Ensuring Safety for Sampled Data Systems
An Efficient Algorithm for Filtering Potentially Unsafe Input Signals

Ian M. Mitchell1, Jeffrey Yeh1, Forrest J. Laine2, Claire J. Tomlin2

1Department of Computer Science
The University of British Columbia
2Department of Electrical Engineering & Computer Science
University of California, Berkeley

December 2016

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell

Copyright 2016 by Ian M. Mitchell
This work is made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Motivation: Sampled Data Systems

A common design pattern for cyber-physical systems:

- **Plant** (continuous time)
- **Controller** (discrete time)
- **Sensors** (time sampling)
- **Actuators** (zero order hold)

Traditional models of time evolution miss important features of this design:

- Continuous time models ignore the periodic nature of feedback.
- Discrete time models ignore plant evolution between samples.

The sampled data model captures these features.
Previous Work

[Mitchell, Kaynama, Chen & Oishi, NAHS 2013]:
• Developed an algorithm to approximate sampled data discriminating kernels.
• Demonstrated on toy examples.

[Mitchell & Kaynama, HSCC 2015]:
• Described an algorithm to more accurately approximate sampled data discriminating kernels robust to sample time jitter.
• Demonstrated on a partially nonlinear three dimensional model of quadrotor altitude maintenance.

[Mitchell et al, NAHS 2013] [Mitchell & Kaynama, HSCC 2015]
Contributions

• Adapt algorithm to fixed time capture basins.
• Construct discrete state automaton / look-up table for controller to synthesize (set-valued) safe feedback control signals.
• Demonstrate on a partially nonlinear six dimensional longitudinal model of quadrotor flight.
Set-Valued Safe Control?

But the plant requires a single control signal!

- Proposed automaton represents a verified control envelope [Aréchiga & Krogh, ACC 2014] which could be used to more efficiently design, modify or tune proposed controllers to ensure safety.
- Set-valued constraints can be used online to check and possibly modify exogenous input signal, such as human-in-the-loop or legacy controller.
Outline

1. Motivation & Contributions

2. Constructs

3. Models & Algorithms

4. Control Filtering Hybrid Automaton

5. Quadrotor Flight Envelope Maintenance
Outline

1. Motivation & Contributions

2. Constructs

3. Models & Algorithms

4. Control Filtering Hybrid Automaton

5. Quadrotor Flight Envelope Maintenance
Invariance Kernel

\[
\text{Inv} ([t_s, t_f], S) \triangleq \{ x(t_s) \in S \mid \forall u(\cdot), \forall t \in [t_s, t_f], x(t) \in S \},
\]

- What states will remain safe despite input uncertainty.
- Inputs treated in a worst-case fashion.
Viability Kernel

\[\text{Viab}([t_s, t_f], S) \triangleq \{ x(t_s) \in S \mid \exists u(\cdot), \forall t \in [t_s, t_f], x(t) \in S \}, \]

- Also called controlled invariant set.
- Inputs treated in a best-case fashion.
Capture Basin

\[
\text{Capt}([t_s, t_f], S_T, S_C) \triangleq \left\{ x(t_s) \in S_C \mid \exists u(\cdot), \exists t_T \in [t_s, t_f], \forall t \in [t_s, t_T], x(t) \in S_C \land x(t_T) \in S_T \right\},
\]

- Trajectories must stay inside constraint S_C until they reach target S_T.
- Inputs treated in a best-case fashion.
Robust Reach Set

\[
\text{Reach}([t_s, t_f], S) \triangleq \{ x(t_s) \in \Omega \mid \forall \nu(\cdot), x(t_f) \in S \}
\]

- Not a reach tube: Trajectories must reach \(S \) at exactly \(t_f \).
- Reach tube may not be the union of these reach sets [Mitchell 2007].
Discriminating Kernel

\[
\text{Disc}([t_s, t_f], \mathcal{S}) \triangleq \{ x(t_s) \in \mathcal{S} \mid \exists u(\cdot), \forall v(\cdot), \forall t \in [t_s, t_f], x(t) \in \mathcal{S} \},
\]

That is hard to draw...

