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Reachable Sets: What and Why?
• One application: safety analysis

– What states are doomed to become unsafe?

– What states are safe given an appropriate control strategy?

target
(unsafe)

backward reach set
(uncontrollably unsafe)

safe (under appropriate control)



Feb 2007 Ian Mitchell (UBC Computer Science) 3

Calculating Reach Sets
• Two primary challenges

– How to represent set of reachable states

– How to evolve set according to dynamics

• Discrete systems xxxxkkkk+1 = δδδδ(xxxxkkkk)
– Enumerate trajectories and states
– Efficient representations: Binary Decision Diagrams

• Continuous systems dxdxdxdx/dtdtdtdt = ffff(xxxx)?
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Approaches to Continuous Reach Sets
• Lagrangian approaches

– Forward reach sets
– Restricted class of dynamics

– Restricted class of sets with compact representation

– Guarantees of overapproximation

– Examples: HyTech (Henzinger), Checkmate (Krogh), d/dt
(Dang), ellipsoidal (Kurzhanski)

• Eulerian approaches
– Backward reach sets

– General dynamics including competitive inputs

– General set shapes represented implicitly
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Implicit Surface Functions
• Set GGGG(tttt) is defined implicitly by an isosurface of a scalar function 

φφφφ(xxxx,tttt), with several benefits
– State space dimension does not matter conceptually

– Surfaces automatically merge and/or separate
– Geometric quantities are easy to calculate
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Backward Reachable Set GGGG(tttt)

Continuous Backward Reachable Sets
• Set of all states from which trajectories can reach some given 

target state
– For example, what states can reach GGGG(tttt)?

Target Set GGGG(0)

Continuous System Dynamics
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Why “Backward” Reachable Sets?
• To distinguish from forward reachable set

• To compute, run dynamics backwards in time from target set 
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Reachable Sets (controlled input)
• For most of our examples, target set is unsafe
• If we can control the input, choose it to avoid the target set
• Backward reachable set is unsafe no matter what we do

Continuous System Dynamics
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Reachable Sets (uncontrolled input)
• Sometimes we have no control over input signal

– noise, actions of other agents, unknown system parameters

• It is safest to assume the worst case

Continuous System Dynamics
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Two Competing Inputs
• For some systems there are two classes of inputs νννν = (uuuu,dddd)

– Controllable inputs uuuu ∈∈∈∈ UUUU
– Uncontrollable (disturbance) inputs dddd ∈∈∈∈ DDDD

• Equivalent to a zero sum differential game formulation
– If there is an advantage to input ordering, give it to disturbances

Continuous System Dynamics
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Game of Two Identical Vehicles
• Classical collision avoidance example

– Collision occurs if vehicles get within five units of one another
– Evader chooses turn rate |aaaa| ≤ 1 to avoid collision
– Pursuer chooses turn rate |bbbb| ≤ 1 to cause collision
– Fixed equal velocity vvvveeee = vvvvp = 5

evader aircraft (control) pursuer aircraft (disturbance)

yyyy

5

xxxx

aaaa

vvvveeee

θθθθ

bbbb

vvvvpppp

dynamics (pursuer)
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Collision Avoidance Computation
• Work in relative coordinates with evader fixed at origin

– State variables are now relative planar location (xxxx,yyyy) and relative 
heading ψψψψ

evader aircraft (control) pursuer aircraft (disturbance)

xxxx

yyyy

aaaa

vvvveeee

ψψψψ

bbbb

vvvvpppp

target set description
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Evolving Reachable Sets
• Modified Hamilton-Jacobi partial differential equation

final reachable setgrowth of reachable set
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Time-Dependent Hamilton-Jacobi Eq’n

• First order hyperbolic PDE
– Solution can form kinks (discontinuous derivatives)
– For the backwards reachable set, find the “viscosity” solution 

[Crandall, Evans, Lions, …]

• Level set methods
– Convergent numerical algorithms to compute the viscosity solution 

[Osher, Sethian, …]
– Non-oscillatory, high accuracy spatial derivative approximation
– Stable, consistent numerical Hamiltonian

– Variation diminishing, high order, explicit time integration
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Solving a Differential Game
• Terminal cost differential game for trajectories ξξξξffff(····; xxxx,tttt,aaaa(····),bbbb(····))

• Value function solution φφφφ(xxxx,tttt) given by viscosity solution to basic 
Hamilton-Jacobi equation
– [Evans & Souganidis, 1984]
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Modification for Optimal Stopping Time
• How to keep trajectories from passing through G(0)?

