
Efficient Dynamic Programming for

Optimal Multi-Location Robot Rendezvous

Ken Alton and Ian M. Mitchell

Department of Computer Science

University of British Columbia

Vancouver, BC, V6T 1Z4, Canada

{kalton,mitchell}@cs.ubc.ca

Abstract— We present an efficient dynamic programming
algorithm to solve the problem of optimal multi-location robot
rendezvous. The rendezvous problem considered can be struc-
tured as a tree, with each node representing a meeting of robots,
and the algorithm computes optimal meeting locations and
connecting robot trajectories. The tree structure is exploited
by using dynamic programming to compute solutions in two
passes through the tree: an upwards pass computing the cost
of all potential solutions, and a downwards pass computing
optimal trajectories and meeting locations. The correctness and
efficiency of the algorithm are analyzed theoretically, while a
continuous robot arm problem demonstrates the algorithm’s
practicality.

I. INTRODUCTION

Path planning is a central area of study in robotics,

but most current algorithms find an efficient path for only

a single robot at a time. Coordinated path planning for

multiple robots has received increased attention recently. We

focus here on a particular type of coordinated robot path

planning problem and, in so doing, we are able to find a

very efficient dynamic programming (DP) solution. More

specifically, we examine optimal coordinated multi-robot

multi-location rendezvous, an extension of the frugal feeding

problem considered in [1]. In a multiple-robot scenario it is

often useful for robots to meet to exchange fuel, cargo, and/or

information.

Given a hierarchical structure that describes which robots

are to meet and which robots are to continue on to future

meetings, our DP algorithm can compute the optimal meeting

locations and the optimal paths between meetings with

complexity linear in the number of meetings. To simplify

the scenarios, we assume central and complete knowledge

of the map(s) and robots states, and we ignore collisions

between the robots. Despite this simplification, we believe

that core aspects of our DP algorithm for solving the robot

rendezvous problem can be utilized in real world robot

applications. To demonstate the practical potential of our

algorithm, we use it to solve a continuous problem involving

robotic arms cooperating to deliver some cargo from a source

to a destination through a workspace with obstacles. This

robot arm problem is a form of hybrid system because of

the continuous arm dynamics and discrete meeting events.

The main contribution of this paper is the presentation

of a tree (or outer) DP principle to find optimal solutions

to a broad category of hierarchical multi-location robot

rendezvous problems. Furthermore, we show that for certain

structures of the robot state space, a state (or inner) DP

principle holds allowing commute costs for individual robots

to be computed efficiently. An important property of both the

tree and state DP principles is that no calculation is done in a

state space with dimension greater than that of the individual

robots.

We use the application of multi-location robot rendezvous

as a concrete stand-in for any kind of optimal meeting

problem with a fixed tree structure. Another such application

might be the optimization of an industrial supply chain with

a fixed tree structure. Moreover, the words meeting or supply

chain seem to imply a temporal flow from leaves to root in

the tree. However, our analysis also applies to dispersion

or distribution problems with the opposite temporal flow or

problems with no clear temporal character as long as they

have the appropriate tree structure.

We define the type of problems considered and our no-

tation in Section III. Mathematical analysis in Section IV

shows that the hierarchical problem structure implies that a

tree DP principle can be used to efficiently compute costs of

potential solutions. Section V presents two special cases of

the state space and resulting state DP principles that allow

well-known DP algorithms to be used. Finally, in Section

VI we use the algorithm to solve a continuous robot-arm

rendezvous problem.

II. RELATED WORK

Research in robot path planning is considered a central

endeavor in the development of mobile robotics. Approaches

to robot path planning are diverse and include potential func-

tion methods, sampling-based methods, trajectory planning

methods and combinations of these [2], [3]. Most related to

this paper are the DP algorithms for solving shortest path

problems on grids [4], [5]; however, most path planning

research, including that described in the above references,

focuses on single robots.

