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A Time-Dependent Hamilton–Jacobi Formulation of
Reachable Sets for Continuous Dynamic Games
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Abstract—We describe and implement an algorithm for com-
puting the set of reachable states of a continuous dynamic game.
The algorithm is based on a proof that the reachable set is the zero
sublevel set of the viscosity solution of a particular time-dependent
Hamilton–Jacobi–Isaacs partial differential equation. While al-
ternative techniques for computing the reachable set have been
proposed, the differential game formulation allows treatment of
nonlinear systems with inputs and uncertain parameters. Because
the time-dependent equation’s solution is continuous and defined
throughout the state space, methods from the level set literature
can be used to generate more accurate approximations than are
possible for formulations with potentially discontinuous solutions.
A numerical implementation of our formulation is described and
has been released on the web. Its correctness is verified through
a two vehicle, three dimensional collision avoidance example for
which an analytic solution is available.

Index Terms—Differential games, Hamilton–Jacobi equations,
reachability, verification.

I. INTRODUCTION

AS THE systems we design grow more complex, it becomes
more difficult to determine whether they work correctly.

Consequently, verification and validation have received major
attention in many fields of engineering. The simplest form of
computational validation is simulation, but unfortunately it can
only check a single trajectory of the system at a time. For sys-
tems with many different state values and/or many input signals,
it would be prohibitively expensive to check the safety of every
possible system trajectory by simulation alone. One avenue that
researchers have followed in their quest to catch every potential
failure mode is the computation of reachable sets, which capture
the behavior of entire groups of trajectories at once.

In this paper, we describe a method for computing the back-
ward reachable set of a continuous system: the set of states from
which trajectories start that can reach some given target set (see
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Fig. 1. Target set and backward reachable set. Several trajectories are shown
starting at the same time t but from different states x and subject to different
input signals a( � ) and b( � ). Input signal a( � ) is chosen to drive the trajectory
away from the target set, while input signal b( � ) is chosen to drive the trajectory
toward the target. The labeling of safe and unsafe states shown is the most
common (but not the only possible) interpretation of these sets.

Fig. 1). If the target set consists of those states that are known
to be unsafe, then the backward reachable set contains states
which are potentially unsafe and should therefore be avoided.
As an example, consider collision avoidance protocols for two
aircraft. The target set would contain those states already “in
collision,” such as those states where the aircraft are within the
five mile horizonal separation distance mandated by the Fed-
eral Aviation Administration. The backward reachable set con-
tains those states which will lead to a collision. In this case, the
backward reachable set will extend many miles in front of the
aircraft but not significantly behind it, since the aircraft is al-
ways moving forward. If another aircraft enters this reachable
set, there is cause for alarm. We examine this scenario further
in Section III-B and [1].

We previously explored the idea of using a time-dependent
Hamilton–Jacobi–Isaacs (HJI) partial differential equation
(PDE) for computing reachable sets in [2] and [3], although
the formulation used in those papers was not well suited for
numerical implementation. The modified formulation in [4] and
[5] worked numerically, but it has been shown to be unsound
for some nonconvex problems. The novel theoretical contribu-
tion of this paper is a proof (by a reduction to a terminal cost
differential game) that the viscosity solution of a particular
time-dependent HJI PDE provides an implicit surface represen-
tation of the continuous backward reachable set.

Several features set this formulation apart from the alterna-
tives described in the literature. Compared to algorithms that
impose a polygonal or ellipsoidal shape upon the reachable set,
HJI based methods can represent nonconvex reachable sets and
handle nonlinear dynamics with two sets of adversarially op-
posed input parameters—typically one set is considered to be
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optimally chosen control inputs and the other to be a worst case,
and therefore robust, treatment of uncertain time-varying model
parameters and disturbances. The time-dependent formulation
has several advantages over existing stationary HJI and viability
based approaches. The most fundamental is the fact that the
PDEs viscosity solution is everywhere continuous and well de-
fined. Consequently, we can apply level set methods [6] to nu-
merically approximate its solution with subgrid accuracy and
avoid the high cost of grid refinement common to these other
methods. Finally, because the solution is defined both inside and
outside the reachable set, it can be used to synthesize control sig-
nals to avoid the reachable set and hence the unsafe target set.
For more details, see Section II-C.

