
Getting Started with Matlab

(in Computer Science at UBC)

Ian Mitchell
Department of Computer Science

The University of British Columbia

January 2013 Ian Mitchell (UBC Computer Science) 2

Outline

• Why Matlab?

– Why not C / C++ / Java / Fortran?

– Why not Perl / Python?

– Why not Mathematica / Maple?

• A Brief Taste of Matlab

– where to find it

– how to run it

– interactive Matlab

– m-files & debugging

• Sources of Additional Information

January 2013 Ian Mitchell (UBC Computer Science) 3

Choosing Programming Languages

C++
• Fast: close to hardware

• Flexible: interfaces to almost

any other language

• Flexible: pointers, references,

explicit memory allocation

• Flexible: everybody provides C /

C++ libraries

• Popular: commonly used,

available everywhere

• Prone to bugs: complex syntax,

memory leaks

Java
• Easy to use: references only,

garbage collection

• Popular: commonly used, widely

available

• Portable: common byte code

• Developed with a clear vision:

Standard libraries for security,

threading, distributed systems

• Slower: interpreted or JIT for

byte code

• Compare / contrast compiled languages C++ and Java

January 2013 Ian Mitchell (UBC Computer Science) 4

The Right Tool for the Job

• C / C++ / Fortran:

– Statically typed and compiled languages

– Well developed algorithm, known platform, execution time is key

• Java:

– Simpler, partially compiled language

– Unknown platform, less experienced programmer, development

time is important, broad standard library

• Perl / Python:

– Interpreted “dynamic” languages: no typing, no compilation(?)

– Unknown platform, development time is key, concise but powerful

code, huge standard library

• Many others (8000+)

http://en.wikipedia.org/wiki/Comparison_of_programming_languages

http://en.wikipedia.org/wiki/Comparison_of_programming_languages
http://en.wikipedia.org/wiki/Comparison_of_programming_languages

January 2013 Ian Mitchell (UBC Computer Science) 5

The Job: Scientific Computing

• Why not use Numerical Recipes / LAPACK / BLAS?

– “simple” CLAPACK routine for solving Ax = b (general A):
int dgesv_(integer *n, integer *nrhs, doublereal *a, integer *lda,

integer *ipiv, doublereal *b, integer *ldb, integer *info)

– what library to use to plot sin(2x) for x 2 [0, 1]?

– too much programmer overhead: time consuming and too many

opportunities for mistakes

• Why not use Mathematica / Maple?

– Originally designed for symbolic mathematics

– Some numerical capabilities, but not as efficient to code and/or

execute

January 2013 Ian Mitchell (UBC Computer Science) 6

MATLAB®

• Why use Matlab?

– robust, dependable, easy to use routines for all basic linear algebra

– intuitive, untyped, imperative language with garbage collection

– huge library (toolboxes) of mathematical functions and algorithms

– fast implementation of vector/matrix operations

– portable interpreted language widely used in applied mathematics,

engineering & physical sciences

– powerful combination of visualization and debugging

• Why not use Matlab?

– proprietary system (Mathworks Inc.)

– occasionally erratic syntax

– toolbox quality varies widely

– no support for references/pointers

• Alternatives?

– Numerical computing: Octave, SciLab, Sage, SciPy, …

– Plotting: Gnuplot, XGraph, PLPlot, PGPLOT, matplotlib, …

January 2013 Ian Mitchell (UBC Computer Science) 7

Outline

• Why Matlab?

– Why not C / C++ / Java / Fortran?

– Why not Perl / Python?

– Why not Mathematica / Maple?

• A Brief Taste of Matlab

– where to find it

– how to run it

– interactive Matlab

– m-files & debugging

• Sources of Additional Information

January 2013 Ian Mitchell (UBC Computer Science) 8

What is “Matlab”?

• Technically, a single product

– Contains basic scientific computing tools

– Linear algebra, quadrature, interpolation, approximation, differential

equations

– GUI, visualization and debugging

– Programming data and control structures

• Domain specific algorithms packaged in separate “Toolboxes”

– For example: multivariable optimization, advanced splines, image

processing, neural networks, … (40+ available)

– Why? Separate product development (eg: $$$)

• Additional products (not used in CS courses)

– Simulink: simulation & model-based design

– Engines, coders, targets, links, etc.

January 2013 Ian Mitchell (UBC Computer Science) 9

Where to find Matlab (UBC CS Dept)

• Undergraduate Labs

– Unix or Windows

– Release 7.14 (2012a)

– Toolboxes: image processing, optimization & statistics

– Licensed only for course work (grad or ugrad)

• Graduate Labs

– Several releases available, 7.14 (2012a) the default

– Toolboxes: image processing, image acquisition, statistics,

wavelets, neural networks, optimization, PDEs, signal processing,

control, robust control, identification, …

– Licensed for research work

• Purchase Student Version

– Full basic Matlab, a few common toolboxes (sufficient for 302/303)

– Available immediately at UBC Bookstore $150(?)