- Also called robust controlled invariant set.
- Two inputs “control” \(u(\cdot) \) and “disturbance” \(v(\cdot) \) treated adversarially.
The Challenge: Efficient Parametric Representations

Existing algorithms used non-parametric representations; complexity is exponential in state space dimension.

- Viability algorithms: for example [Saint-Pierre 1994; Cardaliaguet et al 1999].
- Level set methods: for example [Mitchell et al 2005].
- New: Outer approximation of capture basin ("region of attraction") using occupational measures and SDP for polynomial dynamics (no disturbance inputs) [Henrion & Korda, IEEE TAC 2014].

In contrast, algorithms using parametric representations for reachable sets are widely available.

- Support functions / vectors: for example [Le Guernic 2009; Le Guernic & Girard 2010; Frehse et al 2011].
Outline

1. Motivation & Contributions
2. Constructs
3. Models & Algorithms
4. Control Filtering Hybrid Automaton
5. Quadrotor Flight Envelope Maintenance
Discrete and Continuous Time

Discrete time:

\[x(t + 1) = f(x(t), u(t), v(t)) \]

general dynamics

\[x(t + 1) = Ax(t) + Bu(t) + Cv(t) \]

linear dynamics

- Assume state feedback: Choose \(u(t) \) knowing \(x(t) \).
- Conservative treatment of uncertainty: Choose \(v(t) \) knowing \(x(t) \) and \(u(t) \).

Continuous time:

\[\dot{x}(t) = f(x(t), u(t), v(t)) \]

general dynamics

\[\dot{x}(t) = Ax(t) + Bu(t) + Cv(t) \]

linear dynamics

- “Non-anticipative strategies” rigorously resolve input ordering issue; equivalent to state feedback in all but artificially constructed examples.
- Optimal input signals often have little regularity and hence may not be physically realizable.
Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

• Let ρ be a small computational timestep and M a uniform bound on f.

• Start with an under-approximation \mathcal{K}_\downarrow of \mathcal{K}

$$\mathcal{K}_\downarrow := \{x \in \mathcal{K} \mid \text{dist}(x, \mathcal{K}^c) \geq \rho M\}$$

• Iteratively compute K_{n+1}:

$$\mathcal{K}_0 = \mathcal{K}_\downarrow,$$

$$\mathcal{K}_{n+1}(P) = \mathcal{K}_0 \cap \text{Reach} ([0, \rho], \mathcal{K}_n)$$

• Discriminating kernel algorithm is straightforward, albeit notationally complicated.

• Discrete time algorithm omits initial erosion: $\mathcal{K}_0 = \mathcal{K}$.
Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

- Let ρ be a small computational timestep and M a uniform bound on f.
- Start with an under-approximation K_\downarrow of K

\[K_\downarrow := \{ x \in K \mid \text{dist}(x, K^c) \geq \rho M \} \]

- Iteratively compute K_{n+1}:

\[
K_0 = K_\downarrow, \\
K_{n+1}(P) = K_0 \cap \text{Reach}([0, \rho], K_n)
\]

- Discriminating kernel algorithm is straightforward, albeit notationally complicated.
- Discrete time algorithm omits initial erosion: $K_0 = K$.
Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

- Let ρ be a small computational timestep and M a uniform bound on f.
- Start with an under-approximation K_\downarrow of K
 \[
 K_\downarrow := \{ x \in K \mid \text{dist}(x, K^c) \geq \rho M \}
 \]
- Iteratively compute K_{n+1}:
 \[
 K_0 = K_\downarrow, \\
 K_{n+1}(P) = K_0 \cap \text{Reach}([0, \rho], K_n)
 \]
- Discriminating kernel algorithm is straightforward, albeit notationally complicated.
- Discrete time algorithm omits initial erosion: $K_0 = K$.

Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

• Let ρ be a small computational timestep and M a uniform bound on f.
• Start with an under-approximation K_{\downarrow} of K

$$K_{\downarrow} := \{x \in K \mid \text{dist}(x, K^c) \geq \rho M\}$$

• Iteratively compute K_{n+1}:

$$K_0 = K_{\downarrow},$$
$$K_{n+1}(P) = K_0 \cap \text{Reach}([0, \rho], K_n)$$

• Discriminating kernel algorithm is straightforward, albeit notationally complicated.
• Discrete time algorithm omits initial erosion: $K_0 = K$.
Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

• Let ρ be a small computational timestep and M a uniform bound on f.
• Start with an under-approximation \mathcal{K}_\downarrow of \mathcal{K}

\[\mathcal{K}_\downarrow := \{ x \in \mathcal{K} \mid \text{dist}(x, \mathcal{K}^c) \geq \rho M \} \]

• Iteratively compute \mathcal{K}_{n+1}:

\[\mathcal{K}_0 = \mathcal{K}_\downarrow, \]
\[\mathcal{K}_{n+1}(P) = \mathcal{K}_0 \cap \text{Reach}([0, \rho], \mathcal{K}_n) \]

• Discriminating kernel algorithm is straightforward, albeit notationally complicated.
• Discrete time algorithm omits initial erosion: $\mathcal{K}_0 = \mathcal{K}$.
Continuous-Time Viability Algorithm

[Maidens et al, Automatica 2013], [Kaynama et al, HSCC 2012]

- Let ρ be a small computational timestep and M a uniform bound on f.
- Start with an under-approximation K_\downarrow of K
 \[
 K_\downarrow := \{ x \in K \mid \text{dist}(x, K^c) \geq \rho M \}
 \]
- Iteratively compute K_{n+1}:
 \[
 K_0 = K_\downarrow, \\
 K_{n+1}(P) = K_0 \cap \text{Reach}([0, \rho], K_n)
 \]
- Discriminating kernel algorithm is straightforward, albeit notationally complicated.
- Discrete time algorithm omits initial erosion: $K_0 = K$.
Ellipsoidal Representations

Ellipsoidal techniques (under-)approximating the maximal reach set:

- Key operations (set evolution, intersection) are accomplished through ODEs and convex optimization.
- Class of ellipsoids are not closed under these operations, so underapproximations must be used.
- Set evolution for linear dynamics possible in discrete or continuous time.
- Control and/or disturbance inputs can be treated.
• Use continuous time model of the plant
\[\dot{x}(t) = f(x(t), u(t), v(t)) \] general dynamics;
\[\dot{x}(t) = Ax(t) + Bu(t) + Cv(t) \] linear dynamics.

• However, control input is piecewise constant in time
\[u_{pw}(t) = u_{fb}(x(t_k)) \text{ for } t_k \leq t < t_{k+1} \]
where \(u_{fb} : \Omega \to \mathcal{U} \) is a feedback control policy.

• Disturbance input is allowed to vary (measurably) continuously.
Sampled Data Formulation

- Assume fixed sample time, but can be extended to handle timing jitter.
- Sampled data algorithm uses continuous time algorithm in an augmented state space
 \[
 \tilde{x} \triangleq \begin{bmatrix} x \\ u \end{bmatrix} \quad \tilde{f}(\tilde{x}, v) \triangleq \begin{bmatrix} f(x, u, v) \\ 0 \end{bmatrix}.
 \]
- Move between original and augmented state space with tensor products and projections
 \[
 \text{Proj}_x (\tilde{x}) \triangleq \left\{ x \in \Omega \mid \exists u, \begin{bmatrix} x \\ u \end{bmatrix} \in \tilde{x} \right\},
 \]
 \[
 \text{Proj}_u (\tilde{x}, x) \triangleq \left\{ u \in \mathcal{U} \mid \begin{bmatrix} x \\ u \end{bmatrix} \in \tilde{x} \right\}.
 \]
Finite Horizon Sampled Data Capture Basin

