Explicit Integrator Quirks
These integrators were designed to be very similar to Matlab's so as to reduce the learningcurve of users and in hopes of leveraging code compatibility in future extensions. However,implementing such compatibility requires the introduction of several nonintuitive quirks tothe code.
� In the rest of the toolbox's routines, the implicit surface function � is passed in anarray data of size grid.shape. When using the method of lines to convert the PDEinto an ODE, the value of the implicit surface function at each node becomes the ODE's\state." Since Matlab's ODE integration routines assume that the current state ofthe ODE is stored in a column vector y, we must reshape the data array into a columnvector of length prod(grid.shape) before passing it to odeCFLn, and the spatial ap-proximation function schemeFuncmust both reshape y into data before manipulating it
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and return its result in a column vector ydot. These shape alterations are accomplishedby commands such as y = data(:) and data = reshape(y, grid.shape) and are es-sentially free if the underlying data is not subsequently altered; for example, if the righthand side variable is not further modi�ed in the current function. These alterations areperformed in all the examples and the term approximations from section 3.6.
� The G(t; y) function appears on the opposite side of the equality as compared to theterms from (5){(12) that it contains. Consequently, these terms must be negated be-fore inclusion in G. This negation is performed in all the term approximations fromsection 3.6.
� Like Matlab's ODE integration routines, the odeCFLn routines adjust the timestepduring integration; however, the method for determining the timestep is completelydi�erent. Matlab's routines adjust the timestep to achieve a given level of local trun-cation error, as measured by comparing two schemes with di�erent orders of accuracy.In contrast, the odeCFLn routines adjust the timestep solely to satisfy a CFL stabilityrestriction, and they never examine the local truncation error. From an ODE erroranalysis point of view, they behave like �xed timestep integrators. The need for a CFLrestriction is the practical source of the requirement that at least one of the terms witha spatial derivative (5){(10) must be part of G(t; y).
� The state vector y = data(:) for a discretized PDE can easily contain millions ofelements (one for each node in the grid). Storing versions of this state vector for eachof dozens of timesteps in a typical call to an integration routine would quickly �llup memory. Consequently, the contents of return parameters t and y of odeCFLn isdetermined from tspan in a di�erent way than in Matlab's ODE suite. If tspan =[ t0, tf ] contains only two elements, then y is a column vector of the state at t =tf. If tspan contains more than two elements, then t is the column vector form oftspan and each row of y contains the state at the time of the corresponding row int. In both cases, the value of the state at intermediate timesteps is discarded. Fordiscretized PDEs, we recommend use of the �rst option, since it also avoids making acopy of the initial conditions y0.

3.5.3 Integrator Options
There are several algorithmic options for odeCFLn, which are manipulated using odeCFLsetand odeCFLget in the same manner asMatlab's odeset and odeget routines; however, notethat the available options are di�erent.
options = odeCFLset('name1', value1, 'name2', value2, ...) or options = odeCFLset(oldopts,'name1', value1, ...): Set options for one of the odeCFLn integration routines. Theparameters oldopts and options are option structures. Call odeCFLset with no inputor output parameters to see the list of available options and their defaults.
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value = odeCFLget(options, 'name'): Retrieve the value of an option parameter from anoption structure created by odeCFLset. The parameter options is the option structure.The value of the parameter corresponding to the string 'name' is returned in parametervalue. Call odeCFLget with no input or output parameters to see the list of availableoptions and their defaults.
The currently available options are:
FactorCFL: positive scalar, default value 0:5, normally between 0 and 1 exclusive. Theactual timestep taken by odeCFLn will be FactorCFL * stepBound, where stepBoundis the CFL timestep restriction returned by schemeFunc. The default is safe, while achoice of 0.9 would be considered aggressive.
MaxStep: positive scalar, default value realmax. Upper limit on the size of the timesteptaken by odeCFLn. Useful to enforce a �xed timestep if stepBound is in�nite (such asif schemeFunc contains no spatial derivative terms).
PostTimestep: A function handle to a function with prototype

[yOut; schemeDataOut] = postTimestepFunc(t; yIn; schemeDataIn):
The default [] indicates that no such routine should be called. If present, the post-timestep function is called by odeCFLn after every full timestep. By modifying y,this function can be used to implement constraints of the form (14). By modifyingschemeData, this function can record information about the evolution of y, or modifyparameters for the term approximation routine schemeFunc on the 
y.This option may also be a cell vector of postTimestepFunc function handles. In thiscase, each function handle element is called after each timestep. The functions arecalled in the same order as the cell vector.

SingleStep: 'on' or 'off', default value 'off'. If this option is set to 'on', then theintegrator will return after a single CFL constrained timestep regardless of whether the�nal time in tspan has been reached or not. In this case, the return parameter t willbe set to the actual time reached after that single timestep. Useful for debugging or ifthe calling routine wants to examine the state vector after every timestep; for example,see signedDistanceIterative in section 3.7.4.
Stats: 'on' or 'off', default value 'off'. If this option is set to 'on', then a few statisticson the integration are displayed on the screen (number of timesteps, CPU time). Usefulfor debugging.
TerminalEvent: A function handle to a function with prototype

[value; schemeDataOut] = terminalEventFunc(t; y; tOld; yOld; schemeDataIn):
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The default [] indicates that no such routine should be called. If present, the terminalevent function is called by odeCFLn after every full timestep. If both post-timestepand terminal event functions are present, all post-timestep functions are called beforethe terminal event function. The input parameters include the time and data from thepresent timestep (t and y) as well as the time and data from the last timestep (tOldand yOld). The return parameter value should be a double scalar, vector or matrix,and must not change size or shape from one timestep to the next. If any elementof value changes sign between timesteps, then integration is terminated and odeCFLnreturns immediately. Unlike Matlab's ODE event system, no attempt is made toaccurately locate the time at which that element of value passed through zero. Notethat integration cannot be stopped until after the second timestep has been taken. Itcannot be stopped before or after the �rst timestep because there is no established signof the elements of value from which a sign change can be detected. This routine hasnot been well tested.
3.5.4 Integrator Helper Functions
A number of helper routines appear in this directory that are not intended for direct callsfrom the user.
odeCFLcallPostTimestep: Calls one or more routines registered with the PostTimestepoption of odeCFLset. Since this code was common to all odeCFLn routines, it wasfactored into a separate routine.
odeCFLmultipleSteps: Handles the case when odeCFLn is called with a tspan vector oflength more than two (as detailed in section 3.5.2). In this case, odeCFLmultipleStepsis called by odeCFLn, and then odeCFLmultipleSteps makes repeated calls back toodeCFLn to collect the solution at the requested times. Since this code was common toall odeCFLn routines, it was factored into a separate routine. Normally, using a tspanof length more than two is not e�cient, so this code is not run. This routine has notbeen well tested.

3.6 Approximating the Terms in HJ PDEs
This section discusses functions found in the directories Kernel/ExplicitIntegration/Term.
From the perspective of a typical user, it is the routines for approximating the spatialterms (5){(14) in the HJ PDE that are most interesting among the many routines in this
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toolbox, in the sense that it is through these terms that the user controls the motion of theimplicit surface. In particular, the user must carefully chose which terms to include, andwhat parameters to provide to those terms.
All the term approximation functions follow the calling convention established by the integra-tor functions odeCFLn so that these term approximations can be passed as the schemeFuncparameter to odeCFLn. As an example, consider convective motion by a velocity �eld (5).
[ ydot, stepBound, schemeData ] = termConvection(t, y, schemeData): Computesan approximation of G(t; �(x; t)) = �v(x) � r�(x; t), where (the reshaped) �(x; t) iscontained in the column vector y and G(t; �(x; t)) is reshaped and returned in the col-umn vector ydot. The velocity �eld v(x) is speci�ed as a component of the structureschemeData. The maximum CFL timestep is returned in stepBound. The return struc-ture schemeData is usually identical to the input parameter of the same name, but maybe a modi�ed version. For more details, see section 3.6.1.
We divide the term approximation functions into groups and describe each in the sectionsbelow. The basic groups are approximations in which the �rst derivative appears in a spe-ci�c form (5){(7), general �rst derivative approximations (8), second derivative approxima-tions (9){(10), and others (11){(14). Among the details discussed for each type of term arethe particular parameters for that term (passed in the structure schemeData) and the CFLrestriction imposed (returned in the scalar stepBound). Note that schemeData may containadditional �elds beyond those discussed below, should the user desire.
Many of the term approximations require the user to provide function handles that will becalled on each timestep to provide term parameters throughout the grid. Typically thesefunctions are called once per timestep (or once per dimension per timestep) and return anarray (or cell vector of arrays). For e�ciency reasons, it is very important that these functionsbe vectorized in the Matlab sense|they should not use loops to iterate through the dataor derivative arrays. Examples of such vectorization can be found in section 2.
One particular type of function that is allowed by many routines to provide a time dependentscalar term parameter is the scalarGridFunc prototype.

