Shared Control Policies for Safe Wheelchair Navigation of Elderly Adults with Cognitive and Mobility Impairment

Designing a Wizard of Oz Study

Ian M. Mitchell1, Pooja Viswanathan2, Bikram Adhikari1, Eric Rothfels1 \& Alan K. Mackworth1

1Department of Computer Science
University of British Columbia
2Toronto Rehab Institute
University of Toronto
Why A Smart Wheelchair?

• Aging population
• Quality of life depends on mobility (Bourret et al. 2002)
• Older adults often lack strength for manual wheelchair (WC) use
• Mobility impairments in older adults often accompanied by co-morbidities (dementia, blindness, ...)
 – There were about 35.6 million people in the world living with dementia in 2010 - approximately 65.7 million by 2030 (World Alzheimer Report, 2009)
 – Of 1.5 million nursing homes residents, 60-80% have dementia (Marcantonio 2000)
 – Prohibited from using powered wheelchairs due to safety concerns (Hardy 2004)
 – Reduced mobility leads to social isolation, depression and increased dependence on caregivers (Iezzoni et al. 2001)
Why Now?

• Many intelligent wheelchair projects in the past
 – For example, PLAYBOT, Wheelesley, NavChair, MAid, OMNI, PALMA
 – Many target populations
 – Excellent review article [Simpson, JRRD 2005]

• Improvements in sensor systems
 – Lower cost, better accuracy, lower power, smaller size
• Improvement in computing power
• Improvements in robotic autonomy
• The right team
 – Access to experts in robotics and wheeled mobility research
 – Trainees willing to bridge the gap
The CanWheel Team

- Founded under six year emerging team grant from CIHR
 - 15+ researchers from 6+ universities across Canada
- Guiding Questions:
 - How are power wheelchairs used now?
 - How can power wheelchairs be used better?
 - How can power wheelchairs be better?
- Five core projects:
 - Evaluating needs & experiences
 - Measurement of mobility outcomes
 - Wheelchair innovation
 - Data logging
 - Wheelchair skills program for powered mobility

www.canwheel.ca
Our Goals

• Cognitively (and mobility) impaired older adults in long term care (LTC) facilities
 – Heterogenous population
 – Constrained but navigable environment

• Shared control
 – Autonomous navigation (with supervisory control) can cause confusion or agitation in this population

• Assistance with multiple objectives
 – Short term: Collision avoidance
 – Medium term: Wayfinding

• Low cost sensors

• User trials with target population

• Reproducible research
Motivation & Key Informant: NOAH

• Navigation & Obstacle Avoidance Help
• Slightly modified PWC
 – Motion can be disabled in three forward directions
• Bumblebee stereo vision camera plus laptop (under the seat)
• Collision avoidance: stop if an obstacle is detected in that direction
• Wayfinding: POMDP driven audio prompts based on heading relative to optimal path to goal
NOAH Efficacy Study

- Styrofoam maze created in basement of LTC facility

Figure 4. Scene view of the maze. Participants were required to navigate around wall and maneuverability foam obstacles.
NOAH Collision Avoidance Results

- Six adults 66–97 years old in LTC with mild to moderate cognitive impairment and not allowed to use PWC
 - Single subject design, half with A-B and half with B-A ordering, eight trials each
 - System reduces frontal collisions for all participants
- More data and analysis in [Viswanathan, 2012]
NOAH Conclusions

• Stopping motion was frustrating for the users
 – Feedback only through audio instructions
 – Motion was blocked conservatively
 – Increased task completion time for participants who were already good at collision avoidance

• Missed collisions
 – Narrow field of view leads to incomplete sensor coverage
 – Styrofoam obstacles reduced fear of collision

• Effective wayfinding assistance is challenging
 – Requires accurate localization and user state estimation

• Counter-intuitive(?) participant desires
 – Participants with higher levels of anxiety and/or confusion wanted to maintain more direct control of motion

• Also [Viswanathan et al & Wang et al, RESNA 2013]
Wizard of Oz

• Earlier prototypes not tested until fully functional
 – Users had no opportunity to provide early feedback
• Earlier semi-structured interviews lacked context
 – Participants (and even interviewers) lacked common vocabulary for and understanding of technology
• Wizard of Oz study allows testing of the user interface without fully developed system
 – Hidden researcher controls the wheelchair to simulate an intelligent wheelchair in varying modes
 – Collect qualitative and quantitative data to obtain user feedback and inform continuing design work
 – Release anonymized sensor data so the rest of the community can see a robot's view of LTC facilities and elderly adult drivers
Driving Assessments

• Subset of Power-mobility Indoor Driving Assessment

Elevator

Docking under Table

Back-in Parking

Manoeuverability

Hallway
Our PWC

• Modified Quickie base
 – AT Sciences provided a CANBus interface to intercept the joystick signals and read odometry
 – Power tilt and adjustable width seat added in-house
 – Seating adjustments for every participant

• ROS-based control system
 – Blends wheelchair's joystick and wizard's PS3 controller signal