In this paper, we investigate a DP method for the multi-

location rendezvous of multiple robots. This problem is

distinct from the generalized Fermat-Torricelli problem that

finds a unique point minimizing the sum of distances from

a given set of points [6]. Given a set of vertices, the Steiner

tree problem is to find the lowest cost tree connecting these

vertices [7]. The hierarchical facility location problem [8]

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB09.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2794

involves finding the location of facilities of several levels

to serve customers most efficiently. Both the Steiner and

facilities problems are more difficult than the rendezvous

problem because the combinatorial aspect of determining

the tree structure must be solved in addition to finding the

optimal locations of intermediate nodes (i.e. meeting nodes)

in the tree. For the rendezvous problem, we assume that

this tree structure already exists and develop an efficient

algorithm to optimize the location of meetings.

This work was motivated by [1], in which the authors

describe a robot refueling problem where the goal is to

find the optimal rendezvous locations for a fuel-tanker robot

to meet individually with each of a collection of worker

robots. Our work extends the restricted locations case of that

paper. We generalize the problem to include any hierarchy of

robot meetings and any monotone meeting cost aggregation

function, and show that algorithmic efficiency can be gained

by assuming that the potential meeting locations are nodes

in a spatial graph on which commuting costs are only

defined between neighboring nodes. Finally, we demonstrate

that computation on a grid can be used to approximate a

continuous problem with a potentially complex cost function.

This continuous robot meeting problem is an example of a

hybrid system. The fast marching method, a DP algorithm,

was used to find an optimal path through a hybrid system in

[9]. Our dynamic programming algorithm for the continuous

case solves a distinct hybrid problem involving a hierarchy

of meetings.

III. PROBLEM DESCRIPTION

A robot meeting involves one or more robots colocating

at a state within a state space. Except for the final meeting,

one robot continues on from each meeting to the next

meeting.1 Imagine a meeting tree, where meetings begin at

the leaves and progress through the tree culminating in one

final meeting at the root. For this problem we fix the meeting

structure as well as which robots must attend any particular

meeting, but we allow the meeting locations to vary. In other

words, we are not concerned with the combinatorial aspects

of determining the meeting tree, which may be required

for a general hierarchical facility location problem [8] or

the Steiner tree problem. We wish to minimize, over all

possible meeting locations, the total cost of a given meeting

tree. The total cost of a meeting tree considers the cost of

robot commutes between meetings as well as the cost of the

meetings themselves. The avoidance of collisions between

the robots during the commutes is not considered.

The first part of the problem instance definition is a

meeting tree. Let there be a set of meeting tree nodes Υ.

The term node or meeting may be used to refer to a meeting

tree node η ∈ Υ. We let ρ ∈ Υ be the root node in the

meeting tree. The function K : Υ → {0} ∪ Z
+ specifies

the number of children of each node η ∈ Υ. The function

κ : Υ×Z
+ → Υ specifies the children of each node η ∈ Υ.

1In fact, two or more robots may continue on from a meeting so long as
they travel together in a group. Since the group moves as a single entity to
the next meeting, the essential properties of the problem remain the same.

symbol type description

Υ set of nodes meeting tree node set

K(η) Υ → {0} ∪ Z
+ number of children

κ(η, k) Υ × Z
+ → Υ children

X set of states state space

ξ(η, x, ω) Υ ×X × R
K(η) → R meeting cost aggregation

δ(η, x, y) Υ ×X 2 → {0} ∪ R
+ commuting cost

p(η) Υ → X meeting location
f(η) Υ → R subtree cost

g(η, x) Υ ×X → R subtree-plus-commute cost
p∗(η) Υ → X optimal meeting location

v(η, x) Υ ×X → R optimal subtree cost
w(η, x) Υ ×X → R optimal subtree-plus-commute

cost

TABLE I

SYMBOLS: THE UPPER BLOCK INCLUDES SYMBOLS USED TO DEFINE A

PROBLEM INSTANCE. THE MIDDLE BLOCK INCLUDES SYMBOLS USED TO

DEFINE A SOLUTION. THE LOWER BLOCK INCLUDES SYMBOLS USED TO

COMPUTE AN OPTIMAL SOLUTION (SEE SECTION IV).