A MATLAB implementation of the algorithms discussed
here is available from [7], and includes documentation [8] and
source code for the example in Section III-B and several other
reach sets. While implemented in a dimensionally independent
manner, the solution is approximated on a Cartesian grid of
the state space, and hence memory and computational time
requirements rise exponentially with dimension. In practice,
systems of dimensions 1–3 can be examined interactively,
while dimensions 4–5 are slow but feasible on computers with
sufficient memory.

The remainder of this paper describes our time-dependent
formulation, proves its correctness, and presents an example
that demonstrates its accuracy and its application to air traffic
control. We note that a completely different proof of the single
player version of this formulation was developed in [9].

II. HOW TO COMPUTE THE REACHABLE SET

In this section, we formally define the reachable set for a
system, discuss a few of its properties, and formulate a terminal
value HJI PDE whose solution describes it. Fig. 1 illustrates the
set we seek to compute.

A. The Reachable Set

We model our system with the ordinary differential equation

(1)

where is our state, is the input for player I and is
the input for player II. In the discussion that follows, we will
assume , although the methods outlined can also be
applied to periodic state spaces; for example, the state space in
Section III-B includes a periodic angular dimension.

Assumption 1: The input signals are drawn from the fol-
lowing sets:

is measurable

is measurable

where and are compact and for
some . We will consider two input signals to be identical
if they agree almost everywhere.

Assumption 2: The flow field is
uniformly continuous, bounded, and Lipschitz continuous in
for fixed and . Consequently, given a fixed

and initial point, there exists a unique trajectory
solving (1) [10].

Solutions of (1) are trajectories of our system and will be
denoted by

which satisfies the initial conditions
and the differential equation almost everywhere

Note that we employ a semicolon to distinguish between the
argument of and the trajectory parameters and

.
Assumption 3: The target set for our reachability

problem is closed and can be represented as the zero sublevel
set of a bounded and Lipschitz continuous function

(2)

We assume that player I will try to steer the system away from
the target with her input , and player II will try to steer
the system toward the target with her input . For readers
who prefer a more intuitive understanding of the inputs, con-
sider that in our example the target set will represent the capture
set in a pursuit-evasion game. Our evader (control input) will
then be player I and the pursuer (adversarial disturbance) will
be player II.

In a differential game setting, it is important to address what
information the players know about each other’s decisions. To
specify our information pattern, define first a strategy for the
second player as a map which specifies an
input signal for player II as a function of the input signal that
player I chooses. We will allow player II to use only nonantici-
pative strategies; that is strategies

for almost every

for almost every

Informally, this restriction means that if player II cannot dis-
tinguish between input signals and of player I until
after time , then player II cannot respond differently to those
signals until after time . It will turn out that this choice gives
an advantage to player II over player I, but we postpone further
discussion of whether this information pattern is the correct one
for our reachability purposes until Section II-D.

Note that in our formulation of the problem, a trajectory starts
at some initial time and we would like to know if it
has passed into or through the target set by time zero. We will
sometimes want to discuss the length of time that a trajectory has
had to evolve; we adopt the differential game notation
to denote this positive quantity. We use the free variables and

to denote times in the range .
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To solve the backward reachability problem, we want to de-
termine the backward reachable set for . Re-
membering that , we define this set as

(3)

Informally, is the set of states from which there exists
strategies for player II that for all inputs of player I will gen-
erate trajectories which lead to the target set within time . A
proof of the following remark can be found in [11, Sec. 2.1].

Remark 1: If is closed, then is closed.

B. A Time-Dependent HJI Equation for the Reachable Set

In this section, we state the main theoretical result of this
paper—that the reachable set can be determined by solving for
the viscosity solution [12] of a time-dependent HJI equation.

