A Summary of Recent Progress on Efficient Parametric Approximations of Viability and Discriminating Kernels

Ian M. Mitchell

Department of Computer Science
The University of British Columbia

July 2015

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell

Copyright 2015 by Ian M. Mitchell
This work is made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Let’s Cut to the Chase

We can approximate the set of controllably safe states within some constraint set \(\mathcal{K} \) in polynomial time for linear systems using parametric approximations.

![Graph showing run time vs. state dimension for polytope, ellipsoid, and support vector methods.](image)

It may be worth trading off algorithm speed and accuracy (support vector approach) for other capabilities (ellipsoidal approach).
Outline

1. Constructs & Motivation
2. Models & Algorithms
3. Implementations & Results
4. Comparison & Discussion
Outline

1. Constructs & Motivation
2. Models & Algorithms
3. Implementations & Results
4. Comparison & Discussion
Invariance Kernel

\[
\text{Inv} \left([t_s, t_f], S \right) \triangleq \{ \tilde{x}(t_s) \in S \mid \forall \dot{u}(), \forall t \in [t_s, t_f], x(t) \in S \},
\]

- What states will remain safe despite input uncertainty.
- Inputs treated in a worst-case fashion.
- We will not further discuss this kernel.
Viability Kernel

\[\text{Inv} \left([t_s, t_f], S \right) \triangleq \{ \tilde{x}(t_s) \in S \mid \exists u(\cdot), \forall t \in [t_s, t_f], x(t) \in S \}, \]

- Also called controlled invariant set.
- Inputs treated in a best-case fashion.
Discriminating Kernel

\[
\text{Inv} ([t_s, t_f], S) \triangleq \{ \tilde{x}(t_s) \in S \mid \exists u(\cdot), \forall v(\cdot), \forall t \in [t_s, t_f], x(t) \in S \},
\]

That is hard to draw...

- Also called robust controlled invariant set.
- Two inputs “control” \(u(\cdot) \) and “disturbance” \(v(\cdot) \) treated adversarially.
The Challenge: Efficient Parametric Representations

Existing algorithms used non-parametric representations; complexity is exponential in state space dimension.

- Viability algorithms: for example [Saint-Pierre 1994; Cardaliaguet et al 1999].
- Level set methods: for example [Mitchell et al 2005].

In contrast, algorithms using parametric representations for reachable sets are widely available.

\[
\text{Reach}_+(t, S) \triangleq \{x_0 \mid \exists u(\cdot), x(t) \in S\}, \\
\text{Reach}_-(t, S) \triangleq \{x_0 \mid \forall u(\cdot), x(t) \in S\},
\]

- Support functions / vectors: for example [Le Guernic 2009; Le Guernic & Girard 2010; Frehse et al 2011].
Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion
Discrete and Continuous Time

Discrete time:

\[x(t + 1) = f(x(t), u(t), v(t)) \quad \text{general dynamics} \]
\[x(t + 1) = Ax(t) + Bu(t) + Cv(t) \quad \text{linear dynamics} \]

- Assume state feedback: Choose \(u(t) \) knowing \(x(t) \).
- Conservative treatment of uncertainty: Choose \(v(t) \) knowing \(x(t) \) and \(u(t) \).

Continuous time:

\[\dot{x}(t) = f(x(t), u(t), v(t)) \quad \text{general dynamics} \]
\[\dot{x}(t) = Ax(t) + Bu(t) + Cv(t) \quad \text{linear dynamics} \]

- “Non-anticipative strategies” rigorously resolve input ordering issue; equivalent to state feedback in all but artificially constructed examples.
- Optimal input signals often have little regularity and hence may not be physically realizable.
Sampled data is a model of a common approach to designing cyber-physical systems:

- Unlike continuous time models, change to feedback control is only possible at sample times.
- Unlike discrete time models, state of plant between sample times is relevant.
Continuous-Time Viability Algorithm

- Start with an under-approximation \mathcal{K}_\downarrow of \mathcal{K}
 (ρ: small computational timestep; M: uniform bound on f)

 $$\mathcal{K}_\downarrow := \{ x \in \mathcal{K} \mid \text{dist}(x, \mathcal{K}^c) \geq \rho M \}$$