– Also available online (US $99), but requires validation of student

status for full activation

January 2013 Ian Mitchell (UBC Computer Science) 10

How to run Matlab

• Windows (or Mac): click Matlab icon to start the Matlab desktop

• Unix (Linux): type matlab to start the Matlab desktop

• Command line alternatives:

– text interface: matlab -nodesktop

– see all the options: matlab -help

– text interface still allows graphical visualization

• Remote use

– Other than in MS Windows, Matlab uses X Windows for graphics

– If you are sitting at an X Windows capable machine, you can

remotely log into the ugrad Unix machines and use Matlab

– Linux & Mac already include X Windows support

– All CS students can download XManager software for Windows: X

Windows (remote graphics), Xshell (ssh), Xftp (file sync), …

– See https://www.cs.ubc.ca/support/toc/Undergrads/remote login

– For faster response times, use Matlab’s text interface (and some

method of editing the remote m-files)

https://www.cs.ubc.ca/support/toc/Undergrads/remote login

January 2013 Ian Mitchell (UBC Computer Science) 11

Interacting with Matlab

• Examples

– Getting help

– Constants: pi, i, eps, inf, nan

– Matrices & Arrays: input, output, colon, concatenation, find

– Operators: transpose, arithmetic, element-wise, logical

• help topics: punct, ops, relop, arith, slash

– Functions: zeros, ones, diag, eye, rand, reshape, size, …

– Text I/O: semicolon, ellipses, format, diary

– Visualization: plot, legend, xlabel, ylabel, title, subplot,

set, figure, gcf, gco, close, clf, …

– Graphical I/O: print, orient, imread, …

– Workspace management: who, whos, save, load, clear,

addpath, …

– Other data types: strings, ints, sparse, structures, cells

• Command line includes tab completion, up & down arrow to find

previous similar commands, ctrl-c to break execution

January 2013 Ian Mitchell (UBC Computer Science) 12

Programming

• Standard programming control flow constructs

– All compound statements finish with end

– if/elseif/else, for, while, switch/case/otherwise,

try/catch, continue, break, return

– Be careful with boolean operators, matrices and control flow (use
any, all)

• Sequences of commands can be stored as a script in an m-file

– type name of file to execute commands (which run in the top level

“workspace” scope)

– Use “%” to denote comment lines

• Functions are m-files that start with function command

– Have input and output parameters, local scope

– May contain subfunctions and/or nested functions

– Matlab also supports anonymous functions and a function handle
datatype (help function_handle)

January 2013 Ian Mitchell (UBC Computer Science) 13

Data Structures
• No need to predefine variables

– Variable is created in the current workspace when it appears on the
left side of an assignment

• Many data types available

– By default, all variables are two dimensional double precision
floating point arrays

– Higher dimensional arrays allowed (but no one-dimensional array)

– Other types: single precision, integer, boolean, strings (specially
interpreted double arrays), structures (actually more like
dictionaries), cell arrays, function handles, classes

– No pointers, (almost) no references

– Dynamically typed: Matlab tries to determine a consistent type, but
type errors can occur

• Function arguments are pass by value

– Changes to input variables are not externally visible unless the
same variables are returned as outputs

– Copy on write implementation ensures fast execution if inputs are
not modified

January 2013 Ian Mitchell (UBC Computer Science) 14

Debugging

• With Matlab desktop and editor

– Breakpoints can be set and removed by clicking to the right of the

(executable) line in the file

– Single stepping can be accomplished with buttons at the top of the

editor window

• Text based

– Commands dbstop (set breakpoint), dbstep (single line step),

dbcont (continue), dbstatus (current program counter),

dbstack (examine call stack), etc.

– see help debug for a full list

– Extremely useful: dbstop if error causes Matlab to stop in the

workspace (eg local scope) of the function that caused the error

– Also: keyboard command is equivalent to setting a breakpoint

• In either version, you can examine the current workspace

– Examine variable values (text or plots), call other Matlab functions,

move up and down through the stack

January 2013 Ian Mitchell (UBC Computer Science) 15

Efficient Matlab Coding

• Use Matlab’s built-in functions

– eg: total = 0; for k = 1 : 10; total = total + k; end

vs total = sum(1:10);

• Preallocate arrays

– eg: n = 100; ys = zeros(n, 1);
for k = 1 : n; ys(i) = sin(2*pi*k/n); end

• Use “vectorization”

– rather than loops, try operations that work on entire array of data at

once.

– eg: element-wise operations (arithmetic or boolean),
sin(2*pi*(0:0.1:1)), find

– version 7.0 onward: built-in JIT often makes loops fast

• Use functions, not scripts

• Use profiler to find slow code

• If all else fails, use MEX interface to C/C++/Fortran

January 2013 Ian Mitchell (UBC Computer Science) 16

Outline

• Why Matlab?

– Why not C / C++ / Java / Fortran?

– Why not Perl / Python?

– Why not Mathematica / Maple?

• A Brief Taste of Matlab

– where to find it

– how to run it

– interactive Matlab

– m-files & debugging

• Sources of Additional Information

January 2013 Ian Mitchell (UBC Computer Science) 17

Sources of Further Information

• Matlab has extensive built-in documentation

– Hyperlinked documentation: helpdesk and doc <command>

– Basic textual command & function info: help <command>

– Unknown command search: lookfor <string>

– Implementation details: type <command>

• Online documentation

– Mathworks website: http://www.mathworks.com

– Community code: http://www.matlabcentral.com

– Matlab resources website (including these slides):
http://www.cs.ubc.ca/~mitchell/matlabResources.html

– YAGTOM (Yet Another Guide TO Matlab):
http://code.google.com/p/yagtom/

For more information contact

Ian Mitchell
Department of Computer Science

The University of British Columbia

mitchell@cs.ubc.ca

http://www.cs.ubc.ca/~mitchell

Getting Started with Matlab

(in Computer Science at UBC)