a = scalarGridFunc(t; data; schemeData)
The parameters of scalarGridFunc are identical to those of the term approximation routinewhich calls it, except that data = y has been reshaped to its original size. The returnparameter a must be a scalar or an array of size grid.shape, which represents some kind ofscalar value for each node in the grid|for example, termNormal uses a as the speed of motionnormal to the front. The user can pass additional information to the function implementingscalarGridFunc by including additional �elds in the schemeData structure.
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When designing functions to the scalarGridFunc prototype, users should note that the scalarreturned is often allowed to depend on the time t and state x, but not explicitly on the func-tion �; for example, termNormal, termCurvature, termTraceHessian, and termDiscount.Failure to comply with such restrictions may cause the underlying PDE to become ill-posed,the solution to become discontinuous, and/or the discretization to become unstable. Conse-quently, in these cases it is recommended that the function satisfying the scalarGridFuncprototype not examine the data parameter. There are cases, such as termForcing, in whichdependence on � is permitted and the return value may therefore depend on data; however,in these cases the user must ensure satisfaction of the monotonicity requirement (3).
3.6.1 Speci�c Forms of First Derivative
This section discusses functions to approximate the terms which implement convection by avelocity �eld (5), motion in the normal direction (6), and the reinitialization equation (7). Thefunctions are termConvection, termNormal and termReinit in the directory Kernel/ExplicitIntegration/Term/.These terms are grouped together because they share a number of common features.
Notice that each of these terms could be restated in the form of (8), and hence approximatedby the functions discussed in section 3.6.2. Unfortunately, those approximations involveadding arti�cial dissipation in order to achieve numerical stability. For these speci�c terms, itis always possible to determine the upwind direction and construct a relatively dissipation free,and hence more accurate, approximation. Because these terms appear so often in practice,it is well worth the e�ort to build special purpose approximation routines for them.
In addition to the term speci�c �elds discussed below, in every case the parameter structureschemeData contains the �elds:
schemeData.grid: The grid on which the implicit surface function is de�ned.
schemeData.derivFunc: A function handle to a function with prototype

[derivL; derivR] = derivFunc(grid; data; dim)
to compute upwind approximations of the �rst derivative. This function should gen-erally be chosen from among those described in section 3.4.1. Note that this functionmust return both left and right approximations to the �rst derivative.

It turns out that for each of these terms, the approximation algorithm constructs an e�ectivevelocity �eld v(x) and it is this velocity �eld which determines the CFL timestep constraint(by [24, equation (3.10)])
stepBound = maxx2grid

 
grid:dimX

i=1 jvi(x)jgrid:dx(i)
!�1 :
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The important fact about this bound is that �t is proportional to �x.
We now discuss each of the terms individually. More details can be found in the correspondingfunctions' help entries.
termConvection: Motion by an externally generated 
ow �eld (5), also called convec-tion or advection. The user supplies the 
ow �eld v : Rn � R ! Rn as the �eldschemeData.velocity in one of two ways.

� For time invariant 
ow �elds v(x), velocity may be a cell vector of lengthgrid.dim, in which case velocityfig = vi(x) is either a scalar (for constantvelocity) or an array of size grid.shape (for spatially varying velocity) providingcomponent i of the velocity �eld.� For general 
ow �elds, velocity may be a function handle to a function withprototype v = velocityFunc(t; data; schemeData);where the output v is the cell vector described above and the input argumentsare the same as those of termConvection (except that data = y has been re-shaped to its original size). The velocityFunc prototype is very similar to thescalarGridFunc prototype, except that it returns a cell vector of arrays. In asimilar way to scalarGridFunc, it may be useful to include additional �elds inschemeData.
termNormal: Motion in the normal direction (6). The user supplies the speed of the interfacea : Rn � R! R as the �eld schemeData.speed in one of two ways.

� For time invariant speeds a(x), speed may be either a scalar (for constant speed)or an array of size grid.shape (for spatially varying speed).� For general speed functions, speed may be a function handle to a function with thescalarGridFunc prototype. The result of evaluating this function at the currenttime and state will be treated as the scalar/array described above. In this case, itmay be useful to include additional �elds in schemeData.
termReinit: The reinitialization equation (7). In theory, solving this equation to conver-gence can turn an implicit surface function into a signed distance function withoutmoving or explicit �nding the interface [33]. In practice, it is usually used to smoothout excessively steep or shallow gradients in �. The user supplies a copy of the ini-tial conditions �(x; 0) (as an array of size grid.shape) in schemeData.initial. Theupwinding scheme is taken from [12, appendix A.3].There is one optional �eld in schemeData. By default, the �rst order accurate subcell �xfrom [27] is applied; for more details, see the discussion in section 2.10. The order of ac-curacy of the subcell �x can be speci�ed by the optional integer schemeData.subcell fix order.

111



At present the only accepted values are 1 (the default) and 0 (in which case the subcell�x is disabled). If the subcell �x is disabled, then a smoothed version of the signumfunction is used: sign(�) = �q�2 +maxi [grid:dx(i)]2
This term approximation routine termReinit will rarely be invoked directly, but willbe used indirectly by other routines like signedDistanceIterative (see section 3.7.4).

3.6.2 Approximating General HJ Terms
This section discusses the function Kernel/ExplicitIntegration/Term/termLaxFriedrichsand functions found in Kernel/ExplicitIntegration/Dissipation.
Terms involving the �rst derivative in general form (8) are the most challenging to treat nu-merically, and hence require the most complex term approximation function termLaxFriedrichs.This function is based on the framework proposed in [26] and described in [24, chapter 5.3].The basic idea is to replace the analytic H(x; p) (where p is a placeholder for r�) with anumerical approximation

Ĥ(x; p+; p�) = H �x; p+ + p�2
�� �(x)T �p+ � p�2

� ; (46)
where p+ and p� are the right and left approximations of the gradient respectively. The �rstterm of Ĥ is simply the analytic Hamiltonian evaluated with a centered approximation tothe gradient. By itself, such an approximation will be numerically unstable, so the secondterm adds some dissipation. The �nal part of this second term (the di�erence between p+and p�) looks like a Laplacian, and provides the stabilizing dissipation. In smooth regionsof the solution, the left and right approximations will be similar and this term will be nearzero. The scaling portion �(x) of this term depends on DpH(x; p), the partial derivative ofH with respect to the gradient p. As discussed below, there are several di�erent choices of �function.
The schemeData structure for termLaxFriedrichs requires the following �elds:
schemeData.grid: The grid on which the implicit surface function is de�ned.
schemeData.derivFunc: A function handle to compute upwind approximations of the �rstderivative, chosen from among those described in section 3.4.1. Note that this functionmust return both left and right approximations to the �rst derivative.
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schemeData.dissFunc: A function handle to one of the dissipation routines with prototype
[diss; stepBound] = dissFunc(t; data; derivL; derivR; schemeData);discussed below. Computes the arti�cial dissipation necessary to stabilize the Hamilto-nian approximation calculated with a centered di�erence approximation of the gradient;in other words, the second term on the right hand side of (46), including the �(x) scal-ing (which is actually computed by a call to schemeData.partialFunc as describedbelow).