- Iteratively compute K_{n+1}:

 $$\mathcal{K}_0 = \mathcal{K}_\downarrow,$$
 $$\mathcal{K}_{n+1}(P) = \mathcal{K}_0 \cap \text{Reach}_+ (\rho, \mathcal{K}_n)$$
Continuous-Time Viability Algorithm

- Start with an under-approximation \(\mathcal{K}_\downarrow \) of \(\mathcal{K} \)
 \((\rho: \text{small computational timestep}; M: \text{uniform bound on } f) \)
 \[
 \mathcal{K}_\downarrow := \{ x \in \mathcal{K} \mid \text{dist}(x, \mathcal{K}^c) \geq \rho M \}
 \]
- Iteratively compute \(\mathcal{K}_{n+1} \):
 \[
 \mathcal{K}_0 = \mathcal{K}_\downarrow,
 \mathcal{K}_{n+1}(P) = \mathcal{K}_0 \cap \text{Reach}_+ (\rho, \mathcal{K}_n)
 \]
Continuous-Time Viability Algorithm

• Start with an under-approximation \mathcal{K}_\downarrow of \mathcal{K}
 (ρ: small computational timestep; M: uniform bound on f)

 $\mathcal{K}_\downarrow := \{ x \in \mathcal{K} \mid \text{dist}(x, \mathcal{K}^c) \geq \rho M \}$

• Iteratively compute \mathcal{K}_{n+1}:

 $\mathcal{K}_0 = \mathcal{K}_\downarrow,$
 $\mathcal{K}_{n+1}(P) = \mathcal{K}_0 \cap \text{Reach}_+ (\rho, \mathcal{K}_n)$
Continuous-Time Viability Algorithm

- Start with an under-approximation K_{\downarrow} of K
 (ρ: small computational timestep; M: uniform bound on f)

$$K_{\downarrow} := \{ x \in K | \text{dist}(x, K^c) \geq \rho M \}$$

- Iteratively compute K_{n+1}:

$$K_0 = K_{\downarrow},$$

$$K_{n+1}(P) = K_0 \cap \text{Reach}_+ (\rho, K_n)$$
Continuous-Time Viability Algorithm

- Start with an under-approximation \mathcal{K}_\downarrow of \mathcal{K}
 (ρ: small computational timestep; M: uniform bound on f)
 \[
 \mathcal{K}_\downarrow := \{ x \in \mathcal{K} | \text{dist}(x, \mathcal{K}^c) \geq \rho M \}
 \]
- Iteratively compute K_{n+1}:
 \[
 K_0 = \mathcal{K}_\downarrow,
 K_{n+1}(P) = K_0 \cap \text{Reach}_+ (\rho, K_n)
 \]
Continuous-Time Viability Algorithm

- Start with an under-approximation \mathcal{K}_\downarrow of \mathcal{K}
 (ρ: small computational timestep; M: uniform bound on f)

 $$\mathcal{K}_\downarrow := \{x \in \mathcal{K} \mid \text{dist}(x, \mathcal{K}^c) \geq \rho M\}$$

- Iteratively compute \mathcal{K}_{n+1}:

 $$\mathcal{K}_0 = \mathcal{K}_\downarrow,$$
 $$\mathcal{K}_{n+1}(P) = \mathcal{K}_0 \cap \text{Reach}_+ (\rho, \mathcal{K}_n)$$
Other Constructs and Models

- Discriminating kernel algorithm is straightforward, albeit notionally complicated.
- Discrete time algorithm omits initial erosion: $\mathcal{K}_0 = \mathcal{K}$.
- Sampled data algorithm uses continuous time algorithm in an augmented state space

$$\tilde{x} \triangleq \begin{bmatrix} x \\ u \end{bmatrix}, \quad \tilde{f}(\tilde{x}) \triangleq \begin{bmatrix} f(x, u) \\ 0 \end{bmatrix}.$$

- Control input held constant over each sample period.
- Disturbance input allowed to vary (measurably).
- Tensor products and projections move between original and augmented state space.
Outline

1. Constructs & Motivation

2. Models & Algorithms

3. Implementations & Results

4. Comparison & Discussion
Ellipsoids

Ellipsoidal techniques (under-)approximating the maximal reach set:

