
In paper,
Atkeson and Stephens 

Random Sampling of States in Dynamic Programming
NIPS 2007

Differential Dynamic Programming

Presentation by 
Sang-Hoon Yeo



Remember LQR,

DT system

cost functional

DP principle

optimal policy

Riccatti recursion



What is Differential Dynamic Programming?

Applying LQR to the linearized model around a given trajectory 
(for DTS: a sequence of points to the goal)

Linearized model includes (for each point)
- a linear model of the system
- a quadratic model of one step cost

By applying LQR, we can get (for each point)
- an improved quadratic model of value function
- an improved linear model of policy



Any nonlinear system can be linearized in the 
neighborhood of a point (or a trajectory)

- We can do the linear analysis within “tube”

Linearized dynamics of “deviations”: state and policy



Linearization



Algorithm

Backward sweep



V

goal

u1
u2

u3
u4

u5

u6

Suppose we have initial guesses of value and policies to the goal



Vopt

goal

u1opt
u2opt

u3opt

u4opt

u5opt

u6opt

DDP gives a new trajectory with improved policies and value



How to use DDP to construct the value function?

Suppose we already have sample points which have quadratic model
of the value function and the a linear model of the policy

Randomly pick a new sample point

Find the nearest sample point and predict the value and policy of 
newly picked point

Proceed to the next time step and do it again until we hit the goal

Apply DDP backward sweep to compute improved value and policy of
the newly picked point



One link inverted pendulum: value function and policy





-Q: How to overcome the curse of dimensionality?

A: Only store “surprises”, otherwise forget

When the computed value of a newly picked point is very 
different with it’s previous prediction by neighborhood

Q: What about discontinuities? Should we store more points 
near discontinuities?

A: Don’t worry, trajectories typically move away from the 
discontinuities



-

Global optimization using greedy local optimizers

Global optimization is achieved when all the stored states are 
“consistent”; any state’s local model correctly predicts values of nearby 
states

Enforce “consistency” by using the policy of one state of a pair to re-
optimize the trajectory of the other state of the pair and vice versa

Add more stored states in between neighbors that continue to disagree



inverted pendulums



Conclusion

Combined three approaches for DP approximation

1. Random sampling
J Rust “Using randomization to break the curse of dimensionality” Econometrica 1997

2. Differential Dynamic Programming

3. Global optimization using local optimizers

“This paper we show that we can now solve 
problems we couldn’t solve previously”



Questions?