schemeData.hamFunc: A function handle to a routine that computes the analytic H(x; p).This function is user supplied, and is called directly by termLaxFriedrichs.
schemeData.partialFunc: A function handle to a routine that computes the extrema (ineach dimension) of DpH(x; p). This function is user supplied and is called by dissFunc.
Typically the user will have a mathematical equation for schemeData.hamFunc and simplyneeds to convert it into (vectorized) Matlab code. Writing schemeData.partialFunc isoften more challenging. The function prototypes are:
hamValue = hamFunc(t, data, deriv, schemeData): Compute the analytic HamiltonianH(x;r�); in fact, the more general form H(x; t; �;r�) is allowed. The parameters arethe current time t (a scalar), the current implicit surface function � = data (in anarray of size grid.shape), a cell vector r� = deriv of length grid.dim whose elementi is an array of size grid.shape containing the ith component of the gradient, andthe schemeData structure that was passed to termLaxFriedrichs. The return valuehamValue should be an array of size grid.shape.
alpha = partialFunc(t, data, derivMin, derivMax, schemeData, dim): Estimate com-ponent dim of the � scaling term in (46).

�dim(x) = maxp2[derivMin;derivMax]
����@H(x; p)@pdim

���� : (47)
Note that � depends on x, and so should be evaluated separately at each state (prefer-ably in a vectorized fashion). The gradient range parameters derivMin and derivMaxare each cell vectors of length grid.dim whose element i is either a scalar or an arrayof size grid.shape, depending on whether the range of component i of the gradient isconstant (for global Lax-Friedrichs) or state dependent (for other types of dissipation).Because the gradient range may depend on the dimension, this function is called oncefor each dimension dim from 1 to grid.dim.

In general, � need not be calculated exactly. Too little dissipation will usually lead toinstability, but may be tolerable on the occasional timestep. Too much dissipation will
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smooth what should be sharp corners in the implicit surface, but is otherwise safe. If the exactoptimization in (47) is too complicated or expensive to evaluate, it is reasonable (althoughsomewhat less accurate) to overestimate its value.
There are a number of options for schemeData.dissFunc provided by the toolbox. They allhave the same prototype
[ diss, stepBound ] = artificialDissipationGLF(t, data, derivL, derivR, schemeData):Compute the arti�cial dissipation in (46). Parameters derivL = p� and derivR = p+are the gradient approximations returned by a call to schemeData.derivFunc. Thereturned diss is an array of size grid.data containing the appropriate dissipation foreach node in the grid. The scalar CFL timestep constraint stepBound is also calculatedin the dissipation function.
Apart from calculating the di�erence between the left and right approximations of the gra-dient, the dissipation routines' main task is to determine the range of gradient derivMin toderivMax pass on to schemeFunc.partialFunc. The method of calculating this range di�ersbetween the dissipation function options, following the framework laid out in [24,26].
artificialDissipationGLF: Global Lax-Friedrichs (GLF) dissipation. Calculate a singlerange of gradient over the entire grid, as proposed in the original numerical schemefor �nding the viscosity solution of an HJ PDE [7]. Because this choice generates thelargest range of possible gradients, it will also generate the most dissipation.
artificialDissipationLLF: Local Lax-Friedrichs (LLF) dissipation. When consideringcomponent �i(x) of the dissipation scaling �(x), restrict the range of component i ofthe gradient to the range between left and right approximations of that componentat each node individually. The range of the remaining components of the gradient iscalculated globally, as with GLF. This restriction is more costly to compute, but canbe considerably less dissipative for Hamiltonians that are very close to convective 
ow.
artificialDissipationLLLF: Local Local Lax-Friedrichs (LLLF) dissipation. The rangeof every component of the gradient is simply the range between left and right approx-imations of that component at each node individually. This choice leads to the leastdissipation and is less expensive to compute than LLF (since the same range is usedfor every dimension). It is equivalent to LLF if the Hamiltonian is separable

H(x; p) = grid:dimX
i=1 Hi(x; pi):

Unfortunately, in those cases where it is not equivalent to LLF, it can be unstableand/or nonmonotonic. Consequently, any approximation it produces may not convergeto the true viscosity solution as the grid is re�ned.
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Regardless of which dissipation function is chosen, the user supplied schemeFunc.partialFuncwill be called grid.dim times to compute the components of �(x). Furthermore, even if His independent of x and GLF is used (so that �(x) is independent of state), the actuallydissipation may be state dependent if the left and right approximations of the gradient varyacross the grid.
In addition to scaling the dissipation, �(x) is also the e�ective velocity and is therefore usedto compute the CFL timestep restriction.

stepBound = maxx2grid
 

grid:dimX
i=1 j�i(x)jgrid:dx(i)

!�1 :
Once again, �t is proportional to �x. Its e�ect on the choice of CFL restriction reemphasizesthe fact that overapproximating � is safe (although it will lead to smaller timesteps) butregular underapproximation may lead to instability.
Two other approximation schemes for arbitrary Hamiltonians are described in [24, 26]: Roewith entropy �x (RF) and Godunov. The former uses upwinding when an upwind directioncan be determined and some form of Lax-Friedrichs otherwise; thus it will introduce evenless dissipation that the LF schemes discussed above. The latter is less dissipative still, butrequires solution of a potentially nonconvex optimization at each node. It seems likely thatRF could be implemented in the current toolbox framework for general Hamiltonians, butthe same is not true for Godunov; however, the approximation schemes in section 3.6.1 areexamples of Godunov solvers for speci�c types of spatial terms.
3.6.3 Second Derivatives
This section discusses the functions termCurvature and termTraceHessian in the directoryKernel/ExplicitIntegration/Term/.
The routines for handling terms of the forms (9){(10) both involve approximations of thesecond derivative, and both place a stringent bound on the size of explicit timesteps: �t isproportional to �x2. Their schemeData structures both require the schemeData.grid �eld,but are otherwise di�erent.
termCurvature: Motion by mean curvature (9). The �eld schemeData.curvatureFuncmust contain a function handle for a routine that approximates the curvature � (and gra-dient magnitude kr�k); at present the only such routine in the toolbox is curvatureSecond(see section 3.4.2). The user supplies the multiplier b : Rn � R ! R as the �eldschemeData.b in one of two ways.
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� For time invariant multipliers b(x), b may be either a scalar (for a constant mul-tiplier) or an array of size grid.shape (for a spatially varying multiplier).� For general multiplier functions, b may be a function handle to a function with thescalarGridFunc prototype. The result of evaluating this function at the currenttime and state will be treated as the scalar/array described above. In this case, itmay be useful to include additional �elds in schemeData.
Following [24, equation (4.7)], the bound on the timestep is calculated as

stepBound = " maxx2grid
 2b(x) grid:dimX

i=1 1grid:dx(i)2
!#�1 :

termTraceHessian: Motion by the trace of the Hessian (10). The �eld schemeData.hessianFuncmust contain a function handle for a routine that computes a cell matrix approxima-tion of the Hessian matrix of second derivatives; at present the only such routine in thetoolbox is hessianSecond (see section 3.4.2). The user supplies the multipliers L(x; t)and R(x; t) as the �elds schemeData.L and schemeData.R in one of three ways, wheren = grid:dim.
� For time and space invariant matrices, an n� n matrix. The same matrix will beused for every node of the grid.� For time invariant but spatially dependent matrices, an n�n cell matrix, each ele-ment of which is an array of size grid.shape. The function cellMatrixMultiplyis used to apply such matrices to the Hessian.� For general matrices, a function handle to a function with prototype

M = matrixGridFunc(t; data; schemeData);
where the output M is a matrix or a cell matrix as described in the two options aboveand the input arguments are the same as those of termTraceHessian (except thatdata = y has been reshaped to its original size). In this case it may be useful toinclude additional �elds in schemeData.