• Lots of sensors recorded into ROS bags
 – Data not used during trials

RGBD camera (front facing)
RGBD camera (back facing)
face webcam
wheelchair joystick
galvanic skin response sensor
Wiimote (accelerometer)
odometers
laser rangefinder
Shared Control Modes

• Speed control:
 – Ideally: stretch time to collision
 – WoZ: slow if obstacle less than 2 feet away, stop if less than 1 foot, but resume at very slow ("docking") speed
 – Vibration in joystick if user signal is being clipped

• Heading (plus speed) control:
 – Ideally: bring PWC back onto desired path if it gets too close to a (stationary) obstacle
 – WoZ: assume full control if obstacle is less than 1 foot away and maintain control until obstacle is roughly 2 feet away
 – Vibration if the wizard has assumed control
 – Wizard generated audio prompting to get back on path

• Fully autonomous control:
 – Ideally and WoZ: PWC drives itself to accomplish the PIDA task (participant may deflect joystick to stop motion)
Example

- Lab data using young, healthy participant
- Task: parking at a table
- Occupancy grid used only for visualizing path
 - Wizard provides obstacle detection
 - Path estimated by dead reckoning based on odometry
Policy 1: Speed Control

- Speed limit in effect for time intervals [27, 46] and [52, 70]
Policy 2: Heading & Speed Control

- Wizard intervenes during time intervals [16, 21] and [32, 39]
- Also speed limit in effect throughout

Polar Joystick Coordinates

June 2014

Ian Mitchell (UBC Computer Science)
Teleoperator's Interface

- semi-autonomous back-in parking video
The Study

• 10 Participants at 3 LTC facilities in Vancouver
• About 14 hours / participant spread over two weeks
 – Pre-study assessments and data collection (2 hours)
 – Pre- and post-driving semi-structured interviews (3 hours)
 – 5+ driving sessions (9 hours) comprising three repetitions of each policy in each task (45 trials) + interviews
 – Months of prep, three months of trials and ongoing analysis

• Preliminary Findings
 – Control policy preference varies across participants & tasks
 – Participants prefer autonomous mode for back-in parking
 – Resumption of participant control is challenging
 – Issues and conflict around trust and control

• Sensor data post-processing for public release is underway!
Related Work: Controls

• Highly trained operators and/or high degrees of freedom
 – Autopilot modes [eg: Matni & Oishi, ACC 2008]

• Driver assistance systems
 – Haptic feedback vs "drive by wire" experiments [Katzourakis et al, IEEE TSMC 2013]
 – Steering control replacement determined from hybrid automaton & composite quadratic Lyapunov function [Enache et al, IEEE ITS 2010]
 – Steering & braking control addition determined from MPC [Gray et al, IEEE ITS 2013]

• Humans-in-the-loop sessions I & II, ACC 2013
Related Work: Smart WCs

• Survey article [Simpson, JRRD 2005]
 – Few systems tested on target populations

• Supervisory / switched control
 – Children: [Ceres et al, IEEE EMBM 2005; McGarry et al, Disability & Rehab: AT 2012]

• Shared control: various ways of blending continuous control signals
 – Mobility: [Carlson & Demiris, IEEE TSMC 2012]
 – Older adult mobility: [Li et al, ICRA 2011]
 – Mobility + CP or TBI: [Zeng et al, IEEE TNRE 2008]
 – Older adult mobility + dementia: [Urdiales et al, Autonomous Robots, 2011]
What to Call It?

• We wish to combine real-time and typically continuous signals from multiple agents
 – For smart WC, agents are the driver and the automation
• Not supervisory control
 – Where one agent provides high-level and typically discrete guidance to a second agent
• Not switched control
 – Where multiple agents take turns generating a control signal
• Not collaborative or cooperative control
 – Most commonly used for coordinated control of multiple physical entities each with its own agent
• Human in the loop?
 – Is the human part of the controller or the plant?
Conclusions

• Smart PWCs for cognitively impaired older adults in LTC
 – Fully autonomous motion is not the problem
• Shared control is desirable
 – Desired degree of assistance depends on driver, task and environment
• User trials with target population are critical
 – They are a lot of effort
• Full sensor coverage is challenging
 – Aesthetics, robustness and cost are significant factors
• Risk assessment formulas are unclear
 – Need a formula compatible with human intuition

• Plan to release your code and data
Acknowledgements

• Thanks to
 – Pouria TalebiFard for help with WC, ROS and testing
 – Emma Smith & GF Strong staff for help replacing the seat
 – Advanced Mobility Products for the seat
 – CanWheel team for feedback on WoZ study design
 – Long Term Care Facility staff for help running the study

• Funding
 – CanWheel, the CIHR Emerging Team in Wheeled Mobility for Older Adults grant #AMG-100925
 – NSERC Discovery, doctoral and USRA grants
 – Alzheimer Society Research Program
 – People & Planet Friendly Home (an ICICS & TELUS initiative)
 – CFI LOF / BC KDF grant #13113
Shared Control Policies for Safe Wheelchair Navigation of Elderly Adults with Cognitive and Mobility Impairment

Designing a Wizard of Oz Study

For more information contact

Ian Mitchell
Department of Computer Science
University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell
http://www.canwheel.ca