Define

- Sample period δ
- Horizon $T = \bar{N}\delta$
- Constraint set S_C
- Target set $S_T \subset S_C$
- Finite horizon sampled data capture basin

$$\text{Capt}_{sd} ([0, T], S_T, S_C) \triangleq \left\{ x_0 \in S_C \mid \exists u_{pw}(\cdot), \exists i \in \{0, 1, \ldots, \bar{N}\}, \right.$$
$$\forall v(\cdot), \forall t \in [0, i\delta],$$
$$x(t) \in S_C \land x(i\delta) \in S_T \right\}.$$

If a safe infinite horizon feedback controller $u_{fb}^{\inf}(x)$ is available for $x \in S_T$, then capture basin is also infinite horizon safe.
Capture Basin Algorithm

• For \(i = 1, 2, \ldots, \bar{N} \)

\[
\mathcal{E}_i \triangleq \mathcal{E}(\text{Capt}_i (\mathcal{S}_T, \mathcal{S}_C)) \\
\mathcal{E}_0 = \mathcal{E}(\mathcal{S}_T) \\
\mathcal{E}(\mathcal{I}_1) \triangleq \mathcal{E}(\text{Inv} ([0, \delta], \mathcal{S}_C \times \mathcal{U})), \\
\mathcal{E}(\mathcal{R}_i) \triangleq \mathcal{E}(\text{Reach} ([0, \delta], \mathcal{E}_{i-1} \times \mathcal{U})), \\
\mathcal{E}(\mathcal{C}_i) \triangleq \text{Inscribed}_\alpha (\mathcal{E}(\mathcal{R}_i) \cap \mathcal{E}(\mathcal{I}_1)), \\
\mathcal{E}_i = \text{Proj}_x (\text{Inscribed}_0 (\mathcal{E}(\mathcal{C}_i) \cap \mathcal{E}(\Omega \times \mathcal{E}(\mathcal{U})))) ,
\]

• Overapproximates the sampled data capture basin

\[
\bar{N} \bigcup_{i=0}^{\mathcal{E}_i} \subseteq \text{Capt}_{sd} ([0, T], \mathcal{S}_T, \mathcal{S}_C).
\]

• Provides a safe control policy

\[
\mathcal{U}_{ctrl}(x, i) \triangleq \text{Proj}_u (\mathcal{E}(\mathcal{C}_i), x) \cap \mathcal{E}(\mathcal{U}).
\]

• All operations can be efficiently implemented for ellipsoids.

Outline

1. Motivation & Contributions

2. Constructs

3. Models & Algorithms

4. Control Filtering Hybrid Automaton

5. Quadrotor Flight Envelope Maintenance
Create a mode for each horizon $i = 0, 1, \ldots, \bar{N}$.

- Not every mode transition is shown; in fact, every mode is connected to every other node (including self-loops).
Look-Up Table Ensures Runtime Safety

<table>
<thead>
<tr>
<th>Mode</th>
<th>Valid States</th>
<th>Safe Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(\bar{N})$</td>
<td>Capt$_\bar{N}$ (S_T, S_C)</td>
<td>$U_{ctrl}(x, \bar{N})$</td>
</tr>
<tr>
<td>$m(i+1)$</td>
<td>Capt$_{i+1}$ (S_T, S_C)</td>
<td>$U_{ctrl}(x, i+1)$</td>
</tr>
<tr>
<td>$m(i)$</td>
<td>Capt$_i$ (S_T, S_C)</td>
<td>$U_{ctrl}(x, i)$</td>
</tr>
<tr>
<td>$m(i-1)$</td>
<td>Capt$_{i-1}$ (S_T, S_C)</td>
<td>$U_{ctrl}(x, i-1)$</td>
</tr>
<tr>
<td>$m(0)$</td>
<td>S_T</td>
<td>$u_{fb}^\inf(x)$</td>
</tr>
</tbody>
</table>

- Table data Capt$_i$ (S_T, S_C) and $U_{ctrl}(x, i)$ are computed offline.
- At sample time t_k, choose a row for which $x(t_k)$ is in the valid states to find a safe set of input values.
- If $x(t_{k-1})$ was valid for mode $m(i)$, then $x(t_k)$ is guaranteed to be valid for mode $m(i-1)$.
Filtering an Exogenous Input

Let $\tilde{u}(\cdot)$ be the exogenous input signal.