The bound on the timestep is calculated as
stepBound = � maxx2grid (2 jtrace [L(x; t)DR(x; t)]j)��1 ; (48)

where the n� n matrix D is de�ned elementwise as Dij = grid:dx(i) � grid:dx(j).This routine has not been well tested. Among the shortcomings in the currentversion:
� The routine termTraceHessian has been validated only on one dimensional andfaked two dimensional problems (one dimensional problems in a rotated coordinateframe).
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� The CFL condition (48) has not been mathematically veri�ed, although it has notyet lead to instability.
Bug reports are always appreciated.

It should be noted that despite their popularity for approximating second order derivatives indegenerate parabolic PDEs|such as �(x) in level set motion by mean curvature|centereddi�erence approximations|such as curvatureSecond|are known to be non-monotonic insome cases. Consequently, algorithms based on centered di�erences may fail to be conver-gent [21]. Caveat emptor.
3.6.4 Other Spatial Approximation Terms
This section discusses the functions termDiscount and termForcing in the directory Kernel/ExplicitIntegration/Term/.
The routines for handling terms of the forms (11){(12) are relatively straightforward. Notethat these terms cannot appear alone as the schemeFunc passed to odeCFLn, since the result-ing equation would not be a hyperbolic PDE. Rather, they must be combined with at leastone spatial derivative term from sections 3.6.1{3.6.3 using the termSum routine described insection 3.6.5.
Since none of these terms involve a spatial derivative, they do not induce a CFL restriction onthe timestep size. All of these routines therefore return stepBound = +Inf. From a practicalpoint of view, failure to include a spatial derivative term in the (supposed) PDE will resultin a timestep of size dictated by the odeCFLn option maxStep (see section 3.5 for details).
Both of these terms may depend on �, so care must be taken that they satisfy the monotonicityrequirement (3). For termDiscount, this requirement translates to � � 0. For the moregeneral termForcing, the onus is on the user to ensure a proper function form.
termDiscount: Discounting or killing term (11). The user supplies the discount factor� : Rn � R! [0;+1] as the �eld schemeData.discount in one of two ways.

� For time invariant discounts �(x), discount may be either a scalar (for constantdiscount) or an array of size grid.shape (for spatially varying discount).� For general discounts, discount may be a function handle to a function with thescalarGridFunc prototype. The result of evaluating this function at the currenttime and state will be treated as the scalar/array described above. In this case, itmay be useful to include additional �elds in schemeData.
termForcing: Forcing term (12). The user supplies the forcing function F : Rn�R�R! Ras the �eld schemeData.forcing in one of two ways.
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� For time invariant forcing functions F (x), forcing may be either a scalar (forconstant forcing) or an array of size grid.shape (for spatially varying forcing).� For general forcing functions, forcing may be a function handle to a functionwith the scalarGridFunc prototype. Unlike most such calls to functions with thisprototype, it is reasonable to allow the return value to depend on � by examiningthe data parameter; however, care must be taken in this case to ensure compliancewith the monotonicity requirement (3). The result of evaluating this function atthe current time and state will be treated as the scalar/array described above. Inthis case, it may be useful to include additional �elds in schemeData.
3.6.5 Combining and Restricting Spatial Approximation Terms
This section discusses the functions termRestrictUpdate and termSum in the directoryKernel/ExplicitIntegration/Term/.
The term approximation schemes discussed thus far have all dealt with a single term from (5){(12). In many applications these terms are combined together, or are restricted to a particularsign by constraints of the form (13). In this section we examine routines to treat these cases.
These routines conform to the term approximation prototype schemeFunc required by theodeCFLn integrators. However, they do not generate updates by themselves, but rather shouldbe thought of as wrappers for update terms from the previous sections. Consequently, theirschemeData structures will contain �elds referring to other term approximation routines.
schemeData.innerFunc: A function handle (or cell vector of function handles) to a functionwhich conforms to the schemeFunc prototype. Normally this will be a term approxi-mation routine for a term of the form (5){(12).
schemeData.innerData: A structure (or cell vector of structures) which is the schemeDatastructure required by the term approximation routine schemeData.innerFunc.
Within the routines below, a call of the form

feval(schemeData:innerFunc; t; y; schemeData:innerData)
will be issued to evaluate the wrapped term approximation routine (or an equivalent call forcell vector members).
termRestrictUpdate: Restrict the sign of a single spatial term, which can be used to imple-ment (13). The spatial term is provided by the function handle schemeData.innerFunc,
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and its associated data by the structure schemeData.innerData. The sign of the re-striction is speci�ed by the boolean schemeData.positive, which is true if the updatemust be greater than or equal to zero (defaults to true). The restriction is calculatedindependently for each node in the grid, and updates which violate the restriction areclipped to zero. The CFL timestep restriction calculated by schemeData.innerFunc isreturned without modi�cation, which may be conservative (if the update of the nodewhich induced the timestep restriction has been clipped).
termSum: Combine multiple terms by summation. Each of the terms is speci�ed by an entryin the cell vector of function handles schemeData.innerFunc, and its associated databy the corresponding entry in the cell vector of structures schemeData.innerData.Each term is evaluated independently, and the updates are summed at each node. Theoverall CFL timestep restriction stepBoundsum is computed from the individual term'stimestep restrictions stepBoundi by:

stepBoundsum =  Xi 1stepBoundi
!�1 :

Note that termRestrictUpdate and termSum can be used to wrap each other, and therebyaccomplish HJ PDEs more complex than (4){(13). They could even be used to wrap them-selves, although we can think of little bene�t to be gained from that design.
3.7 Helper Routines
This section describes functions in Examples/Helper, which are used for various auxiliarytasks.
3.7.1 Error Checking
This section describes functions in Examples/Helper/ErrorCheck, which are used to checkthe validity of function arguments.
checkStructureFields(structure, 'field1', 'field2', ...): Checks that the �rstargument structure is a structure and, if so, checks that the subsequent arguments(which should all be strings) are the names of �elds in that structure. Causes an errorif either check fails. Often used in functions which access the schemeData structure.
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3.7.2 Math
This section describes functions in Examples/Helper/Math, which are various types of math-ematical operations.
Currently, the functions in this directory implement an extended form of some simple matrixoperations. In several parts of the toolbox, it is necessary to represent spatially varyingmatrices A(x) or vectors v(x)|in fact, x itself is a spatially varying vector. These objectsare a challenge to represent, since the toolbox has already adopted the convention thatMatlab's array indices refer to nodes in the spatial grid. Adding more indices to accountfor the entries in the spatially varying matrix or vector would lead to a great deal of indexconfusion.
As an alternative, we have chosen to represent such matrices and vectors as cell arrays. Amatrix A(x) 2 Rp�q, where x 2 Rn is represented by a two dimensional cell array with prows and q columns. Each element of this cell array is a regular Matlab array of dimensionn, containing elements for every node x in the computational grid. We call this object a cellmatrix. For example, the �eld grid.xs in the grid structure can be thought of as a n � 1cell matrix description of the vector x.
Several operations are provided for cell matrices:

