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Abstract— Safety verification of control systems is mostly
discussed for full-state measurable systems and there are scant
results on safety analysis of output-feedback control systems in
which the states are partially measurable. This paper proposes
a safety-preserving control scheme for output-feedback control
systems. We specify a viable tube for the states of an observer
(estimated states) based on constraints on the actual states.
Furthermore, we discuss the existence of a control input which
maintains trajectories of the observer within the viable tube.
We prove that a control action which keeps the estimated states
inside the specified tube also maintains the actual states within
the original set of constraints. Finally, we compare the proposed
approach in this paper with a recent technique proposed by
Lesser and Abate [1] and show that our approach reduces
conservatism.

I. INTRODUCTION

Verification of safety-critical control systems, such as avia-
tion [2], process control [3] and automated drug delivery [4],
is required for reliable operation. In these applications, safety
is guaranteed if we can show that the states of a controlled
system can be maintained within a set of constraints (safe
region) [5]. Formal model checking techniques provide us
with powerful tools to analyse the behaviour of such systems
[6]. There are two common approaches to study safety in
safety-critical control systems: 1) to investigate the existence
of a control input which preserves safety, 2) to investigate if
a given feedback controller maintains safety.

Safety-preserving control techniques (approach 1) formu-
late a control policy which keeps the system states within
the safe region. The first step in safety-preserving control
techniques is to approximate the viability kernel [5]. The
viability kernel is the set of all initial states for which
there exists a control action that keeps trajectories of a
system starting from those states within the safe region
(for viability kernel approximation, see [7], [8]). Gao et
al. [9] extend the definition of the viability kernel with the
discriminating kernel for the case where the evolution of
a system is perturbed by disturbances. We call a control
input safety-preserving if it generates a viable trajectory.
If the viability kernel (discriminating kernel) is empty, it
means no controller can provide safety. However, if the
set is not empty, one needs to synthesize a controller to
preserve safety. Lygeros et al. in a series of papers [10],
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[11], [12] as well as Mitchell et al. in [13] used optimal
control formulations based on Hamilton-Jacobi equations to
synthesize a controller which satisfies safety specifications.
Girard [14], [15] uses approximate bisimulation to design a
safety-preserving controller. He shows that a controller which
preserves safety of an approximately bisimilar abstraction
of a system also maintains safety of the original system.
Kaynama et al. in [16] combine a safety-preserving control
law with an arbitrary controller (performance controller).
This hybrid scheme is capable of satisfy performance criteria
while preserving system safety [16].

To address safety using approach 2, one needs to ap-
proximate the feedback invariant for a given controller. The
feedback invariant is the set of initial conditions for which
the controller maintains trajectories starting from those states
within the safe region. Raković et al. [17], [18], [19] use this
approach to address safety in model predictive control (Tube
MPC). Artstein et al. [20] employ invariant sets to verify
safety in feedback systems with a given controller.

In the techniques discussed above there is an implicit
assumption that the states are fully measurable. The main
contribution of this paper is to introduce a safety-preserving
control scheme for output-feedback control systems. Given
a system with a stable state observer and a bound on the
difference between initial conditions of the system and the
observer, we quantify a viable tube for the observer based on
constraints on the actual states. We prove that a control input
which keeps trajectories of the observer within the specified
viable tube also keeps trajectories of the actual system within
the safe region. This approach is not limited to a specific type
of controller and any safety-preserving control techniques
can be employed to design a safety-preserving controller for
the observer.

There are a few other papers discussing safety verification
of output-feedback control systems. For instance, Lesser
and Abate in [1] recently proposed a general framework
to approximate the feedback invariant for output-feedback
control systems (see also [21] and [22]). For a given ob-
server, they suggest to calculate an upper bound on the
state estimation error and reduce the size of the safe region
accordingly. They show that for a given controller which only
sees an estimate of the states, if we choose initial conditions
of an output-feedback system from the feedback invariant
calculated based on the contracted safe region, the controller
keeps the states of the system within the actual safe region.
There are two major concerns regarding this method. First, in
output-feedback systems we do not have access to true initial
conditions. However, if we quantify the difference between
initial conditions of the system and initial conditions of the



observer, we can address this concern by further reducing
the size of the safe region. Second, the feedback invariant
is controller-specific, which means it can only be used for
the controller used to approximate the feedback invariant. It
does not provide us with any extra information about other
feedback control laws that may result in a bigger set of viable
trajectories. In this paper, we compare our approach with
this technique and show that our technique results in less
conservative solutions.