- Upon choosing mode $m(i)$ at time t_k, let

$$u_{pw}(t) = \begin{cases}
\tilde{u}(t_k), & \text{if } \tilde{u}(t_k) \in U_{\text{ctrl}}(x(t_k), i); \\
\bar{u}, & \text{otherwise};
\end{cases}$$

- The clipped input $\bar{u} \in U_{\text{ctrl}}(x, i)$ is chosen “near” the value $\tilde{u}(t_k)$ in some sense; for example

$$\bar{u} = q + \frac{\tilde{u}(t_k) - q}{\|L(\tilde{u}(t_k) - q)\|_2}$$

where L is the Cholesky factorization of Q^{-1}, Q is the shape matrix for $U_{\text{ctrl}}(x(t_k), i)$ and q is its center vector.

Other mechanisms for filtering the exogenous input are possible.
Related Work

- In [Tsuchie & Ushio, ADHS 2006]: Controller determines switches, more restrictive (but more realistic?) class of jitter, requires trajectory solutions.
- In [Karafylllis & Kravaris, Int. J. Control 2009]: Define r-robust reachability, but requires Lyapunov-like function.
- In [Simko & Jackson, HSCC 2014]: Taylor models and SMT solver, but only initial state is nondeterministic.
- In [Gillula, Kaynama & Tomlin, HSCC 2014]: Sampled data viability kernel (no disturbance input) with polytopic set representation.
- In [Aréchiga & Krogh, ACC 2014]: Theorem prover to verify invariants and control envelopes robust to parameter variations and sample time uncertainty.
- In [Kaynama, Michell, Oishi & Dumont, IEEE TAC 2015]: Discrete control automaton built from ellipsoidal approximations of discriminating kernels to ensure safety for continuous time systems.
- In [Dabadie, Kaynama & Tomlin, IROS 2014]: robust sampled data reach set is complement of (jitter-free) discriminating kernel.
Outline

1. Motivation & Contributions

2. Constructs

3. Models & Algorithms

4. Control Filtering Hybrid Automaton

5. Quadrotor Flight Envelope Maintenance
Nonlinear Longitudinal Model of a Quadrotor

From [Bouffard 2012]

\[
\begin{align*}
\dot{x}_1 &= x_3, \\
\dot{x}_2 &= x_4, \\
\dot{x}_3 &= u_1 K \sin x_5, \\
\dot{x}_4 &= -g + u_1 K \cos x_5, \\
\dot{x}_5 &= x_6, \\
\dot{x}_6 &= -d_0 x_5 - d_1 x_6 + n_0 u_2,
\end{align*}
\]

• Inputs: total thrust \(u_1 \) and desired roll angle \(u_2 \)
Constraints

Safety constraint set S_C:

$x_1 \in [-1.7, +1.7]$,
$x_2 \in [+0.3, +2.0]$,
$x_3 \in [-0.8, +0.8]$,
$x_4 \in [-1.0, +1.0]$,
$x_5 \in [-0.15, +0.15]$,
$x_6 \in [-\frac{\pi}{2}, +\frac{\pi}{2}]$.

LQR controller experimentally known to stabilize from states in S_T:

$x_1 \in [-1.2, +1.2]$,
$x_2 \in [+0.5, +1.7]$,
$x_3 \in [-0.5, +0.5]$,
$x_4 \in [-0.8, +0.8]$,
$x_5 \in [-0.1, +0.1]$,
$x_6 \in [-0.3, +0.3]$.
For ellipsoidal analysis, linearize dynamics about \bar{u}_1 and \bar{x}_5.