addition: A(x) +B(x);multiplication: A(x)B(x);elementwise maximization: maxx A(x) or maxx jA(x)j;elementwise trace: traceA(x):
All of the routines also accept a few special cases. If A(x) = A is independent of state x,then the entries of the cell matrix can be scalars. If A(x) = a(x) 2 R is a state dependentscalar value, then the corresponding cell matrix should not be a cell object at all, but rathera regular array of the size appropriate for the computational grid. That array will be addedto or multiplied by every entry of the cell matrix B(x), in a manner corresponding to theway that Matlab treats scalars for regular matrices.
C = cellMatrixAdd(A,B): Returns the spatially varying matrix C(x) = A(x) +B(x), rep-resented as a cell matrix. If they are cell matrices, parameters A and B must be thesame size and of dimension two, and this size is adopted by output C. The contents ofeach cell element of A and B must also be the same size, since they are added compo-nentwise. Cell elements of A and/or B may be scalars. If A or B is a regular array, thenC adopts the size of the other, and the one which is a regular array is treated as a statedependent scalar.
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maxA = cellMatrixMax(A, takeAbs): Calculate the elementwise maximum over state spacex of spatially varying array A(x), represented as the cell matrix A. The maximum isreturned in the regular matrix maxA, which has the same number of rows and columnsas the cell matrix A. If the optional boolean parameter takeAbs is true, then the ele-mentwise maximum maxx jA(x)j is computed instead.
C = cellMatrixMultiply(A,B): Returns the spatially varying matrix C(x) = A(x)B(x),represented as a cell matrix. If A(x) 2 Rm�p and B(x) 2 Rp�q, then C(x) 2 Rm�q.Therefore, if they are cell matrices, parameters A and B must be of dimension two, theirinner dimensions must agree, and their outer dimensions dictate the size of output C.The contents of each cell element of A and B must either be arrays of the same size orscalars, since they are multiplied componentwise. If A or B is a regular array, then Cadopts the size of the other, and the one which is a regular array is treated as a statedependent scalar.
traceA = cellMatrixTrace(A): Calculate the elementwise trace at each node for the spa-tially varying array A(x), represented as the cell matrix A. The trace is returned in theregular array traceA, which is the same size as each element of A (ie the size of thegrid for x). Speci�cally, if x 2 R the operation is

traceA(i) =Xk Afk; kg(i);
A similar operation applies in other dimensions. If A is a regular array, it is treated asa spatially varying scalar and hence traceA = A. To represent a spatially independentmatrix A(x) = A, use a cell matrix where every entry is a scalar.

3.7.3 Post-Timestep Routines
The routines in this directory are examples of the postTimestepFunc protocol, and implementcommon tasks that are performed after each timestep of a level set calculation. Becausethey implement the same protocol, all routines have the same input and output parameters;however, in each case the schemeData structure will contain di�erent �elds.
The �rst routine implements the masking or constraint of � (14).
[ yOut, schemeDataOut ] = postTimestepMask(t, yIn, schemeDataIn): Constrains thevalue of �(x; t) after each timestep by applying a binary mask operation. The inputargument t is ignored, while the input array yIn provides the value of �(x; t). Thestructure schemeDataIn must contain the �elds maskFunc and maskData. The outputargument schemeDataOut = schemeDataIn (no change), while the modi�ed data arrayyOut is calculated by

yOut = feval(schemeDataIn:maskFunc; yIn; schemeDataIn:maskData):
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A typical application of postTimestepMask would be to enforce the constraint �(x; t) �  (x).This constraint can be implemented by choosing maskFunc = @max and maskData to be anarray representing  (x), reshaped into a column vector.
The second routine reinitializes an implicit surface level set function to be a signed distancefunction using the reinitialization PDE (7).
[ yOut, schemeDataOut ] = postTimestepReinit(t, yIn, schemeDataIn): Reinitial-izes an implicit surface function to be an approximate signed distance function. Theinput argument t is ignored, while the input array yIn contains the implicit surfacefunction (in vector form). The structure schemeDataIn must contain the �eld grid. Itmay contain the �elds reinitAccuracy, reinitSteps and/or reinitErrorMax, whichcontrol the accuracy and number of reinitialization iterations. If these �elds are notsupplied, they have defaults. The output argument schemeDataOut = schemeDataIn(no change), while yOut is the reinitialized level set function. This routine has notbeen well tested.
The postTimestepReinit routine is essentially a wrapper for signedDistanceIterative(see section 3.7.4). Note that this PDE algorithm for reinitialization does not explicitly �ndthe interface, and hence may cause that interface to shift during iteration.
The third routine determines the time at which the zero level set crosses each node of the grid.Speci�cally, for each node x, it determines a timestep t̂ such that �(x; s) � 0 for s < t̂ and�(x; s) < 0 for s � t̂. Subject to these constraints, a linear approximation of the exact t suchthat �(x; t) = 0 is computed, where t̂ ��t < t � t̂. This routine is used for approximatingthe solution of stationary HJ [23] and degenerate elliptic PDEs; for example, see the time toreach problems in section 2.7.
[ yOut, schemeDataOut ] = postTimestepTTR(t, yIn, schemeDataIn): Compute thetime at which the zero level set crosses each node in the grid. The implicit surfacefunction is unmodi�ed: yOut = yIn. The structure schemeDataOut contains all the�elds of schemeDataIn, and the user need not add any special �elds before callingthis routine. On the �rst call to this function, the �elds ttr, ttrLastY and ttrLastTare added to this structure|the user should ensure that �elds of these names are notpresent in advance (their absence ensures proper initialization). In subsequent calls,these �elds in schemeDataIn are examined, and then modi�ed versions are returned inschemeDataOut (the user should not modify them separately). After each call, the ttr�eld contains the time at which the zero level set reached each node, as determinedby the input parameter t. Nodes which have not yet be reached are given the valueinf. In order to generate accurate initialization, it is recommended that the user makea direct call to this routine with the initial time and initial data before starting timeintegration with the toolbox.