Theorem 2: Let be the viscosity
solution of the terminal value HJI PDE

(4)

where

(5)

Then, the zero sublevel set of describes

(6)

The proof of this theorem is given in the Appendix. The goal
of the proof is to show that reachability is equivalent to a ter-
minal cost differential game. Unfortunately, such a game can
only determine whether a trajectory is in the target set at ex-
actly time zero. If such a game were used on the original system,
player I could “avoid” the target by driving a trajectory into the
target and then out the other side before time zero. To avoid
this situation, we introduce an augmented system which allows
player II to freeze the evolution of trajectories should player I
attempt to drive a trajectory out of the target set. The augmented
system’s trajectories are shown to be equivalent to those of the
original system, and the HJI PDE of the resulting differential
game is shown to be equivalent to (4).

Remark 3: Under Assumptions 1–3, it can be shown that
is bounded and Lipschitz continuous in both and [10,

Th. 3.2].
The significance of this theorem and the subsequent remark

is that we can harness well developed numerical schemes from
the level set literature to compute accurate approximations of

and, therefore, accurate approximations of , for
even complicated nonlinear dynamics. In previous papers, we
have presented alternative HJI PDE formulations for com-
puting the backward reachable set. In [3], the Hamiltonian
was restricted to negative values only within the target set;
unfortunately, the resulting potential for discontinuities in the
solution makes accurate numerical implementation difficult. In

[4], minimization was performed as a separate, postprocessing
step. While this formulation is more efficient, reasoning about
it is more challenging and its use is restricted to problems in
which the Hamiltonian and target set are convex. Consequently,
we advocate using the formulation in Theorem 2 to determine
reachable sets.

C. Alternative Algorithms for Computing the Reachable Set

The verification of complex systems has received much atten-
tion lately; consequently, so has the design of efficient methods
for computing reachable sets. In this section, we review a va-
riety of alternative algorithms. Further discussion can be found
in [11, Sec. 2.3].

The search for methods of computing the reachable sets of
purely discrete systems, such as those modeled by finite au-
tomata, has met with considerable success and has led to the
development of powerful tools for automatic verification; for ex-
ample, the binary decision diagram [13]. Most engineering sys-
tems, however, are not purely discrete. Continuous dynamics are
the norm in control engineering problems, and in many modern
systems important behaviors arise from the interaction between
discrete and continuous components. The primary challenge of
computing reachable sets for these hybrid systems lies on the
continuous side, where sets containing uncountable numbers of
states must be represented and evolved.

Our approach to this challenge has its roots in [14], who
used his calculations to derive capture regions in pursuit-eva-
sion games. The modern methods most closely related to ours
are based on a minimum time to reach function which is the
viscosity solution of a stationary (time-independent) HJI PDE.
Numerical approximations of this function can be computed
iteratively for general nonlinear dynamics with two competing
inputs [15], or for restricted classes of dynamics by fast itera-
tive [16] and even noniterative [17], [18] schemes. The value
of this function at each point in the state space is the minimax
time required (over inputs and , respectively) to go
from that state to any point in the target set, and so the sublevel
sets of this function can be used directly as representations of
finite horizon backward reachable sets. Furthermore, the gra-
dient of this function can be used to deduce optimal strategies
for both players’ inputs for states inside the backward reach-
able set.

When used in a reachability setting, the stationary HJI formu-
lation has several disadvantages compared to the time-depen-
dent formulation described in Section II-B. Unless the system
is small time controllable,1 the minimum time to reach function
may not be continuous [20]. In the neighborhood of these dis-
continuities—which often occur on the boundary of the reach-
able set—it is difficult to construct a numerical approximation
that achieves even grid level accuracy. Achieving a given level
of accuracy, therefore, requires computationally expensive grid
refinement (halving the grid size multiplies the execution time
by at least eight in three dimensions). In contrast, the continuous

1A system is small-time controllable if for every state, the system can re-
main near that state for all times and can reach nearby states in arbitrarily small
amounts of time [19]. Many nonlinear dynamic systems, including the example
in Section III-B, are not small time controllable.
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solution afforded by the time-dependent formulation makes it
possible to achieve subgrid level accuracy, as demonstrated in
Section III-B and [21]. A more subtle disadvantage is the total
lack of information that the minimum time to reach function
provides outside the reachable set, where its value is a constant.
In safety verification applications, we are at least as interested in
choosing optimal input strategies for states outside the reachable
set (states that are currently safe but may become unsafe without
appropriate input intervention) as for states inside it (states that
may already be doomed).