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3 \\
\dot{x}_4 \\
\dot{x}_5 \\
\dot{x}_6
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} \bar{u}_1 \cos \bar{x}_5 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} \bar{u}_1 \sin \bar{x}_5 & 0 \\
0 & 0 & 0 & 0 & -d_0 & 1 \\
0 & 0 & 0 & 0 & 0 & -d_1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
K(\sin \bar{x}_5 - \frac{1}{2} \bar{x}_5 \cos \bar{x}_5) \\
K(\cos \bar{x}_5 + \frac{1}{2} \bar{x}_5 \sin \bar{x}_5) \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\]

constant

linearization error

for some ξ in the range of possible values of x_5.

• Compute capture basins robust to bound on the linearization error.
Hybridization to Reduce Error Bound

- Leading error term is \(\frac{1}{2} K x_5 u_1 \cos \bar{x}_5 \).
- To reduce range of error, use hybrid model with values of \(\bar{u}_1 \in \{g - 0.5, g, g + 0.5\} \) and \(\bar{x}_5 \in \{-0.05, 0.00, +0.05\} \) for each mode.
- Adjust \(S_C \) and range of inputs for each model hybridization mode as well.

\[
\begin{align*}
x_5 &\in [-0.1, +0.1] + \bar{x}_5 \\
u_1 &\in [-0.5, +0.5] + \bar{u}_1 \\
u_2 &\in \left[-\frac{\pi}{16}, +\frac{\pi}{16}\right] + \bar{x}_5
\end{align*}
\]
Capture Basin Calculation

- Create three pairs of S_C and S_T to better fill box constraints with ellipsoids.
- Could also use multiple direction vectors for ellipsoidal reachability calculations, but a single vector did a good job.

$$\ell = [0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]^T$$

Red line: S_C
Red fill: $\mathcal{E}(S_C)$
Blue line $\mathcal{E}(S_T)$
Capture Basin Results

Compute capture basin approximations over

- 5 hybridization modes.
- 3 constraint set approximations.
- 1 direction vector.
- 10 sample periods with $\delta = 0.1\text{s}$.

Computation takes $\sim 15\text{s}$ for each combination of mode, constraint set and direction vector over 10 sample periods.

Red fill: S_C
Green fill: $\bigcup_{i=0}^{10} E_i$
Blue line: $E(S_T)$
Runtime Application

Compare exogenous pilot input with $\mathcal{U}_C(x(t), m)$ for several modes m.

Heuristic for selecting modes:

- Current hybridization and constraint set with horizons \(\{i - 1, i, i + 1, i + 2\}\) (4 modes).
- Current horizon i with all hybridizations and constraint sets (14 modes).

- If pilot input is inside $\mathcal{U}_C(x(t), m)$, choose m with largest horizon.
- If pilot input is not inside, choose m that gets closest and project input onto $\mathcal{U}_C(x(t), m)$.
Runtime Results

- Each mode comparison requires evaluating a quadratic function (18 modes takes $\sim 0.03s$).
- Input u_2 is clipped for $t \in [6, 12]$ because of threat of exceeding bounds on x_1.
- Input u_2 is allowed much higher value for $t \approx 16$ without clipping.
- LQR controller is not invoked for $t \in [0, 20]$ even though capture basin horizon is $T = 1$.
Limitations

- No formal proof of LQR controller’s infinite horizon safety.
- Worst case treatment of linearization error leads to overly conservative results.
- Ellipsoids offer poor approximation of boxes, which leads to overly conservative results.
- Algorithm does not account for feedback delay or state uncertainty.
- Input clipping may not be the appropriate shared control strategy.
Conclusions & Future Work

In this paper we

- Described a method to construct a control automaton / look-up table returning set-valued safe control inputs for a sampled data system.
- Implemented an efficient algorithm constrained to linear dynamics but able to handle some nonlinearity through robust analysis.
- Demonstrated technique on a six dimensional nonlinear longitudinal quadrotor model with a human-in-the-loop pilot providing an exogenous input signal.

In the future we plan to

- Investigate methods to handle realistic signal delay and timing jitter.
- Seek more accurate representations able to handle more general dynamics.
- Adapt techniques to learned models.
- Identify methods of sharing control which humans find more suitable than clipping.