122



3.7.4 Signed Distance Functions
This section describes functions in Examples/Helper/SignedDistance. Signed distancefunctions are a special case of implicit surface functions, and have several useful proper-ties. From a numerical perspective, their gradient has magnitude one, which tends to reducethe error introduced by gradient approximations. From a geometric perspective, at everypoint in state space the function magnitude measures the distance to the surface and thegradient lies in the direction of the closest point on the surface. For these reasons it is oftenuseful to construct a signed distance function. The routines in this directory are the start ofa collection that will build an approximate signed distance function from a variety of initialdata types.
data = signedDistanceIterative(grid, data0, accuracy, tMax, errorMax): Turnsan implicit surface function into a signed distance function by iterative solution ofthe reinitialization PDE (7). Both the implicit surface function and signed distancefunctions are de�ned on the same computational grid, the parameter grid. The implicitsurface function is given by input array data0, and the signed distance result by outputarray data. The optional parameter accuracy has the usual options determining whatorder of accuracy of spatial and temporal derivative approximations should be usedfor the reinitialization PDE, and defaults to 'medium' (second order accurate). Sincethe reinitialization wave front moves at approximately speed one outward from thezero level set, if the optional parameter tMax > 0 then enough iterations are taken tomove the reinitialization about a distance tMax from the front in both directions. Thedefault is the entire distance across the grid (which will be excessive in many cases).If tMax < 0, then -round(tMax) is taken as the explicit number of CFL constrainedtimesteps to execute; the CFL factor for these timesteps is typically large (� 0:95)and can be determined by looking in the source. The optional parameter errorMaxde�nes an update magnitude tolerance relative to the longest grid cell edge lengthmax(grid.dx)|if the average node update drops below this tolerance on any iteration,the reinitialization is assumed to have converged and the iterations are terminated.The default value of 1e-3 is so tight that iterations rarely converge under the default.Note that the input implicit surface function must be relatively well behaved for thisoperation to succeed: the function gradient should not change sign or direction toodrastically between neighboring nodes near the implicit surface. Even for well behavedimplicit surface functions, this operation may shift the implicit surface location slightly.This routine has not been well tested.
data = unsignedDistanceFromPoints(grid, points): Creates a function whose value ateach grid node measures the distance from that grid node to the nearest of a collectionof points. The grid is de�ned by parameter grid and each point is a row (with grid.dimcolumns) of the parameter points. The unsigned distance function is returned in arraydata. The unsigned distance function is not an implicit surface function. Searching for
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the zero level set will prove futile, since all node values will be non-negative. In fact, thisroutine is simply the �rst step in turning a collection of surface points into an implicitsurface function (for example, see [24, chapter 13]). Furthermore, this implementationuses the brute force, quadratic time pairwise algorithm. In future versions it should bereplaced by a much quicker fast marching algorithm for unsigned distance [28].
near = isNearInterface(data, interface level, strict opposite): Determines foreach node in the data array whether it is near the interface. The interface is de�ned byan isosurface (level set) of the implicit surface function. A node is \near" the interfaceif any of its neighbors are on the opposite side of the interface. Array parameterdata stores the implicit surface function and may be of any shape. Optional doubleparameter interface level speci�es which isosurface de�nes the interface (default0:0). Optional boolean parameter strict opposite speci�es whether the neighboursof nodes which lie exactly on the interface (nodes whose value in array data is equal tointerface level) count as \near" the interface. The default value 0 (false) speci�esthat all neighbors of nodes lying on the interface are themselves near the interface. Thenodes lying on the interface are always near the interface. The return boolean arraynear is the same shape as data, and is 1 (true) when the corresponding node in datais near the interface.
3.7.5 Terminal Event
The routines in this directory are examples of the TerminalEventFunc protocol.
[ value, schemeDataOut ] = terminalEventConverge(t, y, tOld, yOld, schemeDataIn):Detects whether the implicit surface function is no longer changing; in other words, thatthe calculation has converged. De�ne the update as the change between y and yOld. In-tegration is terminated when the norm of the update falls below some tolerance. Severalnorm options are supported, and the tolerance is the maximum between an absolute tol-erance and a relative tolerance (measured relative to y). The structure schemeDataInmay contain the �elds convergeAbsTol, convergeRelTol and/or convergeNorm. The�eld convergeAbsTol is a scalar double and speci�es the absolute tolerance (defaultsto 10�3). The �eld convergeRelTol is a scalar double and speci�es the relative tol-erance (defaults to 10�6). The �eld convergeNorm is one of the strings 'average','maximum' or 'pointwise' and speci�es the norm to be used (defaults to 'average').The corresponding convergence tests are respectively the average update over all nodes,the maximum update over all nodes, or each node's update is tested individually (andhence has its own relative tolerance to satisfy). The input arguments t and tOld areignored, and the output argument schemeDataOut = schemeDataIn (no change). Thishelper functions does not work on vector level sets. This routine has not been welltested.
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3.7.6 Visualization
This section describes functions in Examples/Helper/Visualization, which are used tosimplify various visualization tasks.
h = addSlopes(point, width, styles, slopes, labels): Plots one or more lines ofspeci�ed slope. When plotting experimental convergence rates of algorithms, it is oftenuseful to have comparison lines of speci�ed slope, which correspond to certain theoret-ical convergence rates. This function is usually called for a �gure which has alreadybeen created (and hopefully has hold on so that addSlopes does not destroy the ex-isting �gure). For example, the script firstDerivSpatialConverge in section 2.11.2uses addSlopes when creating �gure 36. Vector parameter point (with two elements)speci�es a point from which all slope lines emanate to the right. Scalar parameterwidth speci�es the extent of the lines in the horizontal direction. Parameter stylesmay be a string or a cell vector of strings, which speci�es the line style(s) of the slopelines. Vector parameter slopes is a list of slope lines which should be shown. Cellvector parameter labels contains one string for each slope line, which is displayed tothe right of the end point of the corresponding slope line. The output h is a two columnarray of graphic handles; the �rst column contains the line handles for the slope linesand the second column the text handles for the labels.
spinAnimation(fig, filename, compress): A routine which demonstrates how to useMatlab's animation facilities to generate an animation of a spinning three dimensionalplot. When working with surfaces in three dimensions, it is often di�cult to understandthe shape without seeing it from several angles. Interactive Matlab has rotate3d,but it is di�cult to use during a talk; consequently it is usually better to generatean animation showing the surface from many di�erent angles|if you have seen theauthor of the toolbox give a talk, then you have probably seen an animation createdby this routine. The parameter fig is a �gure handle to the already created threedimensional plot. The string parameter filename is the name of the output animation�le (which will have the extension .avi appended). The boolean parameter compressspeci�es whether lossy compression should be used to (signi�cantly) reduce the size ofthe resulting animation, at the expense of some image quality. Remaining parameters,such as animation resolution, number of frames and compression quality, can be setwithin the source code. Note that this function will probably work only in the Windowsenvironment, since it uses the avi �le format.
h = visualizeLevelSet(g, data, displayType, level, titleStr): Create a visual-ization of an implicit surface function. At present, dimensions one to three are sup-ported. This function is designed to produce quick visualizations of implicit surfacefunctions, rather than polished �gures. While many of the �gures in this documentstarted as calls to visualizeLevelSet, they were usually then modi�ed by adding la-bels, improving the viewing angle and/or lighting, or adding more graphical objects.
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The visualization is created within the current �gure and axis, so this function can beused with subplot and to create multiple implicit surfaces in a single plot. The gridstructure is given by parameter g, and the implicit surface function by array parameterdata. The string parameter displayType speci�es which type of visualization to use;the options depend on the dimension of the grid and are given in the help entry for thisroutine. The optional scalar level speci�es which level set to visualize, and defaults tozero. The optional string titleStr creates a title text object for the current axis. Thereturn parameter h is a graphics handle to the created graphics object(s), which can beused to modify the appearance using Matlab's set command; for example, the colorcan be changed. By default, a warning is generated if the requested level set does notexist in data. This warning can be disabled by setting level = '[]' (useful for typesof display that do not plot a level set, such as 'surf' in two dimensions).
3.8 Vector Level Sets
Vector level sets, or systems of Hamilton-Jacobi PDEs are essentially solving (1) with � 2Rm and H 2 Rm, where m need not have any particular relationship with the state spacedimension n. Unfortunately, there is very little theoretical work on such systems of nonlinearPDEs, so care must be taken drawing any conclusions from computed approximations.
However, a number of quite interesting applications make use of vector level sets|for exam-ple, open surfaces of codimension one (see section 2.9.1, surfaces of codimension greater thanone [24, chapter 10], and analysis of hybrid systems [20]|so the feature has been added tothe toolbox. In order to maintain a connection to at least the theory for scalar equations,each element �i and Hi of � and H should independently satisfy all the requirements detailedin previous sections.
Vector level sets could be easily implemented as m independent runs of the toolbox, but ifthe evolution of the �i depend on each other, then the integrations must be kept temporallyaligned. Doing so with the SingleStep and MaxStep options of the odeCFLn integrators istechnically possible but ine�cient and clumsy to implement. Consequently, the integratorsand term approximation routines have been rewritten to add direct support for vector levelsets.
Integration of scalar HJ PDEs with the toolbox involves three collections of information.
� The function �(x; t). This data is commonly referred to by the variable data, exceptinside the time integrators where it is called y or y0 to distinguish the case when it hasbeen reshaped from its usual array of size grid.shape into a long vector.
� The term approximation routine for H, commonly the variable schemeFunc.
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� Various auxiliary parameters required by the term approximation routine and any usersupplied subroutines, commonly the variable schemeData.
In order to handle systems of HJ PDEs of size m, each of these data collections is replacedby a cell vector of length m. Each element of the cell vector contains the data normally usedby a scalar equation.
For example, consider the integration of a codimension two curve in R3. Such a curve canbe represented as the intersection of the zero level sets of two level set functions evolvingon the same computational grid [24, chapter 10]. In the toolbox, this would require data,schemeFunc and schemeData to each be cell vectors of length two. Then dataf1g would bean array of size grid.shape containing the �rst level set function �1(x; t), schemeFuncf1gwould be a function handle to a term approximation routine controlling the evolution of �1,and schemeDataf1g would be a structure containing �elds relevant to the term approximationroutine for �1. Similarly, dataf2g, schemeFuncf2g and schemeDataf2g would contain �2(x; t)and information about how to evolve it.
In some cases, the elements of the vector level set may share identical evolution information;in other words, they may all be evolved using the same term approximation routine and/orparameters. In that case, schemeFunc may be a single function handle and/or schemeDatamay be a single structure, which will be used for all the elements �i.
With this design, the temporal integrators are able to compute the update for all elementsof the vector level set, choose a timestep small enough to satisfy all of the CFL restrictions,and update the �i to the next time in lockstep.
The only remaining complication is how the cell vectors are passed through to the termapproximation routines, and ultimately on to user code for parameters like the velocity �eldv(x; t) in (5) or the Hamiltonian H(x; t; �;r�) in (8). In particular, how do these routinesknow which element of the cell arrays is to be examined, and how can we make use ofexisting code for scalar equations in those vector level set cases where the update for �i doesnot depend on any other �j?
The proposed solution taken by the toolbox is to treat each of the cell vectors as a circularlist, and rotate this list as each element is processed so that the current element is alwaysat the start of the list. Following on the example descrbed above, when schemeFuncf1g iscalled, the term approximation routine that it points to should operate on dataf1g (where�1(x; t) is currently stored), possibly referring to dataf2g (for �2) and schemeDataf1g (theparameters for the evolution of �1). So far, not at all surprising.
However, when the function handle passed by the user as schemeFuncf2g is called, the dataand schemeData lists will have been rotated. Therefore, the term approximation routine thatschemeFuncf2g points to should also operate on the array passed to it as dataf1g (which now
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contains �2(x; t)), possibly referring to dataf2g (which now contains �1) and schemeDataf1g(the parameters for the evolution of the level set function currently stored in dataf1g, whichis �2). This is perhaps surprising until it is realized that a term approximation routinehas no way of determining whether it is called as schemeFuncf1g or as schemeFuncf2g.Without such knowledge, the easiest way to specify on which element of the cell vectors itshould operate is to keep the simple rule that it always operates on the �rst. The remainingelements are rotated as a circular list to achieve such an ordering.
More generally for cell vectors of length m, let vinit stand for the cell vectors passed intoa time integration routine by the user, and vterm be the cell vectors passed on to a termapproximation routine, where v is any of the variables commonly called data, schemeFuncor schemeData. When the term approximation routine pointed to by schemeFuncinitfig iscalled, then