A second equivalent formulation of backward reachable sets
are the victory domains or discriminating kernels from viability
theory [22], [23]. These techniques are more general than either
time-dependent or stationary HJI approaches because they can
directly handle reachability under state constraints as well as
certain classes of discontinuous dynamics. Numerical schemes
guaranteeing under or over approximation of the reachable set
have been designed [24], features that are not yet available in
numerical approximations of either HJI formulation. The disad-
vantages of this approach are similar to those of the stationary
HJI: grid level resolution of the reachable set’s boundary and a
lack of information outside of it.

The stationary HJI and viability based approaches might
seem to benefit dimensionally because they do not require a time
variable; however, in practice this observation is misleading,
because the iterations required to solve these formulations are
comparable in time and memory cost to the effort needed to
handle the time dimension in the time-dependent formulation.

The three approaches discussed thus far are closely related
in that they calculate backward reachable sets and work in a
fixed frame of reference (Eulerian schemes) rather than fol-
lowing individual trajectories of the system. A second broad
class of reachability algorithms finds forward reachable sets by
following system trajectories (Lagrangian schemes). These in-
clude the tools CheckMate [25], [26], HyTech [27] and
Coho [28], as well as the algorithms in [29] and [30]. These
techniques all generate polyhedral overapproximations of the
reachable set and cannot treat systems with adversarial inputs.
Algorithms for ellipsoidal approximation of forward reachable
sets which allow for competing inputs but are restricted to linear
dynamics have also been developed [31]. As a class, these tech-
niques may scale better to high dimension (although we are not
aware of any published analysis in dimension higher than six),
but most find nonlinear systems difficult to analyze.

A final group of reachability algorithms partitions the
state–space into subsets in advance, and then builds a discrete
transition system over the elements of this partition. Partitions
may be rectangular [32], [33] or may be constructed from a
cylindrical algebraic decomposition of polynomials appearing
in the dynamics [34].

Reachable sets are also closely related to invariant sets, which
are often represented as sublevel sets of Lyapunov functions.
Finding such functions for systems with nonlinear dynamics is
difficult in general, but algorithms for restricted classes of dy-
namics do exist; for example, dynamics which are piecewise
linear [35], are linear with sector bounded nonlinearities [36]
or are piecewise polynomial [37].

D. Discussion of Information Patterns in the Two Player Game

Throughout this paper, we have chosen to let player II select
a nonanticipative strategy that can respond to the input choices
of player I. In this section we discuss some possible alternatives
to this information pattern. We consider four basic types of con-
trols for the game players—open loop, state feedback, nonan-
ticipative strategies, and anticipative strategies.

Because our reachable sets generally represent “unsafe”
portions of the state–space, we usually prefer to overapprox-
imate them rather than underapproximate them. Therefore,
whenever a choice must be made between giving player I or
player II an advantage, we choose to give it to player II, who
is trying to make the reachable set larger. If in another context
player I should be given the advantage, it is straightforward
to modify the Hamiltonian (5) and apply the same numerical
approximation methods, although there are some technical
details regarding the modified definition of the reach set [22].

An open loop strategy requires that both players decide their
entire input signals and for all without any
knowledge of the other players’ decisions. State feedback allows
players I and II to choose and , respectively, based on
the current value of . We defined nonan-
ticipative strategies in Section II-A. Our system dynamics are
deterministic, so by allowing player II to make decisions about

with full knowledge of for , a nonanticipa-
tive strategy gives player II all the information of state feedback,
plus player I’s current input . While player I is at a slight
disadvantage under this information pattern, at a minimum she
has access to sufficient information to use state feedback, be-
cause player II must declare her strategy before player I chooses
a specific input and thus player I can determine the response of
player II to any input signal. An anticipative strategy would be
equivalent to allowing player II to choose based on knowl-
edge of for all ; in other words, player I would
have to reveal her entire input signal in advance to player II.