- Key operations (set evolution, intersection) are accomplished through ODEs and convex optimization.
- Class of ellipsoids are not closed under these operations, so underapproximations must be used.
- Set evolution possible in discrete or continuous time.
- Control and/or disturbance inputs can be treated.
Applications: Flight Envelope Protection (CT, 4D)

Level-Set (non-parametric, black): 5.5 hr
Piecewise Ellipsoidal (parametric, green): 10 min
Applications: Automated Anesthesia
(DT Laguerre model, 7D)

Level Set (non-parametric): infeasible
Piecewise Ellipsoidal (parametric): 15 min
Applications: Quadrotor Altitude Maintenance
(nonlinear SD, 3D)

- Linearize within constraint set, use discriminating kernel to ensure robustness to linearization error.
- One second horizon with 10 Hz sample cycle.
- 20 directions, execution time 5 min.
- Also generate safe range of inputs (slices shown at right).
Support Vectors

Support functions provide polytopic overapproximation in specified directions

Corresponding support vectors provide polytopic underapproximation in specified directions

- Key operations (set evolution, intersection) are accomplished through convex optimization.
- Support functions / vectors are closed under these operations, so no need to further underapproximate.
- Only discrete time.
- Only control input (no discriminating kernel version).
Application: Automated Anesthesia
(DT compartment model, 6D)

- Three compartment LTI model of Propofol metabolism.
- Third order Padé approximation of input delay yields six dimensional state space.
- 18 directions, execution time 11.5 min.
- Support vector underapproximation (left) and free support function overapproximation (right).
Outline

1. Constructs & Motivation
2. Models & Algorithms
3. Implementations & Results
4. Comparison & Discussion
Comparing Accuracy: A Double Integrator

All images: True viability kernel (black).

5 directions, execution time 105s. 20 directions, execution time 280s.
Ellipsoidal approximation (dark blue) and constraint (light grey).

5 directions, execution time 28s. 20 directions, execution time 56s.
Support vector approximation (dark blue) and support function (light grey).
Scaling with Dimension: A Chain of Integators

Compare execution time over ten steps for a discrete time model.

- Exact polytopic method (non-parametric).
- Ellipsoidal algorithm in a single direction.
- Support vector algorithm in $2d_x$ standard basis vectors (positive and negative directions).
Comparing the Options

<table>
<thead>
<tr>
<th>Dynamics</th>
<th>Level Set</th>
<th>Ellipsoidal</th>
<th>Support Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>CT / SD</td>
<td>CT / DT / SD</td>
<td>DT</td>
</tr>
<tr>
<td>Complexity</td>
<td>$O(n^d)$</td>
<td>$O(kd^3)$</td>
<td>$O(kd^2)$</td>
</tr>
<tr>
<td>Control input</td>
<td>optimal / sampled</td>
<td>optimal</td>
<td>optimal</td>
</tr>
<tr>
<td>Control synthesis</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>Discriminating kernel</td>
<td>optimal</td>
<td>optimal</td>
<td>–</td>
</tr>
<tr>
<td>Accuracy</td>
<td>excellent</td>
<td>fair</td>
<td>good</td>
</tr>
<tr>
<td>Inner guarantee</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Outer approx</td>
<td>–</td>
<td>?</td>
<td>free</td>
</tr>
</tbody>
</table>

- Time models are continuous (CT), discrete (DT) or sampled data (SD).
- Complexity parameters are dimension ($d = d_x$ for CT or DT, $d = d_x + d_u$ for SD), grid resolution per dimension (n) and number of ellipses / support vectors (k).
And Yet You Insist on Using Ellipsoids...

Support vector approach is faster and more accurate, so why we are working more actively on the ellipsoidal approach?

- All models are wrong, but discriminating kernels can generate approximations robust to model error.
- Discrete time approximation is too simplistic for continuous time systems with fast dynamics.
- Viability analysis without control synthesis only accomplishes half the job.

It is possible that the support vector approach could be extended to handle disturbance inputs, continuous time and/or control synthesis.
Future Work

Control filtering to ensure safety of human-in-the-loop quadrotor control.

- Longitudinal 6D quadrotor model.
- Sampled data with 10 Hz sample cycle.
- Control inputs are total thrust and differential thrust.
- Linearization about hover condition with robustness to linearization error.
- Two second safety horizon.
- Display current safety horizon and safe control set.
- Clip human input to safe control set (somehow...).