For convenience, we also define a function ι : Υ → Υ that

specifies the parent of each node η ∈ Υ. The expression ι(ρ)
is considered undefined.

The second part of a problem instance definition is the

state space X . The term state or location may be used to

refer to an element x ∈ X .

The last part of the problem instance definition specifies

the costs of components of a potential meeting tree solution.

Define the commuting cost function δ : Υ×X 2 → {0}∪R
+.

The expression δ(η, x, y) is the cost of commuting from x ∈
X to y ∈ X after the meeting η ∈ Υ. Let δ(η, x, y) = 0
if x = y and δ(η, x, y) > 0 if x 6= y. If δ(η, x, y) = ∞
then it is not possible to commute from x to y. Define the

meeting cost aggregation function ξ : Υ × X × R
K → R.

The expression ξ(η, x, ω) aggregates the costs ω ∈ R
K(η)

of arriving at meeting η ∈ Υ at location x ∈ X . We assume

this function to be nondecreasing in each element ωk of ω.

If ξ(η, x, ω) = ∞ for all ω then the meeting η cannot take

place at location x. Useful examples of ξ include

ξ(η, x, ω) =
K

∑

k=1

ωk + γ(η, x) (1)

and

ξ(η, x, ω) = max
1≤k≤K

ωk + γ(η, x),

where γ(η, x) is the cost of meeting η being located at

x ∈ X . The
∑

definition is applicable for the problem

of minimizing the sum of all commuting costs and meeting

costs for a meeting tree, which is essentially what is done

in [1]. The max definition is applicable for minimizing the

critical path in a meeting tree; for example, minimizing the

time elapsed before the root meeting is completed.

A potential solution to a problem instance is given by a

meeting location function p : Υ → X . The expression p(η) is

the location of meeting η ∈ Υ. The total cost of a potential

solution is defined recursively in terms of the commuting

cost function and meeting cost aggregation function. The

recursive definition includes a subtree cost function f : Υ →

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.2

2795

R and a subtree-plus-commute cost function g : Υ×X → R.

The expression f(η) is the total cost of the meeting subtree

rooted at node η, while the expression g(η, x) is the cost

of a meeting subtree rooted at node η in addition to the

commuting cost from the meeting location p(η) to the state

x ∈ X . The combined definition of functions f and g is

f(η) = ξ
(

η, p(η), [g(κ(η, k), p(η))]
K(η)
k=1

)

(2a)

g(η, x) = f(η) + δ(η, p(η), x), (2b)

where

[ωk]Kk=1 =











ω1

ω2

...

ωK











= ω ∈ R
K .

Note that f and g take a single node η as a parameter,

but are really functions of all locations p of the meetings

in the subtree rooted at η. The subtree cost f(η) is de-

fined as an aggregation ξ of subtree-plus-commute costs

g(κ(η, k), p(η)), each associated with child κ(η, k). In turn,

each cost g(κ(η, k), p(η)) is the sum of the cost f(κ(η, k))
of the subtree rooted at κ(η, k) and the commuting cost

δ(κ(η, k), p(κ(η, k)), p(η)) from the child meeting location

to the current meeting location. The base case for the

recursion occurs when η is a child since

f(η) = ξ
(

η, p(η), [g(κ(η, k), p(η))]0k=1

)

= ξ(η, p(η), []).
(3)

An optimal solution to a problem instance is a meeting

location function p∗ which minimizes the total cost of the

meeting tree:

p∗ ∈ arg min
p

f(ρ). (4)

Table I provides a summary of symbols for defining a

problem instance and solution.