The systems in which we are interested use state feedback
controllers. Clearly, the open-loop pattern of information is un-
suitable for verifying such systems, and the anticipative strategy
model is inappropriate as well because it allows player II knowl-
edge of the future. While state feedback might be a more appro-
priate model of our systems than nonanticipative strategies, it is
not so easily turned into a HJI PDE. We have, therefore, chosen
to use nonanticipative strategies, and give whatever advantage
they confer to player II. It can be proven that the value of the
differential game (4) and (5) under nonanticipative strategies is
always less than the value under state feedback [38], and con-
sequently our choice cannot lead to underapproximation of the
state feedback reachable set.

The input of player II can be used not only for the control
signal of an adversary, but also for bounded disturbance in-
puts and uncertain model parameters. Allowing these signals
to act in an optimal nonanticipative manner is a robust, if po-
tentially pessimistic, treatment of their effects on the system. It
should be noted, however, that this treatment implicitly allows
the parameter values to vary discontinuously with time; it may
be excessively pessimistic for time invariant or slowly varying
parameters.
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III. A COLLISION AVOIDANCE EXAMPLE

In this section, we briefly describe how to solve (4) compu-
tationally, and then apply our algorithm to a classical collision
avoidance differential game. While the dynamics of this game
are relatively simple, the results have been applied to the design
of a collision alert system for high altitude air traffic control.
Additional examples can be found in [8], [9], [21], and [39].

A. Implementing a Level Set Algorithm

The HJI PDE (4) is a nonlinear PDE that in many cases lacks
a classical solution. It can be shown [10] under appropriate
conditions for zero sum differential games that there exists
a suitable unique weak solution to (4) called the viscosity
solution [12]. This solution is continuous and bounded but
may develop kinks—places where the derivatives become
discontinuous—even with smooth terminal conditions
and dynamics . A family of algorithms called level set
methods has been designed specifically to compute approxi-
mations to the viscosity solution for time-dependent HJI PDEs
with continuous initial conditions and Hamiltonians such as
(4); for overviews of these methods, see [40] and [41].

To calculate backward reachable sets, we have written
state-of-the-art MATLAB and C++ implementations of high
resolution level set methods. Source code for the former is
available from [7]. We describe only the key features of those
implementations here, but more details are available in [8] and
[21]. Note that these numerical schemes are not designed to
guarantee overapproximation, but rather to compute the most
accurate approximation possible; the error may be of either
sign.

We assume that the human modeler of the system can provide
a way to compute the optimum over inputs and necessary to
find for fixed and in (5). This static local optimiza-
tion may be difficult in general, but it is always easier than dy-
namic optimization over the full input signal histories and

in the underlying dynamic game. In some common cases,
it is trivial; for example, ,
which is the form taken in (7).

A Lax–Friedrichs approximation to the Hamiltonian [42]
ensures stability. The spatial derivative is computed
with a fifth order accurate weighted essentially nonoscilla-
tory approximation [43]. Time integration is accomplished
with a second- or third-order total variation diminishing ex-
plicit Runge–Kutta scheme [44]. For most target sets ,
implicit surface functions for the terminal conditions
are straightforward to construct using intersection, union
and set complement on basic shapes whose analytic implicit
surface functions are known, such as spheres, cylinders, and
hyperplanes. We apply linear extrapolation away from zero
along nonperiodic edges of the necessarily finite computational
domain.

B. The Collision Avoidance Differential Game

In this section, we use the algorithms described previously to
determine reachability for a three dimensional kinematic model
of two adversarial vehicles: the pursuer wishes to get within a
certain distance of the evader. In the dynamic game literature,

Fig. 2. Relative coordinate system for collision example.

this problem is called the game of two identical cars [45], and
the reachable set corresponds to the set within which the pur-
suer can capture the evader. Our previous publications [3]–[5]
have called this problem the three dimensional aircraft collision
avoidance example. MATLAB code to generate this reachable set
is available at [7].

Each vehicle is modeled as a simple kinematic point object
with planar position and heading, fixed linear velocity and con-
trollable angular velocity.

