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PEGASUS

* Policy Evaluation-of-Goodness And
Search Using Scenarios

o Markov Decision Process (MDP)
M = (Sa D7 A7 {PSG(°)}7 s R)
e Policy m: S — A



Policy Evaluation and Optimization

* VT(s) Is expected discounted sum of
rewards for executing policy 1T starting
from state s

» Value of a policy V() = E, pl[Vy(s0)]

e Optimal policy within class for MDP M

opt (M, M) = sup V()

: . mell

* Find a policy

7 € I such that V(x) is close to opt(M, 1)




Deterministic Simulative Model

e For POMDPs

— Memory-free policies that depend only on
observables

— Limited-memory policies that introduce
artificial memory variables into the state

* Generative model — takes input (s,a) and
outputs s’ according to Psa(-)

e Deterministic simulative model
g:SxAxI[0,1]% — §



Deterministic Simulative Model (2)

g:SXAX[O,l]dP—>S

e Most computer implementations provide
this model but need to expose interface to
random number generator

e Example S =R
— Normal distributed Psa(-)

— Cumulative distribution function Fsq ()
—Let dp, = 1 and choose g to be

g(s,a,p) = F;"(p)



Transformation of (PO)MDP

Given M = (S,D, A, {Psqa(:)},~, R)
Construct M’ = (8", D', A, {P..()},v, R
—State S’ = S x [0, 1]
Deterministic transition

(s,p1,p2,---) = (s, p2,p3, .. .)
—Where ¢ = ¢(s,a,pq1)
D’ such that s ~ D and p;'s are 1.1.d
Reward R'(s,p1,po,...) = R(s)
Policies 7' (s, p1,po,...) = 7(s)



Policy Search Method

Transformed M to deterministic M’
Value of policy Vap/(m) = Eg p/[Vyp(so)]

Sample of m initial states (scenarios)

{s(()l), S(()Q), . (m)}

Approximate value v,, () = if) v (s$)]

m

Vap() = = Y- RSB ()4 7R ()

Like generating m Monte Carlo trajectories
and taking their average reward but
randomization is fixed in advance



Policy Search Method (2)
VM’(7T> — % i R/(S(()i))-F’yR/(Sgi))-F. : '+’7HR/(S§?)
1=1

e Since objective function is deterministic
can use standard optimization methods

e Gradient ascent methods
— Smoothly parameterize family of policies
[1 = {7‘(‘@ ‘ 0 c Rl}
— If relevant quantities are differentiable, find
gradient dv,,/(r)
do

* Local maxima can be a problem



Example — Grid World
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Figure 1: (a) 5x5 gridworld, with the § observations. (b) PEGASUS results using the normal and complex deterministic simulative
models. The topmost horizontal line shows the value of the best policy 1 II: the solid curve 1s the mean policy value using the normal
model: the lower curve 1s the mean policy value using the complex model. The (almost negligible) 1 s.e. bars are also plotted.




Example: Riding a Bicycle

Randlov and Alstrom’s bicycle simulator

Objective to ride to goal 1km away

Action torgue applied to handlebars and
displacement of rider’s center of gravity

Hand-picked 15 features of state but not fine-tuned

Policy

T — U(wl ‘ C[_3’)(7'ma>< — Tmin) + Tmin

vV — U(wz ' f)(Vmax — Vmin)

Gradient ascent

Vmin

Shaping rewards to reward progress towards the

goal



Helicopter Flight

(b)
Figure 1: (a) Autonomous helicopter. (b) Helicopter hovering under control of learned policy.



Helicopter

Inertial Navigation System —
accelerometers and gyroscopes

Differential GPS and digital compass
Kalman filter integrates sensor information
State s = (x,vy,2,0,0,w,z,v,2,0,0,w)
Actions

— a4, a,: longitudinal (front-back) and latitudinal
(left-right) pitch control

— a5 : main rotor collective pitch control
— a, : tall rotor collective pitch control



Model Identification

Body coordinates

Sb — (¢7 97 xbv yb7 Zb7 ¢7 97 CU)
Locally-weighted linear regression with (s,,a,) as
Inputs and one-step differences s;,; — S; as
outputs

Some parameters in the regression hard-coded

Extra unobserved variables to model latency In
response to controls

Used human pilot flight data to fit and test the
model



Policy Search

e PEGASUS
e Neural network for policy class

+1
i = @‘{'®\‘®7 d;




Policy Search (2)

e Quadratic state cost

R(s) = —(ou(z—2%)?+ay(y—y*) *+oz(2—2*)? oz a2 oy 4o 27+ aw(w—w*)?)
* \Weights scale terms to same order of
magnitude
e Quadratic action cost
R(a) = —(aq;a% + caya3 + aaza3 + aa,a3)
e Overall reward IS R(s,a) = R(s) + R(a)

e Both gradient ascent and random walk
worked



Competition Maneuvers
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Figure 4: Top row: Maneuver diagrams trom RC helicopter competition. [Images cowrtesy of the
Academy of Model Aeronautics.] Bottom row: Actual trajectories flown using learned controller.



Competition Maneuvers (2)

Vary over desired trajectory (z*, y™, z*, w™)

Augment policy class to consider coupling
between helicopter’s subdynamics

Use deviation from a projection onto
desired trajectory (xp, yp, 2p, wWp)

Use a potential function which increases
along the trajectory



