MobiSense: Lifespace Tracking and Activity Monitoring on Mobile Phones

Ian Dewancker¹, Jaimie F. Borisoff², Boyang Tom Jin¹ & Ian M. Mitchell¹

¹Department of Computer Science
University of British Columbia

²British Columbia Institute of Technology
Motivation

• Lifespace
 – Measure of the frequency, geographic extent and independence of an individual's travels
 – Useful metric relating to cardiovascular health, community engagement and nutrition

• Data is good
 – Feedback based on true behavior provides incentive, measurement and reward for change
 – Examples: Quantified self movement, m-Health initiative

• Smartphones
 – Packed with sensors
 – Worn throughout the day
 – Open programming interface
 – Geeky fun to play with
The CanWheel Project

• Founded under six year emerging team grant from CIHR
 – 15+ researchers from 6+ universities across Canada

• Guiding Questions:
 – How are power wheelchairs used now?
 – How can power wheelchairs be used better?
 – How can power wheelchairs be better?

• Five core projects:
 – Evaluating needs & experiences
 – Measurement of mobility outcomes
 – Wheelchair innovation
 – Data logging
 – Wheelchair skills program for powered mobility

www.canwheel.ca
MobiSense: Goals & Approach

• Three desirable and feasible measurements:
 – Outdoor mobility tracking
 – Indoor mobility tracking
 – Mobility activity classification

• Two challenges:
 – Providers and consumers of data are not engineers
 – Underlying technology and algorithms are rapidly changing

• Three approaches:
 – Simple user interfaces for data collection and visualization
 – Partition code into production, analysis and visualization components with simple data exchange formats
 – Minimize code on the mobile platform
 – Open source the code
Related Work

- UbiFIT [Consolvo et al, ICUC 2008]
 - Track pedometer activity, displayed on phone
- Ohmage [Hicks et al, 2011]
 - Example Open mHealth application
 - Has been used to track activity levels and other studies
 - Extensible framework for getting sensor data to a web site
- HumanSense [Frank, 2013]
 - Open source data collection platform + classification
- Lifespace measurement [Schenk et al, J. Am. Geriatric Society, 2011]
 - Track indoor location using bluetooth beacons in rooms
- Commercial products
 - Exercise products: FitBit, Jawbone, Nike FuelBand
 - Phone providers: Google Now and Maps
Indoor Localization: Training

• Data collection
 – User creates a room name and walks around the room
 – App samples WiFi SSIDs and signal strengths for a few minutes
 – Data uploaded to cloud server in compressed text file

• Construct a room classifier
 – Which room is most likely?

• Construct a novelty classifier
 – Has this room been seen before?
 – Nearest centroid threshold with Euclidean distance
Indoor Localization: Operation & Testing

- **Data collection**
 - Phone collects WiFi SSID and signal strengths at 10s interval
 - Data uploaded to cloud server

- **Testing**
 - Six buildings, 4–6 rooms each, 7–189 WiFi access points, 1140–3138 readings for training purposes
 - Secondary app built to collect images during testing and label ground truth
 - Six more test sets created by randomly removing 20% of access points from original test sets
 - Random forest achieves 91% accuracy average (range 76%–98%) over twelve test sets
Activity Classification

- Based on [Frank et al 2012; Hicks et al, 2011]
- Accelerometer readings (total magnitude) at 20 Hz
- Features pulled from 3 second moving window
- Nine features considered: Mean and variance of accelerometry (2), frequency and amplitude of top three Fourier coefficients (6), GPS speed estimate (1)
- Build single decision tree
- Limited testing
- Easily replaced
Other Implementation Details

- Outdoor localization
 - GPS latitude and longitude measured once per minute
- Lots of data uploaded
 - Raw data is 15 MB compressed (50 MB uncompressed) in 18 hours
 - Summarized data is 100 KB per day
- Significant power requirement
 - Runs for 22 hours without recharge (but no other phone use)
- Phone held in backpack or pants pocket (except during room training)
Visualization

- Daily or multi-day summaries available
- Five visualizations
 - Summary pie charts of indoor location and activity
 - Time series of indoor location and activity
 - Google map heat chart of outdoor location and traces
- Visit http://mobisense.ca and use Android id 71b82dc2885abaca
Conclusions

• MobiSense system
 – Provides indoor and outdoor localization plus four category activity classification
 – Android phone app to collect wifi signal strength, GPS and accelerometry
 – Cloud server to construct and evaluate decision trees
 – Could server to visualize results
 – Based on Open mHealth separation of concerns
 – Easily modified

• Squashed by commercial products?
 – But they provide little or no access to raw data

• Open source the code
 – Contact me if you are interested
Acknowledgements

• Thanks
 – Jordan Frank for his open source HumanSense app
 – CanWheel team for valuable feedback

• Funding
 – CanWheel, the CIHR Emerging Team in Wheeled Mobility for Older Adults grant #AMG-100925
 – NSERC Discovery and USRA grants
 – CFI Canada Research Chair in Rehabilitation Engineering Design
MobiSense: Lifespace Tracking and Activity Monitoring on Mobile Phones

For more information contact

Ian Mitchell
Department of Computer Science
University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell
http://www.canwheel.ca