We say that a collision has occurred if the two vehicles come
within distance of one another (also sometimes called a loss
of separation). Our goal is to determine the set of states from
which the pursuer can cause a collision to occur. Translating
into reachability terms, is the set of all states where the two
vehicles are within units of one another, the evader is player I
(angular velocity input ), the pursuer is player II (angular ve-
locity input ), and the capture set is . Because depends
only on the relative positions of the vehicles, we can simplify the
system down to three dimensions by working in relative coordi-
nates . As shown in Fig. 2, we fix the evader at
the origin and facing along the positive axis. Then, the pur-
suer’s relative location and heading are described by the flow
field

(7)

The resulting Hamiltonian is

(8)

where the bounds on inputs are and
. Since a collision can occur at any relative heading,

the target set depends only on and and includes any
state within distance of the planar origin

(9)

for our HJI PDE’s terminal conditions (the bounded computa-
tional domain ensures that this is bounded). We wish to de-
termine in the limit , so we compute (4) backward
from until we find . For the parameters
considered below, this occurs beyond .
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Fig. 3. (Left) Target set (solid cylinder) and backward reachable set (transparent) for the collision avoidance example in three dimensions on the N = 126 grid.
(Right) Backward reachable set (solid) and 2612 analytically determined points on the reachable set’s boundary (dots).

If the vehicles are identical ( and ) then it is
possible using differential game theory to determine the optimal
inputs for both pursuer and evader and thereby find points lying
on the surface of the reachable set. This game was solved with
the pursuer at the origin in [45]; we have recreated these orig-
inal results, and then modified them to solve the game with the
evader at the origin [46] (it turns out that the two cases are not
symmetric). We use these analytic results to validate the correct-
ness of our calculations for the parameters

Fig. 3 shows the target set, backward reachable set, and some
analytically determined points lying on its surface (animations
showing the growth of this set are available at [47]). Using a
much larger set of points (approximately 240,000), we evaluated
the accuracy of our reachable set algorithm. Fig. 4, shows that
we achieve better than first order accuracy in average and root
mean square norms, and nearly first order accuracy in maximum
norm. The maximum error is approximately a grid cell, and the
average error is less than 3% of a grid cell. We have achieved
similar or better results for a number of other examples in two
and three dimensions; for more details, see [21].

While this system may seem simplistic, the dynamics and
choice of parameters are flexible enough that it can be success-
fully applied to detect potential conflicts in en route air traffic
control [1]; we summarize those results here. Given the mon-
itoring accuracy in the current system, it has been shown pre-
viously that kinematic equations are sufficiently predictive of
high altitude traffic (see [48] and the references therein), which
makes (7) an accurate enough model of the relative motion of
two aircraft.

Fig. 4. Experimental convergence rates for the collision avoidance example.
Average ( ), root mean square ( ), and maximum (�) errors are shown. For
comparison, the grid cell spacing �x (�) is included, as are lines equivalent to
first order and second order convergence rates.

The main task of Air Traffic Controllers is to prevent losses
of separation: To keep the aircraft separated by more than five
nautical miles. Two aircraft with potentially conflicting flight
paths are modeled as two differential games in which each air-
craft is a threat to the other; consequently, in each game one
aircraft fulfills the role of pursuer (input ) and one the role of
evader (input ). We use Enhanced Traffic Management System
(ETMS) data [1] to extract the relevant values for and the
corresponding ranges and , which are aircraft dependent.
ETMS data also contains recorded flight plans for all aircraft
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Fig. 5. Aircraft 1 (dash dotted), arriving at San Francisco Airport (SFO) from Philadelphia Airport; aircraft 2 (solid), en route from Ted Stevens Anchorage
Airport to Los Angeles Airport. Aircraft 1 is using the Modesto 2 arrival to SFO. Interpolation of the positions of both aircraft between the labels 2 and 3 shows
that aircraft 2 is in the G(�) for aircraft 1. Air Traffic Controller avoids the conflict by commanding aircraft 1 to descend to 24 000 ft (which initiates the descent
into SFO). For more details, see [1]. ETMS data courtesy of NASA Ames.

in the National Airspace System; in other words, for each air-
craft the successive radar measurements of its location. We use
a collection of precomputed reachable sets (run with a variety of
realistic parameters , and ) to check for each pair of
aircraft whether one is in the other’s reachable set. If this hap-
pens, we classify the situation as a conflict.