IV. TREE DYNAMIC PROGRAMMING

Define the optimal subtree cost function v : Υ × X → R

as

v(η, x) = min
p, p(η)=x

f(η). (5)

In other words, v specifies the minimal total cost of the

subtree rooted at η subject to the condition that the meeting

η is located at x. Define the optimal subtree-plus-commute

cost function w : Υ ×X → R as

w(η, x) = min
p

g(η, x). (6)

In other words, w(η, x) specifies the minimal total cost of the

subtree rooted at η and the commuting cost from the meeting

location p(η) to x. Because of the recursive definition of f
and g in (2), v(η, x) and w(η, x) do not depend on any

ancestor nodes of η.

We observe two important properties of the meeting tree

problem that allow an optimal solution p∗ to be found

efficiently. The first observation is that the functions v and

w can be computed in a single pass through the meeting tree

from the leaves towards the root, as shown in Theorem 1.

The second observation is that the optimal meeting locations

p∗ can be computed in a single pass through the meeting

tree from the root towards the leaves, given that we already

know the value function v, as shown in Theorem 2.

A. Theory

The following theorem establishes a DP principle for v
and w. It shows how v and w can be computed recursively.

The theorem defines the optimal subtree cost v(η, x) of node

η at location x in terms of the children’s optimal subtree-

plus-commute costs w(κ(η, k), x) at the same location. In

turn, the theorem defines the optimal subtree-plus-commute

costs w(η, x) of node η at location x in terms of the optimal

subtree costs v(η, y) at each location y.

Theorem 1: The optimal subtree cost function v satisfies

for all nodes η ∈ Υ and for all x ∈ X

v(η, x) = ξ
(

η, x, [w(κ(η, k), x)]
K(η)
k=1

)

. (7)

Furthermore, the optimal subtree-plus-commute cost function

w satisfies for all nodes η ∈ Υ such that η 6= ρ and for all

x ∈ X
w(η, x) = min

y∈X
[v(η, y) + δ(η, y, x)] . (8)

Note that to keep the paper concise the proofs in this

section have been omitted, but they can be found in [10].

The proof first shows that (7) holds for the case where η is

a leaf. It then shows that (7) holds for the alternative case

where η has children. Finally, it shows that (8) holds for all

nodes η other than ρ.

The following theorem shows how p∗ can be computed

recursively with p∗(ρ) as the base case, given that v is

already known. The theorem defines the optimal root meeting

location p∗(ρ) as the location that minimizes over all loca-

tions x ∈ X the optimal subtree cost v(ρ, x). The theorem

then defines the optimal meeting locations p∗(η) for η 6= ρ
in terms of optimal subtree costs v(η, y) at each location

y ∈ X and the parent’s optimal meeting location p∗(ι(η)).
Theorem 2: Let p∗ : Υ → X be a solution to (4). For the

root meeting ρ, the following holds:

p∗(ρ) ∈ argmin
x∈X

v(ρ, x). (9)

Furthermore, for all nodes η ∈ Υ such that η 6= ρ, the

following holds:

p∗(η) ∈ argmin
y∈X

[v(η, y) + δ(η, y, p∗(ι(η)))] . (10)

The proof assumes that (9) is false and arrives at a

contradiction. A similar strategy is used to prove (10).

B. Algorithm Complexity

A DP algorithm based on the results of Theorems 1 and

2 can be used to find an optimal meeting location function

p∗. The algorithm first computes in a leaves-to-root pass the

value functions v and w for all nodes η ∈ Υ such that η 6= ρ
using (7) and (8). It then computes v(ρ, x) using (7). Next

it computes p∗(ρ) using (9). Finally, the algorithm computes

in a root-to-leaves pass the meeting locations p∗(η) for each

η ∈ Υ such that η 6= ρ using (10).

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.2

2796

We assume that the complexity of evaluating ξ(η, x, ω) or

δ(η, y, x) is O(1). For a single η ∈ Υ and all x ∈ X , the

complexity of computing v(η, x) using (7) is O(|X |), while

the complexity of computing w(η, x) using (8) involves a

minimization over all states y ∈ X and so is O(|X |2).
On the other hand, for a single node η the complexity of

computing p∗(η) using (10) involves a minimization over all

states y ∈ X and so is O(|X |). Since there are |Υ| nodes and

v and w are computed in a single leaves-to-root pass of the

meeting tree, while p∗ is computed in a single root-to-leaves

pass of the meeting tree, the complexity of computing w
dominates the other costs and the overall complexity of the

algorithm is O(|Υ||X |2). In the next section we examine how

w can be computed more efficiently in order to improve the

overall complexity in cases where the state space X contains

additional structure.