dataterm = datainit([i : m; 1 : i� 1])schemeDataterm = schemeDatainit([i : m; 1 : i� 1])
The method described above manages to convey to the term approximation routines onwhich of the cell vector elements they should operate. We would like to use a similar rulefor subroutines called by the term approximation routines. However, many of these routineshave been written assuming that the data and schemeData parameters are not cell vectors.Rather than rewriting all such routines (as had to be done with the term approximationroutines), it would be nice to provide the option of either passing through the vector levelset information (if it is needed) or passing through only a scalar level set (in order to reusescalar code for motions that are purely scalar in nature).
The resulting protocol depends on an element of the schemeData structure called passVLS,which is meant to convey \pass through vector level set information." This element is alwaysoptional, and its default value is 0 (false). For those term approximation routines that supportit, a value of 1 (true) indicates that any user subroutines (such as routines conforming to thescalarGridFunc prototype) should be passed the entire cell vectors for data and schemeData.In this case, the user supplied subroutine will be able to access the current element of thevector level set in dataf1g, and allow other elements of the vector level set (stored in theother elements of the data cell vector) to in
uence its evolution.
For those routines that do not support passVLS, and for those routines that do but arepassed a value of 0 (false), only dataf1g and schemeDataf1g are passed. In this case, fromthe subroutine's perspective, the call appears to be for a scalar PDE. This option should beused for all code unless it is speci�cally written for vector level set evolution.
In version 1.1, the following routines support the passVLS protocol: termCurvature, termForcing,termNormal.
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The following routines may not support the passVLS protocol (see the help entries for details):termConvection, termDiscount, termLaxFriedrichs, termReinit, termTraceHessian. Asdescribed above, for these routines currently act as though passVLS were always false|onlydataf1g and schemeDataf1g are passed through to user subroutines. Unless hidden bugsare discovered in the passVLS protocol, it is expected that it will be added to these routinessoon.
There are two exceptions to the passVLS protocol: the routines for combining and restrictingterm approximations from section 3.6.4. In brief, termRestrictUpdate always passes throughthe entire cell vector, and termSum passes through the entire cell vector, but modi�es the�rst elements dataf1g and schemeDataf1g. For full details, see the help entries for theseroutines.
The protocols for vector level sets may seem complex at �rst, but examination of the ex-amples in section 2.9 will hopefully clear up most confusion. Several alternative protocolsfor specifying vector level sets were explored, but the one de�ned here was the most 
exiblethat we have found so far. We would de�nitely like to hear about your experiences usingthis protocol, especially any cases that prove to be impossible to reformulate in this manner.Collection of experiences with this vector level set scheme is one of the reasons for a betarelease of this version of the toolbox.

129



4 New and Future Features
The Toolbox is evolving as new schemes, features and examples are added, and new versionswill be released as code stability and time permit. Users are encouraged to email comments,bug �xes and feature requests to the author(s).
There are also examples and schemes designed for the Toolbox which are not included in thebase download. You may �nd this other code at the toolbox website [14].
4.1 Features New to Version 1.1
Not all of the new and modi�ed routines for this version have appeared in this documentation.However, they should all be listed below, and their help entries should fully document theirfeatures. All of the major modi�cations have been covered in the documentation.
� Implementation of term approximation routines for motion by the trace of the Hes-sian (10) (section 3.6.3), discounting (11) and forcing (12) (section 3.6.4). For examples,see section 2.8.
� Vector level sets. This feature required modi�cations to virtually all integration andterm approximation routines, but (hopefully) these modi�cations are completely back-ward compatible for scalar equations. See section 3.8 for an explanation of how vectorlevel sets are implemented, and section 2.9 for examples of their use.
� The schemeFunc prototype has been modi�ed to return the schemeData structure asits third argument, and all term approximation routines have been updated to followthe new prototype. Although none of the routines currently make use of this feature,in theory it permits term approximation routines to modify the structure's elements (acapability previously only allowed for routines following the postTimestepFunc proto-type).
� Support for some types of stationary HJ PDEs using a reformulation to a time-dependentPDE and the postTimestepTTR routine. See sections 2.7 and 3.7.3.
� Time dependence for virtually all term parameters. This feature was actually presentin version 1.0 of the Toolbox, but was not advertised in the documentation.
� New option 'TerminalEvent' in odeCFLset for early event driven termination of inte-gration. See section 3.5.3.
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� Added the subcell �x from [27] as the default behaviour in termReinit. This modi�-cation seems to signi�cantly decrease the motion of the implicit surface during reini-tialization. If this subcell �x option is not used, there is also a new option to increasethe degree of smoothing of the signum function in the reinintialization equation. Seesections 2.2, 2.10 and 3.6.1.
� The new postTimestepReinit routine to support regular reinitialization of the levelset during integration. See section 3.7.3. An example of its application appears insection 2.9.1.
� Several new examples: stationary HJ PDEs in section 2.7, expected outcomes of stochas-tic di�erential equations in section 2.8, a spiral crystal growth demonstration from [31]of open curves by vector level sets in section 2.9, and the examples from [27] demon-strating the bene�ts of the subcell �x for reinitialization.
� In visualizeLevelSet: Added a 'wireframe' option in 3D, �xed the 'slice' and'contourslice' options, and modi�ed the behaviour of the 'surface' option to pro-vide smoother looking surfaces.
� Miscellaneous modi�ed routines: signedDistanceIterative and dumbbell1.
� Miscellaneous new routines in existing directories. The following routines are describedin this manual:{ cellMatrixTrace{ gridnd2mesh{ isNearInterface{ odeCFLget{ odeCFLmultipleSteps{ odeCFLcallPostTimestep{ shapeHyperplaneByPointsThe following routines are not described in the manual, but should have self-explanatoryhelp entries:{ addGhostExtrapolate2{ animateSpinStar{ animateAcoustic{ animateAir3D{ animateDumbbell

4.2 Potential Future Features
At the completion of this version of the toolbox, among the extensions which seem useful are:
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� More general Dirichlet and Neumann boundary conditions.
� The WENO3 upwind �rst order spatial derivative scheme.
� Roe-Fix and possibly Gudonov numerical Hamiltonians. Stencil Lax-Friedrichs arti�cialdissipation.
� ENO/WENO function value interpolation (not just gradients) away from nodes.
� Higher order of accuracy versions of the subcell �x in termReinit.
� Implicit time stepping (with Matlab's ODE suite?).
� Adding the passVLS vector level set option to all the term approximation routines.
� Some method to avoid constant reallocation of memory for ghost cells.
� Adaptively re�ned grids.
� Construction of signed distance functions from point clouds.
� Evolution of closed curves in R3 using vector level sets.
� Examples from various application �elds.