This paper is outlined as follows. In section II, we describe
the framework of Lesser and Abate [1] for safety-verification
of output-feedback controllers. Later in section IV, we show
the improvement we achieve by using the approach proposed
in this paper in terms of performance and conservatism. In
section III, we introduce output-feedback safety-preserving
control and show how maintaining the states of an observer
within a viable set results in preserving safety of the actual
system. Finally, section V concludes the paper and discusses
further research on this topic.

A. Notations

The Minkowski sum of any two non-empty convex sets
P ⊂ Rn and Q ⊂ Rn is P ⊕ Q := {p + q| p ∈ P, q ∈
Q}; their Pontryagin difference (the erosion of P by Q) is
P 	 Q := {p| ∀q ∈ Q, p + q ∈ P}. The set B(κ) :=
{x| ‖x‖2 ≤ κ} denotes the closed 2-norm ball of radius
κ > 0. For the set P , P̆ refers to the interior of P . For
vectors q ∈ Q and p ∈ P , < q, p > denotes the inner
product of the vectors.

Lemma 1: For non-empty convex sets P,Q ⊂ Rn the
following relation holds:

(P 	Q)⊕Q ⊆ P. (1)
Proof: See [23].

II. BACKGROUND: SAFETY VERIFICATION OF
OUTPUT-FEEDBACK CONTROL SYSTEMS

In this section, we describe the general framework Lesser
and Abate proposed for safety verification of output-feedback
control systems.

Consider U ⊂ Rm and K ⊂ Rn as convex sets specifying
constraints on inputs and states of a system, respectively.
To verify that a closed-loop system is safe using the ap-
proach proposed in [1], one needs to show that the closed-
loop controller provides a constrained control input which
maintains states of a system inside K for all t ∈ T, where
T = {t| t ∈ [0, τ ]} and τ specifies the final time.

Consider the following state-space equation:

X : ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t), (2)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. In (2), x(t) ∈ Rn,
u(t) ∈ Rm and y(t) ∈ Rp denote the vectors of states, inputs
and outputs, respectively.

Definition 1: The finite-time feedback invariant set F is
the set of all initial states from which a given feedback con-
troller (u(t) = g(x(t))) maintains the closed-loop trajectories

within the safe region without violating the input constraint
U .

Using the feedback invariant set to verify safety requires
full knowledge of the states. However, for state-space model
(2) in which only y(t) is measurable, an observer can be
implemented to estimate the states. Then, the question is if
the controller which only sees the estimated states (u(t) =
g(x̂(t))) still satisfies the feedback invariance property. Re-
lying on fast convergence of high-gain observers, Lesser and
Abate in [1] use a high-gain observer of the following form
to estimate the states of (2):

˙̂x(t) = Ax̂(t) +Bu(t) +H(ε)(y(t)− Cx̂(t)). (3)

The observer gain H(ε) is characterized by a positive pa-
rameter ε:

H(ε) =
[ α1

ε

α2

ε2
. . .

αn
εn

]T
. (4)

The αis are selected such that the following polynomial is
Hurwitz:

sn + α1s
n−1 + α2s

n−2 + · · ·+ αn−1s+ αn. (5)

The selection of αis guarantees that the error dynamics
defined over the error signal.

e(t) = x(t)− x̂(t), (6)

is stable. By choosing ε arbitrarily small, the error signal
converges to zero arbitrarily fast. Lesser and Abate quantified
an upper bound on the estimation error (e(t)) as a function
of ε:

‖e(t)‖2 = ‖x(t)− x̂(t)‖2 ≤ δ(ε). (7)

Consider a closed-loop system XC which is formed by
combining state-space equation (2), the high-gain observer
(3) and the feedback control policy u(t) = g(x̂(t)). The
following procedure is proposed in [1] to calculate the
feedback invariant set for the output-feedback control system
XC :

1) Compute δ(ε) for the high-gain observer,
2) Compute F̃ using formal techniques for fully observ-

able systems with the state constraint K̄ = K	B(δ(ε))
and the input constraint U ,

They prove that closed-loop trajectories of XC starting from
x(0) ∈ F̃ and under the control policy g(x̂), stay within the
safe set K. One of the drawbacks of this approach is that x(0)
is unknown and we cannot show that x(0) ∈ F̃ . However, if
the uncertainty on x(0) can be specified as ‖x(0)−x̂(0)‖2 ≤
λ, by choosing x̂(0) from F̄ = F̃ 	 B(λ) it can be shown
that x(0) ∈ F̃ .