V. STATE DYNAMIC PROGRAMMING

We examine two special cases of the problem formulated

in Section III. In the first case, the state space X is the set of

nodes of a discrete spatial graph and the cost of commuting

between two neighboring states is specified. In the second

case, X is a continuous state space and a limit on the speed of

commuting in each direction is specified. In both these cases

instead of specifying δ directly, we exploit the structure of

the state space and only specify the commuting costs locally.

We then define δ using a state DP principle, distinct from

the tree DP principle of Theorem 1. This state DP principle

can be used to compute w for a single node η using a DP

algorithm that is more efficient than applying (8) directly.

Computing w(η, x) for any node η ∈ Υ and state x ∈ X
can be viewed as an optimal starting problem. We optimize

over starting states y as well as over possible trajectories

to determine the optimal subtree-plus-commute cost w(η, x)
from optimal subtree costs v(η, y). Let ζ be a trajectory

through X and let λ(ζ) be the total cost of traversing

trajectory ζ. We have

δ(η, x, y) = min
ζ∈Z(x,y)

λ(ζ), (11)

where Z(x, y) is the set of all trajectories that begin at x
and end at y. Then from (8)

w(η, x) = min
y∈X

[

v(η, y) + min
ζ∈Z(y,x)

λ(ζ)

]

. (12)

We examine for each special case a state DP principle based

on this expression. Note that the dynamic programming is

done for each robot independently.

A. Discrete State Space

Let X be the finite set of nodes of a directed spatial graph.

In this case, Dijkstra’s algorithm can be used to compute

w(η, x) for each node η in a single pass through the states

in X . A discrete robot clinic consultation problem that fits

into this category is solved in [11].

We let N (x) be the set of neighbors of x. For convenience

we define a set N−1(x) = {y | x ∈ N (y)}, the set of states

for which x is a neighbor. Let c : Υ×X 2 → R
+ be a positive

direct commuting cost function, where c(η, x, y) gives the

cost of commuting directly from state x ∈ X to y ∈ X . If

y /∈ N (x) then c(η, x, y) = ∞ for all η ∈ Υ.

Let ζ(l), 1 ≤ l ≤ Lζ be a trajectory of Lζ states through

X with each ζ(l) ∈ X and such that ζ(l+1) ∈ N (ζ(l)), for

1 ≤ l ≤ Lζ − 1. We may use L in place of Lζ where the

trajectory ζ is obvious. Define λ(ζ) as

λ(ζ) =
L−1
∑

l=1

c(η, ζ(l), ζ(l + 1)).

We observe that the value w(η, x) for any node η ∈ Υ
and any state x ∈ X can be computed using only the value

v(η, x) at the same state x ∈ X and the values w(η, y) at the

neighboring states y ∈ N−1(x). The following proposition

establishes a DP principle based on this property and is

equivalent to Theorem 2 in [11].

Proposition 1: The value function w satisfies for all nodes

η ∈ Υ and for all x ∈ X

max

{

w(η, x) − v(η, x),
maxy∈N−1(x) [w(η, x) − w(η, y) − c(η, y, x)]

}

= 0.

(13)

As long as |N (x)| and |N−1(x)| are independent of

|X |, the values w for each node η can be computed effi-

ciently using a slight modification of Dijkstra’s algorithm.

The update in Dijkstra’s algorithm is replaced by (13).