An example of a conflict is shown in Fig. 5. In the first sub-
plot, the aircraft flying from Anchorage to Los Angeles is treated
as pursuer while the aircraft flying from Philadelphia to San
Francisco is the evader. In the second subplot, the roles are re-
versed. In each subplot, slices of the reachable set (for the appro-
priate relative heading) are shown around the evader. A conflict
is detected, and based on the subsequent ETMS data we can de-
duce that it was resolved by an altitude change initiated by the
Air Traffic Controller.

We ran approximately 1600 such examples with data from the
Oakland Air Route Traffic Control Center, which is in charge of
northern California and Nevada. We showed that our method
caught all potential conflicts but generated three false alarms,
and is therefore a little conservative. We have thus proposed this
method as an accurate technique for automated conflict identi-
fication in en route high altitude traffic.

IV. CONCLUSION AND FUTURE WORK

We have presented an algorithm which can numerically com-
pute the backward reachable set for a two player, nonlinear
differential game with a general target set. The algorithm is
based on a formulation of reachability in terms of the viscosity
solution of a time-dependent HJI PDE, and we have proven
that the analytic solution of this equation is the exact reach-
able set as defined by (3). Unlike related techniques based on
stationary HJI PDEs or viability theory, the solution of the
time-dependent HJI PDE is continuous and defined throughout
the state–space, so this formulation can achieve the same level
of accuracy on a coarser (and, hence, computationally less ex-
pensive) grid, and provides information about optimal control

choices both inside and outside the reachable set. Our imple-
mentation is based on level set methods, and its accuracy and
convergence have been demonstrated by a three-dimensional
pursuit evasion example.

The primary weakness of this formulation of reachable sets,
and many others, is the exponential growth of memory and com-
putational cost as the system dimension increases. One way to
mitigate these costs is to project the reachable set of a high-di-
mensional system into a collection of lower dimensional sub-
spaces [49]. Any error introduced by the projection yields an
overapproximation of the reachable set. We are currently deter-
mining for what types of systems such an overapproximation
yields useful results.

We are extending our time-dependent HJI method in several
directions. Many problems of interest are modeled by hybrid
systems, and the general reachability algorithm for such sys-
tems [3] requires the introduction of state constraints to the con-
tinuous portion of the reachable set. We are also investigating
probabilistic definitions of reachability for stochastic systems.
Finally, we are examining how to use the results of the time-de-
pendent solution to synthesize provably safe control laws that
avoid the reachable set.

APPENDIX

PROOF OF THE TIME-DEPENDENT FORMULATION

At the end of this section, we prove Theorem 2. The proof de-
pends on some results from the literature of viscosity solutions
and differential games, and on the definition of a new system
which has an augmented set of inputs for player II.

A. Augmenting the Dynamics

In the proof, we will use a modified set of system dynamics
in which we augment player II’s inputs with the scalar

is measurable
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Define the augmented input for player II as

and similarly define and . The differential game
referred to in the remainder of this section will be played with
dynamics

(10)

and its trajectories will be denoted by .
From (10), we see that player II may choose to play the game

with normal dynamics by taking , may choose slowed dy-
namics with , or may choose to freeze the dynamics
entirely by taking . Because the latter case proves impor-
tant, we will call this additional scalar the freezing input. By
choosing , player II can stop the evolution of a trajectory
of the augmented system and, hence, keep it from ever leaving
the target set once it enters.

Clearly, there is a close connection between trajectories of the
augmented system (10) and trajectories of the original system
(1). We can formalize the connection through the pseudo-time
variable , which for any is given
by

(11)

Since is measurable, is absolutely continuous and is dif-
ferentiable almost everywhere. There exists no true inverse of

, because its monotonic increase is not strict; however, in the
proof that follows, we will use a function , which is almost
an inverse of in the sense that . The proof of
Lemma 6 defines as the limit of a convergent sequence of
functions.