III. OUTPUT-FEEDBACK SAFETY-PRESERVING CONTROL

One of the shortcomings of the approach described in
section II is that the feedback invariance is limited to a spe-
cific controller and cannot be used for a different controller.
Moreover, there might be a bigger set of initial conditions
which result in viable trajectories with a different choice
of controller. In this section, we propose a more general



approach to preserve safety of systems in which the states are
not fully measurable. In this design, we follow the scheme
proposed by Kaynama et al. [16] to preserve safety while
meeting performance specifications.

A. Notations And Definitions

Consider the safe tube KT which characterizes constraints
on trajectories of X:

KT = {x(·)| ∀t ∈ T, x(t) ∈ Kt}. (8)

Since the constraint on the states of X does not change over
time, Kt = K in (8).

Definition 2: Output-feedback safety-preserving control
guarantees that there is a constrained input that keeps closed-
loop trajectories of X within KT despite the fact that the
states of X are not fully measurable and only their estimates
are available.
We use a state observer of the following form to estimate
the states of X:

O : ˙̂x(t) =(A− LC)x̂(t) +Bu(t) + Ly(t)

=(A− LC)x̂(t) +Bu(t) + LCx(t). (9)

In the above equation L must be designed such that (A−LC)
is stable. Since H(ε) stabilizes (A − H(ε)C), we can also
use H(ε) defined in (4) instead of L in (9). Consider the
estimation error defined in (6) as the difference between the
states of X and their estimates. We can formulate the error
dynamics illustrating the evolution of the estimation error, as
follows:

E : ė(t) = (A− LC)e(t). (10)

Consider E0 ⊂ Rn as a convex set of all possible initial
errors e(0) and Et ⊂ Rn as a set of all reachable errors at
time t calculated based on the evolution of the error dynamics
starting from E0. Now we can define the error tube which is
the set of all error trajectories (e(·)) starting from E0:

T ET = {e(·)| ∀t ∈ T, e(t) ∈ Et}, (11)

Due to the stability of the error dynamics, Et becomes
smaller as time goes forward. According to the observer
dynamics defined in (9), the states of X have a direct
influence on the states of the observer. However, since we can
specify the set of all estimation errors, the observer dynamics
can be reformulated independently of the states of X:

O : ˙̂x(t) = Ax̂+Bu(t) + LCe(t), e(t) ∈ Et. (12)

By looking at (2) and (12), we can see that not only X and
O share the same input, but also have the same dynamics.
The only difference is that the states of O are perturbed by
the external variable e(t) ∈ Et.

Definition 3: The finite-horizon discriminating kernel of
KT for O defined in (12) is a subset of K0 (Kt for t = 0)
which specifies all initial conditions such that for all t ∈ T
and for all e(t) ∈ Et, there exists an admissible input u(·) ∈

UT that keeps trajectories (x̂(·)) of O starting from those
initial states within KT:

Disc0(KT,UT, T ET , O) = {x̂(0) ∈ K0| ∀e(·) ∈ T ET ,

∃u(·) ∈ UT s.t. x̂(·) ∈ KT}. (13)
In (13), UT = {u(·)| ∀t ∈ T, u(t) ∈ U} where Ut = U , is a
set of all admissible inputs over T. Without loss of generality,
we can reformulate Definition 2 as follows:

Definition 4: Output-feedback safety-preserving control
guarantees that there is a constrained input which keeps the
state of O within a given set of constraints (a set which we
can under-approximate), and that input will also keep the
states of X within K.

B. Main Result

The next proposition formulates output-feedback safety-
preserving control assuming Disc0(K̂T,UT, T ET , O) is non-
empty, where

K̂T = KT 	 T ET . (14)

Proposition 1: For the state-space model X defined in
(2), the state observer O formulated in (12), the initial
error set E0 and the safe tube K̂T defined in (14), assum-
ing Disc0(K̂T,UT, T ET , O) is not empty, a safety-preserving
control input that keeps trajectories of O (estimated states)
within K̂T, also maintains trajectories of X within KT.