Do you have any other ideas?
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Concept Index
Reading the Index: Roman page num-bers indicate discussion of the concept orcommand. Italic page numbers indicate anexample of its use.
boundary conditions: 24, 92{94Dirichlet: 93extrapolated: 24, 93Neumann: 93periodic: 24, 93
cell matrix: 120constraints: see term approximation, con-straintsconstructive solid geometry: see initial con-ditionsconvection: see term approximation, con-vectioncost to go: 59{69curvature: see term approximation, curva-ture
equation classdegenerate elliptic: 59degenerate parabolic: 11, 69{74elliptic: see degenerate elliptichyperbolic: 11parabolic: see degenerate parabolicstatic: 59stationary: 11, 59{69stochastic: 69{74systems: see vector level setstime-dependent: 10, 12time-independent: 59
Hessian: 10
initial conditions: 82{83, 94{98basic shapes: 95{97

reinitialization: see term approxima-tion, reinitializationset operations: 97{98
masking: see term approximation, constraints
monotonicity: 11
reachable sets: 48{58continuous: 48{51, 51{56Hamiltonian for: 49, 53, 55HJ PDE for: 49hybrid: 51, 56{58reinitialization: see term approximation,reinitialization
set operations: see initial conditionssolution classviscosity solution: 11weak solution: 11spatial derivative: 28, 98{103centered: 102, 103convergence rate of: 83{87ENO: 28, 85{87, 99, 100�rst: 28, 85{87, 99, 100, 103second: 102, 103upwind: 28, 85{87, 99{101WENO: 28, 85{87, 100stochastic di�erential equations: see equa-tion class, stochastic
term approximation: 11{13, 108{119advection: see convectioncombining: 41{42, 119constraintson �: 13, 36{37, 58, 107, 121on Dt�: 13, 49, 118convection: 12, 19{31, 41{42, 109, 111curvature, mean: 13, 38{40, 115

136



discount: 13, 117forcing: 13, 117general HJ: 12, 34{36, 49{51, 112{115Hessian, trace of the: 13, 116Lax-Friedrichs: 34{36, 49{51, 112{115arti�cial dissipation: 114{115estimating the partials: 34, 46, 48,51, 54, 56, 113mean curvature: see curvature, meannormal direction: 12, 40{42, 111reinitialization: 12, 32{34, 79{82, 111,122, 123velocity �eld: see convectiontime derivative: 12, 28, 103{108PostTimestep option: 13, 37, 107TerminalEvent option: 107explicit integrator: 28, 104, 105integration options: 106{108TVD RK: 104, 105time to reach: 59{69Toolboxciting: 17dowloading: 14license: 2{3other publications: 17
vector level sets: 75{79, 126{129cell vector: 127circular lists: 127{128pass through protocol passVLS: 128{129with termRestrictUpdate: 129with termSum: 129
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Command Index
Reading the Index: Roman page num-bers indicate discussion of the concept orcommand. Italic page numbers indicate anexample of its use.
acoustic: 54acousticHamFunc: 55acousticPartialFunc: 56addGhostAllDims: 94addGhostDirichlet: 93addGhostExtrapolate: 24, 93addGhostNeumann: 93addGhostPeriodic: 24, 93addNodesAllDims: 94addPathToKernel: 14, 19, 22addSlopes: 125air3D: 52air3DHamFunc: 54air3DPartialFunc: 54airMode: 58analyticDoubleIntegratorTTR: 66analyticHolonomicTTR: 63analyticSumSquareTTR: 64argumentSemanticsTest: 87artificialDissipationGLF: 34, 45, 47, 114
artificialDissipationLLF: 34, 45, 47, 114
artificialDissipationLLLF: 34, 45, 47,114
burgersLF: 46
cellMatrixAdd: 97, 120cellMatrixMax: 121cellMatrixMultiply: 25, 26, 97, 121

cellMatrixTrace: 121centeredFirstSecond: 103checkEquivalentApprox: 101checkStructureFields: 31, 119compareTerms: 75convectionDemo: 19{31convectionTTR: 61convergeDoubleIntegratorTTR: 68convergeHolonomicTTR: 65curvatureSecond: 102curvatureSpiralDemo: 38curvatureStarDemo: 39
doubleIntegratorTTR: 66dumbbell1: 44
ellipseError: 81exerciseKP529: 73exerciseO169b: 73
figureAir3D: 53findReachSet: 58firstDerivSpatialConverge: 85firstDerivSpatialTest1: 85
ghostCell: 88gridnd2mesh: 92
hessianSecond: 102holonomicTTR: 62
initialConditionsTest1D: 82initialConditionsTest2D: 83initialConditionsTest3D: 83interp2: 91interp3: 91
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interpn: 91isNearInterface: 124
laplacianSecond: 103laxFriedrichsDemo: 34laxFriedrichsDemoHamFunc: 34laxFriedrichsDemoPartialFunc: 35linearAdditiveSDE: 70
maskAndKeepMin: 37maskDemo: 37meshgrid: 15{16, 91{92
ndgrid: 15{16, 91{92nonconvexLF: 47normalStarDemo: 41
odeCFL1: 28, 104odeCFL2: 28, 105odeCFL3: 28, 105odeCFLcallPostTimestep: 108odeCFLget: 107odeCFLmultipleSteps: 108odeCFLn: 29, 105odeCFLset: 28, 106
passVLS: 128postTimestepMask: 58, 121postTimestepReinit: 77, 122postTimestepTTR: 62, 66, 122processGrid: 24, 90prototypesderivFunc: 28, 110dissFunc: 34, 45, 47, 113, 114hamFunc: 34, 46, 48, 49, 54, 55, 113matrixGridFunc: 116partialFunc: 35, 46, 48, 50, 54, 56,113postTimestepFunc: 37, 58, 62, 66, 107,121{122

scalarGridFunc: 31, 40, 109schemeFunc: 28, 42, 52, 105, 109, 118terminalEventFunc: 107, 124velocityFunc: 26, 31, 111
quiver: 16
reinit1D: 79reinitCircle: 80reinitDemo: 33reinitDemoFigures: 34reinitEllipse: 80reinitTest: 87
shapeComplement: 98shapeCylinder: 95shapeDifference: 98shapeHyperplane: 96shapeHyperplaneByPoints: 97shapeIntersection: 98shapeRectangleByCenter: 96shapeRectangleByCorners: 96shapeSphere: 95shapeUnion: 98signedDistanceIterative: 87, 123smerekaSpirals: 77spinAnimation: 125spinStarDemo: 42spiralFromEllipse: 39spiralFromPoints: 39switchValue: 26, 30{31, 40
termConvection: 28, 37, 42, 57, 70, 73,109, 111termCurvature: 38, 42, 44, 115with vector level sets: 77termDiscount: 73, 117termForcing: 117terminalEventConverge: 124
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termLaxFriedrichs: 34, 45, 47, 49, 52,54, 62, 66, 112{115termNormal: 40, 42, 111with vector level sets: 77termReinit: 33, 79, 111termRestrictUpdate: 49, 52, 54, 57, 118with vector level sets: 129termSum: 42, 119with vector level sets: 77, 129termTraceHessian: 70, 72, 73, 116testLinearAdditiveSDE: 71tripleSine: 43
unsignedDistanceFromPoints: 123upwindFirstENO2: 28, 85, 99upwindFirstENO3: 28, 99, 100upwindFirstENO3a: 85, 100upwindFirstENO3aHelper: 101upwindFirstENO3b: 85, 100upwindFirstENO3bHelper: 101upwindFirstFirst: 28, 85, 99upwindFirstWENO5: 28, 100upwindFirstWENO5a: 85, 101upwindFirstWENO5b: 85, 101
visualizeLevelSet: 29, 30, 125visualizeOpenCurve: 79

140