Also, the locations p∗(η) for each node η can be com-

puted using a discrete steepest descent algorithm, which

moves backwards along an optimal meeting-to-meeting tra-

jectory in arg minζ∈Z(p∗(η),p∗(ι(η))) λ(ζ) until the condition

w(η, ζ(l)) = v(η, ζ(l)) is satisfied. At this point an optimal

meeting location p∗(η) has been reached. The implemen-

tation of these algorithms in the context of the tree DP

algorithm is presented in [11].

B. Continuous State Space

Let X ⊂ R
d be a compact, connected state space. Let

ζ(t), t ∈ [T ζ
0 , T ζ

f] be a trajectory through X . Constrain

ζ̇(t) =
dζ(t)

dt
∈ A(η, ζ(t)) (14)

where A(η, x) ⊂ R
d is a compact, convex action set

containing the origin in its interior. We may use T0 and Tf

in place of T ζ
0 and T ζ

f where the trajectory ζ is obvious.

Define λ(ζ) as

λ(ζ) = T ζ
f − T ζ

0 . (15)

A DP principle for this problem can be stated in the

form of a differential variational inequality that includes a

Hamilton-Jacobi PDE as a component. A closely related

variational inequality for an optimal stopping problem is

derived in [12].

Proposition 2: The value function w satisfies in the vis-

cosity sense for all nodes η ∈ Υ and for all x ∈ X

max

{

w(η, x) − v(η, x), max
a∈A(η,x)

[Dxw(η, x) · a − 1]

}

= 0.

(16)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.2

2797

It is usually not possible to solve this variational inequality

exactly. Instead we may compute an approximate solution w̄
by solving a discretized inequality on a grid. For example,

the state space may be discretized into an orthogonal grid and

the spatial gradient Dxw(η, x) in (16) replaced with an up-

wind, first-order finite difference approximation. Approaches

for solving the discretized Hamilton-Jacobi PDE include

sweeping methods [13], the Fast Marching Method (FMM)

[14], [15], and Ordered Upwind Methods (OUMs) [16]. The

discretized Hamilton-Jacobi PDE can be modified to form

a monotone discretization of the variational inequality [17]

which can be solved by any of the above methods. Other

appropriate DP algorithms [5] may also be used to solve the

discretized variational inequality.

Approximate meeting locations p̄∗(η) for each η can be

computed using a continuous steepest descent algorithm.

Assuming v̄ and w̄ have been calculated, the steepest descent

solves the following ODE to determine an approximately

optimal trajectory from p̄∗(ι(η)) backwards towards p̄∗(η):

dζ̄

−dt
= − argmax

a∈A(η,x)

[Dxw̄(η, x) · a] . (17)

For example, in a simple implementation, the ODE (17) is

discretized using forward Euler and the gradient Dxw̄(η, x)
is determined by a first-order finite difference scheme. The

computation of the trajectory is completed and p̄∗(η) is found

when w̄(η, ζ̄(t)) ≥ v̄(η, ζ̄(t)).

C. Algorithm Complexity

We first consider the case of the discrete spatial graph.

Dijkstra’s algorithm has complexity O(|X ||N (x)| log |X |) =
O(|X | log |X |) if it is implemented by maintaining a min-

heap sorted on w(η, x). The complexity of the steepest

descent algorithm is O(|X ||N−1(x)|) = O(|X |), since the

optimal meeting-to-meeting trajectory can pass through each

node x ∈ X at most once and at each node consider at

most |N−1(x)| neighbors to extend the trajectory. Conse-

quently, the complexity of computing w using Dijkstra’s al-

gorithm still dominates the other costs. However, the overall

complexity of the tree DP algorithm has been reduced to

O(|Υ||X | log |X |).
We now consider the use of FMM or OUMs for the

continuous state space case. FMM and OUMs are gener-

alizations of Dijkstra’s algorithm which have complexity

O(|X̄ | log |X̄ |), where X̄ is the discretized state space. So,

in this case the overall complexity of the tree DP algorithm

is O(|Υ||X̄ | log |X̄ |).

VI. EXAMPLE

We solve a continuous robot arm cargo transport problem.