Proof: Since Disc0(K̂T,UT, T ET , O) is not empty, we
can define the following viable tube as a set of all viable
trajectories of the observer inside K̂T:

T OT = {x̂(·)|∀t ∈ T, x̂(t) ∈ Disct(K̂[t,τ ],U[t,τ ], T E[t,τ ], O)},
(15)

In (15), Disct(K̂[t,τ ],U[t,τ ], T E[t,τ ], O) is a set of states at
time t for which there exists u(·) ∈ U[t,τ ] that keeps trajecto-
ries of O starting from t within K̂[t,τ ]. Due to the fact that the
defined trajectories start from Disc0(K̂T,UT, T ET , O), T OT is
non-empty. This means that there exists u(·) ∈ UT to keep
trajectories of O viable. Moreover, since T OT includes all
trajectories of O inside K̂T, we have T OT ⊆ K̂T. As we
discussed previously, the set T ET defined in (11) is a set of
all trajectories of the error between the actual states and the
estimated states starting from E0. Moreover, based on the
definition of the estimation error (6), we can calculate the
states of X as x(t) = x̂(t) + e(t). Thus, using the same
input which generates T OT , we can characterize all resulting
trajectories of X as follows:

T XT = T OT ⊕ T ET . (16)

Since T OT ⊆ K̂T and therefore T OT ⊆ KT 	 T ET , the viable
trajectories of the actual system T XT is inside the safe tube
KT:

T XT = T OT ⊕ T ET ⊆ (KT 	 T ET )⊕ T ET , (17)

and according to Lemma 1, T XT ⊆ KT.
According to Proposition 1, a safety-preserving input that

keeps the states of an observer designed to estimate the state
of an output-feedback system within the contracted version



of the safe region also maintains the states of the actual
system within the safe region. In this proposition, we assume
that Disc0(K̂T,UT, T ET , O) is not empty. However, if the
set is empty, it means there exists no controller providing
safety for a given output-feedback system with a given set
of constraints. The main difference between this approach
and the one described in [1] is that the proposed approach
is not controller-specific. Once Disc0(K̂T,UT, T ET , O, ) is
approximated, we can formulate any sort of safety-preserving
controller to maintain trajectories of the observer within K̂T
(see [10], [16], [24]). Moreover, to approximate feedback
invariance for output-feedback systems, the safe region needs
to be eroded by an upper bound on the estimation error. The
proposed approach in this paper suggests to calculate the
evolution of the error dynamics and erode the safe region by
a set of all possible errors at each time. Accordingly, due to
the stability of the error dynamics, the error set gets smaller
as time goes forward which results in less erosion of the safe
region and consequently, less conservative results.

C. Discriminating Kernel Approximation

Kaynama et al. [16] show that the discriminating kernel
(viability kernel) can be under-approximated by recursive
approximation of maximal reachable sets. Due to the fact
that K̂t changes over time, we cannot employ this method
to approximate Disc0(K̂T,UT, T ET , O). Here, we extend the
algorithm proposed in [8] to the case where the safe region
(14) is time varying.

Definition 5: The maximal reachable set of K for O at
time t is a set of initial states for which there exists an input
such that trajectories of O starting from those states reach
K exactly at t:

Reach#t (K,U[0,t], T E[0,t], O) = {x̂(0)| ∀e(·) ∈ T E[0,t],
∃u(·) ∈ U[0,t] s.t. x̂(t) ∈ K}. (18)

Consider PlT = {t0, t1, . . . , tl} as a set of points where
t0, t1, . . . , tl ∈ T, t0 < t1 < · · · < tl and t0 = mint∈T t
and tl = maxt∈T t. Moreover, we define |PlT| as |PlT| :=
max{tk+1 − tk| k = 0, 1. . . . , l − 1, tk ∈ PlT}. Assume
O is bounded by M on K̂T, UT and T ET , which means for
all t ∈ T and for all x̂(t) ∈ K̂t, u(t) ∈ Ut, e(t) ∈ E(t),
‖ ˙̂x(t)‖2 ≤M . We define an under-approximation of K̂T as:

K̂↓T = {x̂(·)| ∀t ∈ T, x(t) ∈ K̂↓t }. (19)

In (19), K̂↓t = K̂t 	 D 	 B(M |PlT|), and D =
arg max{vol(Z)| Z = K̂ti−1

	 K̂t, ti ∈ PlT, t ∈ [ti−1, ti)}.
In the above equation, vol(Z) denotes the volume of the set
Z . D shows the maximum contraction of K̂T in each interval
[ti−1, ti). In the next proposition, we show that if we keep
the states of O for all ti ∈ PlT within K̂↓ti , they will stay
within K̂t for all t ∈ [ti, ti+1).