– [Mitchell, Bayen & Tomlin 2004]

– Augment disturbance input

– Augmented Hamilton-Jacobi equation solves for reachable set

– Augmented Hamiltonian is equivalent to modified Hamiltonian
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Alternative Eulerian Approaches
• Static Hamilton-Jacobi (Falcone, Sethian, …)

– Minimum time to reach
– (Dis)continuous implicit representation

– Solution provides information on optimal input choices 

• Viability kernels (Aubin, Saint-Pierre, …)
– Based on set valued analysis for very general dynamics

– Discrete implicit representation
– Overapproximation guarantee

• Time-dependent Hamilton-Jacobi (this method)
– Continuous solution

– Information on optimal input choices available throughout 
entire state space

– High order accurate approximations

• All three are theoretically equivalent
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Application: Softwalls for Aircraft Safety
• Use reachable sets to guarantee safety

• Basic Rules
– Pursuer: turn to head toward evader
– Evader: turn to head east

• Evader’s input is filtered to guarantee that pursuer does not enter the
reachable set

joint work with Edward Lee & Adam Cataldo

pursuer

safety filter’s 
input modification

pursuer’s input

evader’s desired input

evader

evader’s actual input

reachable set
(unsafe set)

collision set
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Application: Collision Alert for ATC
• Use reachable set to detect potential collisions and warn Air Traffic 

Control (ATC)
– Find aircraft pairs in ETMS database whose flight plans intersect

– Check whether either aircraft is in the other’s collision region
– If so, examine ETMS data to see if aircraft path is deviated
– One hour sample in Oakland center’s airspace—

• 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts
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Validating the Numerical Algorithm
• Analytic solution for reachable set can be found [Merz, 1972]

– Applies only to identical pursuer and evader dynamics

– Merz’s solution placed pursuer at the origin, game is not symmetric
– Analytic solution can be used to validate numerical solution
– [Mitchell, 2001]



Hybrid System Reach Sets

Combining Continuous and Discrete 
Evolution
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Why Hybrid Systems?
• Computers are increasingly interacting with external world

– Flexibility of such combinations yields huge design space

– Design methods and tools targeted (mostly) at either continuous or 
discrete systems

• Example: aircraft flight control systems

seven mode collision 
avoidance protocol
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Hybrid Automata
• Discrete modes and 

transitions

• Continuous evolution within 
each mode

σσσσ1 = initiate maneuver t = ππππ/4

q1

straight1

( , )Sx f x υυυυ====&&&&

q2

arc1
( , )Ax f x υυυυ====&&&&

q7

straight4
( , )Sx f x υυυυ====&&&&

q5

straight3
( , )Sx f x υυυυ====&&&&

q3

straight2

( , )Sx f x υυυυ====&&&&

q4

arc2

( , )Ax f x υυυυ====&&&&

q6

arc3
( , )Ax f x υυυυ====&&&&

t = T

t = ππππ/4

t = ππππ/2

t = T

cos

sin

dynamics in straight modes

S

x v v
f

x v

ψψψψ
ψψψψ

− +− +− +− +         ====         
        

1

2

cos

sin

dynamics in arc modes

A

x v v x
f

x v x

ψψψψ
ψψψψ

− + −− + −− + −− + −            
====            ++++            

1 2

2 1
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unsafe set with choice
to maneuver or not?

Seven Mode Safety Analysis

unsafe set with maneuver

unsafe set without maneuver

?
unsafe

safe
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Seven Mode Safety Analysis
• Ability to choose maneuver start time further reduces unsafe set

safe without switch
unsafe to switch

safe with switch

unsafe with or 
without switch

[Tomlin, Mitchell & Ghosh, 2001]
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Computing Hybrid Reachable Sets
• Compute continuous reachable set in each mode separately

– Uncontrollable switches may introduce unsafe sets

– Controllable switches may introduce safe sets
– Forced switches introduce boundary conditions

[Tomlin, Lygeros & Sastry, 2000]
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• Compute set of states which reaches GGGG(0) without entering EEEE

• Formulated as a constrained Hamilton-Jacobi equation or 
variational inequality
– [Mitchell & Tomlin, 2000]

• Level set can represent often odd shape of reach-avoid sets

Reach-Avoid Operator

GGGG(0) EEEE

Reach-Avoid Set GGGG(tttt)
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Application: Discrete Abstractions
• It can be easier to analyze discrete automata than hybrid 

automata or continuous systems
– Use reachable set information to abstract away continuous details

q1
safe at present

will become unsafe
unsafe to σσσσ1

q5
safe at present

always safe
safe to σσσσ1

q3
safe at present

will become unsafe
safe to σσσσ1

q4
safe at present

always safe
unsafe to σσσσ1

q2
unsafe at present

will become unsafe
unsafe to σσσσ1

qs

SAFE

qu

UNSAFE

forced transition
controlled transition (σσσσ1)

q1

q5

q3

qu

q4 q2



Feb 2007 Ian Mitchell (UBC Computer Science) 29

Application: Cockpit Display Analysis
• Controllable flight envelopes for landing and Take Off / Go 

Around (TOGA) maneuvers may not be the same

• Pilot’s cockpit display may not contain sufficient information to 
distinguish whether TOGA can be initiated

flare
flaps extended
minimum thrust

rollout
flaps extended
reverse thrust

slow TOGA
flaps extended

maximum thrust

TOGA
flaps retracted

maximum thrust

flare
flaps extended
minimum thrust

rollout
flaps extended
reverse thrust

TOGA
flaps retracted

maximum thrust

revised interface

existing interface

controllable flare envelope

controllable TOGA envelope
intersection