The problem involves three robot arms cooperating to trans-

port cargo from a cargo pickup location in the top-right of

the workspace to a cargo dropoff location in the top-left of

the workspace. Robot 1 is attached to the lower-right corner

of the workspace and has two rotational joints. The primary

joint has an angular range of π/2 radians, such that the

primary segment cannot swing out of the workspace, and

Fig. 1. Meeting tree for the robot arm problem. Begin robot i is indicated
by bi. Pickup cargo for robot 1 is indicated by m1. Pass cargo from robot
i to robot j is indicated by mij. Dropoff cargo for robot 3 is indicated by
m3.

the secondary joint has an angular range of 2π radians, but

the secondary segment cannot swing through the primary

segment. Robot 3 is attached to the lower-left corner of the

workspace and otherwise has the same properties as robot

1. Robot 2 moves on a sliding joint along the top of the

workspace. It also has a rotational joint that moves through

an angle of π radians, such that the arm cannot swing out of

the workspace. Each robot begins such that its end effector is

in a circular starting area. Robot 1 must pick up the cargo and

pass it to robot 2, then robot 2 must pass the cargo to robot 3,

who drops off the cargo. For two robots to “meet,” their end

effectors must approach within a small neighborhood of one

another. The goal is to find meeting locations and connecting

state trajectories that minimize the total cost of transporting

the cargo across the workspace. The corresponding meeting

tree is shown in Figure 1, and the resulting robot arm motions

are depicted in Figure 2.

Each robot arm has 2 degrees of freedom, one for each of

its joints. Consequently, each has a continuous 2-dimensional

state space. Let a robot’s state space X exclude those states

that result in the intersection of the robot with an obstacle.

Let A(η, x) from (16) be defined as

A(η, x) = {a | ‖a‖1 ≤ 1}

for all η and all x ∈ X . We use the Manhattan norm to

constrain A(η, x) because we wish to minimize the sum

of the joint costs for each robot [18]. The total cost of

transporting the cargo is the sum of the costs of the robot

state trajectories, so we define ξ as in (1). There are no

meeting costs incurred when two robots meet (meetings mij
in Figure 1). Also, there is no cost for a robot to begin

(meetings bi) within its circular starting area but there is an

infinite cost for a robot to begin outside its starting area.

Finally, there is no cost for cargo pickup (meeting m1) or

dropoff (meeting m3) within the respective pickup or dropoff

area but there is an infinite cost for cargo pickup or dropoff

outside the appropriate area.

We modify the algorithm described in Section V-B to solve

the robot arm problem. We use FMM to solve the discretized

variational inequality. More specifically, for each meeting

node we approximately solve an Eikonal-type variational

inequality

max {w(η, x) − v(η, x), ‖Dxw(η, x)‖∞ − 1} = 0.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.2

2798

Fig. 2. Robot arm motions for a solution meeting tree. The sequence of
figures is a time series with (a) showing the beginning of the robot arm
motions and (d) showing the completion of the motions. The starting area
for the end effector of each robot arm is indicated by a large circle. The
square box on the top-right/top-left is the pickup/dropoff location for the
cargo. A small circle at the end effector of a moving robot arm indicates
that the robot is currently carrying the cargo. (a) Robot 1 moves from its
starting location to cargo pickup area. (b) Robot 1 moves from the cargo
pickup box to meet robot 2, while robot 2 moves from its starting location
to meet robot 1. (c) Robot 2 moves from its meeting with robot 1 to meet
robot 3, while robot 3 moves from its starting location to meet robot 2. (d)
Robot 3 moves from its meeting with robot 2 to the cargo dropoff area.

on a discretized orthogonal grid of the robot state space.

The reasons for solving the corresponding Eikonal PDE and

methods for doing so are discussed in [18].