Consider the following l-step recursion:

Rtl = K̂
↓
tl
,

Rti−1 = K̂↓ti−1

⋂
Reach#

ti−ti−1

(
Rti ,U[ti−1,ti], T

E
[ti−1,ti], O

)
,

for i = l, l − 1, . . . , 1. (20)

Proposition 2: For the state-space equation defined in (12)
which is bounded by M on K̂T, UT and T ET , the final set
R0 defined by the recursive relation (20) satisfies:

R0 ⊆ Disc0(K̂T,UT, T ET , O). (21)
Proof: Calculating R0 using the recursive relation (20)

indicates that starting from any points in Rti−1 there exists
uti(·) ∈ U[ti−1,ti] such that the states of O can reach Rti
at t = ti − ti−1. By taking the concatenation of the inputs
uti(·) for all ti ∈ PlT [8], we can define an input uT(·) ∈ UT
which, starting from any points in R0, the states of X at
ti ∈ PlT stay within K̂ti :

x(ti) ∈ Rti ⊆ K̂
↓
ti ⊆ K̂ti . (22)

To show that (21) holds, we need to show for all t ∈ T,
uT(·) maintains x̂(t) ∈ K̂t. Since any t ∈ T lies in some
interval (t ∈ [ti, ti+1]) and due to the fact that O is bounded
by M , we have:

‖x̂(t)− x̂(ti)‖2 ≤ ‖
∫ t

ti

˙̂x(τ)dτ‖2 ≤M(t− ti)

< M(ti+1 − ti) ≤M |PlT|. (23)

According to (23), ν = x̂(t) − x̂(ti) ∈ B(M |PlT|). Since,
x̂(ti) ∈ K̂↓ti and according to the definition of ν as well as
Lemma 1, we have:

x̂(t) ∈ K̂↓ti ⊕ B(M |PlT|)

⊆
(
K̂ti 	D 	 B(M |PlT|)

)
⊕ B(M |PlT|)

⊆ K̂ti 	D ⊆ K̂ti 	 (K̂ti 	 K̂t) ⊆ K̂t. (24)

This result implies that starting from any point in R0 there
is an input to keep the states of O inside K̂t at time t. Thus,
(21) holds.

D. Safety-Preserving Control Synthesis

In section III-B, we proved that a safety-preserving con-
troller that keeps the states of the observer inside K̂T
maintains the states of the actual system within KT as well.
We employ the method described in [16] to design a safety-
preserving controller to keep trajectories of the observer
viable. Kaynama et al. in [16] combine a safety-preserving
control law with an arbitrary controller (performance con-
troller) to satisfy performance criteria while preserving sys-
tem safety. In this scheme, to maintain trajectories of O
within K̂T, the input of the system is selected as follows:

u(t) =

{
upr(t), x̂(t) ∈ ˘Disct(K̂[t,τ ],U[t,τ ], T E[t,τ ], O);

usp(t), x̂(t) /∈ ˘Disct(K̂[t,τ ],U[t,τ ], T E[t,τ ], O).

(25)

In the above equation upr(t) is a control input provided by
the performance controller. Moreover, the safety-preserving
control input usp(t) is obtained based on the safety-
preserving control policy formulated in [25]. To avoid high-
frequency switching between the two control modes in (25),
Kaynama et al. [16] use a convex combination of them:

u(t) = (1− ζ)upr(t) + ζusp(t). (26)



In the above equation, ζ is calculated based on
the difference between x̂(t) and the boundaries of
Disct(K̂[t,τ ],U[t,τ ], T E[t,τ ], O) [16].

IV. COMPUTATIONAL EXAMPLE

In this section, we apply the proposed output-feedback
safety-preserving control to the example Lesser and Abate
discussed in [1]. We regenerate the results presented in [1]
and compare them with the results of the technique proposed
in this paper. We show that there exists a safety-preserving
controller for the closed-loop system defined below that gen-
erates viable trajectories starting from some initial conditions
from outside of F̄ but inside Disc0(K̂T,UT, T ET (·), O).

A. Model Definition

Consider dynamics of the double integrator:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t),

y =
[

1 0
] [ x1(t)

x2(t)

]
. (27)

A controller of the following form is used in [1] to stabilize
(27):

u(t) =
[
−β −β

]
x(t). (28)

Since x2(t) cannot be measured, the following high-gain
observer is designed in [1] to estimates the states of (27):

˙̂x(t) =

[
0 1
0 0

]
x̂(t) +

[
0
1

]
u(t) +

 α1

εα2

ε2

 (x1(t)− x̂1(t)).