Lemma 4 (Equivalence of Trajectories): For any
and , define as in (11) and

as in Lemma 6. Then, for every trajectory of the original system
(1), there is a trajectory of the augmented system (10) related
through the pseudotime variable

for any .
Proof: This proof is an adaptation of a classical ODE

uniqueness proof [50, Sec. 2.12]. Define the shorthand

(12)

Then, we can write

and

(13)

where the change of variables after the second step
is justified in Lemma 6. From these two equations and the fact
that

(14)

where is the Lipschitz constant for the flow field . Letting

we see that , and
. Rewriting (14) in terms of we get the differential

inequality

whose only solution is [50]. Therefore,
.

While more general than is required for the proof of The-
orem 2, the formal connection established by this lemma
between the two systems makes it useful in its own right. For
the purposes of the theorem, we need only a straightforward
corollary of Lemma 4.

Corollary 5: Using the definitions (12), the augmented
system’s trajectory visits only a subset of the states
visited by the original system’s trajectory ; specifically,
those visited in the time interval .

The following short lemma justifies the change of variables
in (13), and its proof defines .

Lemma 6:

(15)

Proof: For , let be a sequence of
smooth functions such that for all

and pointwise as (such a sequence can be
constructed). Define the smooth functions

Then, uniformly as . Because of the bounds on
and is bounded and strictly monotonically increasing,
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and a smooth exists for each . Then, by Helly’s The-
orem [51, Th. 8.2.1], there exists a monotonically increasing
right-continuous and a subsequence such that

. With smooth and and Lipschitz con-
tinuous , the change of variables is rigorously
defensible for each

By the Dominated Convergence Theorem [51, Th. 1.6.9], we
can take the limit as inside the integral to arrive at
(15).

B. The Differential Game and Its Solution

We will work with a finite horizon differential game played
over time horizon whose dynamics are governed by the
flow field (10). A trajectory in this game has a terminal cost

and no running cost. The goal of player I will be to maximize
this cost, while player II will try to minimize it. Consequently,
the value of our differential game will be

(16)

Lemma 7: The value function of our game is the vis-
cosity solution of the HJI terminal value PDE

(17)

where

(18)

Proof: This lemma is just a special case of [10, Th. 4.1].

C. The Proof of Theorem 2

We need one more intermediate result before proving The-
orem 2.

Lemma 8: For , the value function given
by (16) describes the reachable set according to (6).

Proof: We show that

(19)

(20)

Case 1: We will assume that and and
derive a contradiction. Consider first the implications of (16)

(21)

Now, consider the implications of . By (3) there is a
such that for the from (21) and

there exists such that . By
(2), . Choose freezing input signal

for
for

Combine this with the chosen above to get , an
input which will generate a trajectory

for
for

In particular

A nonanticipative strategy for can be designed (with addi-
tional constraints on ) and is already nonantic-
ipative, so is nonanticipative and we have a contradiction
of (21). Therefore, we have proved (19).

Case 2: We assume that and and derive
a contradiction. First, consider the implications of .
Negating (3)

(22)

Now, consider any strategy of player II in the aug-
mented system and extract from it the response of
player II in the original system by omitting the final component
of its output (elements of and accept the same input
function drawn from , but the former’s output function in-
cludes the scalar freezing signal). Choose from (22) which
corresponds to that . By Corollary 5, the set of states visited by
the augmented trajectory is a subset of the states visited by the
original trajectory, so in combination with (22)

(23)

The composition of with is a continuous function from the
compact interval to , and so it achieves its extrema. By
(2) and (23), we can conclude that there exists such that

(24)

Now, return to (16)



956 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 7, JULY 2005

Choose to derive a contradiction of (24) and, hence,
prove (20).

The proof of Theorem 2 is now straightforward.
Proof: From Lemma 7 we know that the value function

for the differential game (16) is the viscosity solution to the HJI
PDE (17). From Lemma 8, we know that the reachable set is
characterized by (6).

For the final step of the proof, start with from (18) and
from (5). Then, we see that

Consequently, the two HJI PDEs (4) and (17) are equivalent,
and so is also the solution of (4).
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