We use (15) to measure the cost of a robot trajectory

in the robot state space, but the occurance of a meeting

depends on the end effector location in the workspace. For

this reason, we modify the algorithm to employ two grids for

each meeting node: a workspace grid for the values v̄ and a

robot state grid for the values w̄. For the solution illustrated

in Figure 2 we use a workspace grid of 401 × 201 nodes, a

state grid of 401× 101 nodes for robots 1 and 3, and a state

grid of 201×201 nodes for robot 2. During the computation

of v̄, w̄, and p̄∗(η), forward kinematics are used to map

robot states to end effector locations in the workspace. More

details on how the algorithm uses the workspace grid and

robot state grids can be found in [11].

VII. CONCLUSION

We have specified a class of multi-location robot ren-

dezvous problems for which dynamic programming can

be used to find optimal solutions. Appropriate dynamic

programming principles have been presented and used to

construct an efficient algorithm. The applicability of the

algorithm has been demonstrated on a continuous robot arm

example.

ACKNOWLEDGMENT

This work was supported by a Discovery grant from

the National Sciences and Engineering Research Council of

Canada. We thank the authors of [1] for motivation.

REFERENCES

[1] Y. Litus, R. T. Vaughan, and P. Zebrowski, “The frugal feeding
problem: Energy-efficient, multi-robot, multi-place rendezvous,” in
Proceedings of IEEE ICRA, 2007, pp. 27–32.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. Cambridge, Massachusetts and
London, England: The MIT Press, 2005.

[3] S. M. Lavalle, Planning Algorithms. Cambridge University Press,
2006.

[4] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[5] D. P. Bertsekas, Dynamic Programming and Optimal Control: Second

Edition. Belmont, Massachusetts: Athena Scientific, 2000.
[6] Y. Kupitz and H. Martini, “Geometric aspects of the general-

ized Fermat-Toricelli problem,” Bolyai Society Mathematical Studies,
vol. 6, pp. 55–129, 1997.

[7] Wikipedia, “Steiner tree,” 2008, [accessed 6-August-2008]. [Online].
Available: http://en.wikipedia.org/wiki/Steiner%5Ftree

[8] G. Sahina and H. Sralb, “A review of hierarchical facility location
models,” Computers and Operations Research, vol. 34, no. 8, pp.
2310–2331, 2007.

[9] M. S. Branicky, R. Hebbar, and G. Zhang, “A fast marching algo-
rithm for hybrid systems,” in Proceedings of the 38th Conference on

Decision and Control, 1999, pp. 4897–4902.
[10] K. Alton and I. M. Mitchell, “Efficient dynamic programming for

optimal multi-location robot rendezvous with proofs,” Department of
Computer Science, University of British Columbia, Tech. Rep. TR-
2008-11, 2008.

[11] ——, “Efficient optimal multi-location robot rendezvous,” Department
of Computer Science, University of British Columbia, Tech. Rep. TR-
2007-17, 2007.

[12] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity

Solutions of Hamilton-Jacobi-Bellman Equations. Boston and Basel
and Berlin: Birkhauser, 1997.

[13] J. Qian, Y. Zhang, and H. Zhao, “A fast sweeping method for static
convex Hamilton-Jacobi equations,” J. Sci. Comput., vol. 31, no. 1-2,
pp. 237–271, May 2007.

[14] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
in Proceedings of the 33rd Conference on Decision and Control, 1994,
pp. 1368–1373.

[15] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proc. Natl. Acad. Sci., vol. 93, pp. 1591–1595,
1996.

[16] J. A. Sethian and A. Vladimirsky, “Ordered upwind methods for static
Hamilton-Jacobi equations: Theory and algorithms,” SIAM J. Numer.

Anal., vol. 41, no. 1, pp. 323–363, 2003.
[17] A. M. Oberman, “Convergent difference schemes for degenerate

elliptic and parabolic equations: Hamilton-Jacobi equations and free
boundary problems,” SIAM J. Numer. Anal., vol. 44, no. 2, pp. 879–
895, 2006.

[18] K. Alton and I. Mitchell, “Optimal path planning under different
norms in continuous state spaces,” in Proceedings of the International

Conference on Robotics and Automation, 2006, pp. 866–872.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.2

2799