(29)

Thus, (28) needs to be reformulated as

u(t) =
[
−β −β

]
x̂(t). (30)

In this example, the states are required not to leave the safe
region K = {x(t)| |x1(t)| ≤ 4 |x2(t)| ≤ 3} over T =
{t| t ∈ [0, 10]}. We assume the uncertainty on x(0) to be
‖x(0) − x̂(0)‖2 = 0.5. The absolute value of the input is
restricted to be less than 1, U = {u(t)| |u(t)| ≤ 1}. The
parameters of the observer are set to α1 = α2 = 4 and
ε = 0.01. For this observer the upper bound on the 2-norm
of the estimation error is δ(ε = 0.01) = 0.1768 [1]. Lesser
and Abate in [1] showed that for the system and controller
defined in (27) and (28), setting β = 0.2 results in the largest
feedback-invariant set.

To approximate the discriminating kernel for the observer
defined in (29), we calculate the evolution of the error
dynamics defined below with the initial error set E0 =
{e(0) ∈ R2| ‖e(0)‖2 ≤ 0.5}:

ė(t) =

[ 0 1
0 0

]
−

 α1

εα2

ε2

 [ 1 0
] e(t). (31)

We use the same set of initial errors to calculate F̄ as
described in section II.
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Fig. 1. Solid-line red ellipse: Ellipsoidal under-approximation of safe
region K, dashed-line black ellipse: Disc0(K̂T,UT, T ET , O), dotted-line
blue ellipse: F̄ .

B. Results

In this paper, we employ the ellipsoidal techniques [25]
implemented in [26] to represent sets and conduct operations
on them. Moreover, we utilize the level set toolbox developed
by Mitchell [27] for reachability analyses. Following the
steps we described in sections III and IV, we calculate the
feedback invariant (F̄) of the system described in (27), (28)
and (29), as well as the discriminating kernel for the observer
Disc0(K̂T,UT, T ET , O). The results are illustrated in Fig.
(1). Comparing F̄ with Disc0(K̂T,UT, T ET , O) depicts that
we can even have a bigger viable set if we use a different
controller rather than the one defined in (28). In other words,
Fig. 1 shows that there is a bigger set of initial conditions
that can result in viable trajectories.

In the next step, we employ the safety-preserving con-
troller described in section III to maintain the state
of the observer defined in (29) within the viable tube
DiscT(K̂T,UT, T ET , O). We employ the same controller de-
fined in (28) with β = 0.2 as the performance controller
in the proposed output-feedback safety-preserving control
scheme. Fig. 2 shows an observed trajectory of (27) under
safety-preserving control with η = 0.8 starting from x̂(0) =
(1.5, 2) which is inside Disc0(K̂T,UT, T ET , O) (dotted green
line). Fig. 2 also depicts the actual trajectory of (27) gen-
erated with the same input sequence but a different initial
condition (x(0) = (2, 2)) due to the uncertainty (solid black
line). Due to the fast convergence of the high-gain observer,
the estimated states converge to the actual states right after
the starting time. In Fig. 2, we can see that the safety-
preserving control input (solid blue line in Fig. 3 ) that keeps
the state of the observer viable preserves safety for (27). Fig.
2 illustrates a trajectory of (27) under the feedback control
law (27) with the same choice of β = 0.2 (dashed blue line).
As we expected, since (1.5, 2) is not inside F̄ , the controller
cannot keep the trajectory inside the safe region.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach to preserve
safety of output-feedback control systems. Given an observer
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Fig. 2. Closed-loop trajectories. Red ellipse: the safe region K; solid black
line: the trajectory of X controlled by output-feedback safety-preserving
control; dotted green line: the observed trajectory of X; dashed blue line:
the trajectory of X controlled by the state-feedback controller (28).
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Fig. 3. Control input. Solid blue line: a control input sequence generated by
the output-feedback safety-preserving control; dashed black line: a control
input sequence generated by the feedback controller (28); dotted red lines:
upper and lower bounds.

designed to estimate the states of an output-feedback system,
we showed that a safety-preserving controller that keeps the
state of the observer (estimated states) within a contracted
safe region is capable of maintaining the state of the actual
system within the original safe region. In contrast to other
approaches suggested in the literature, the proposed tech-
nique is not limited to a specific type of controller and any
safety-preserving controller can be employed. We compared
the proposed technique with a recent approach for safety
verification of output control systems [1] and showed that
our method provides less conservative solutions.

In the proposed scheme, we only consider the case where
a model of the system is known. The proposed technique can
be extended to the case where we have an uncertain model of
an output-feedback system. As a part of future work on this
topic, we will extend the developed technique to the case
of uncertain systems in which the model used in observer
design does not necessarily represent the true behaviour of
the system.
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