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Abstract. If the inputs to a circuit are held constant, then the state of some cir-
cuits settle to a unique equilibrium: the DC operating point. Many circuit analysis
techniques seek to determine or use this state and assume that it is unique. How-
ever, for some constant input some circuits may settle to one of several different
operating points, while still others may never settle. In this paper we describe a
procedure that uses symbolic circuit models generated from a netlist level circuit
description to rigorously locate and classify all of the equilibria of a circuit model
in order to determine the existence, location and number of DC operating points.
Implemented with a collection of public tools (HySAT, INTLAB and EigTool) and
our own MATLAB circuit modeling system OOmspice, we demonstrate that the
technique can deduce the hysteresis of a Schmitt trigger and the lack of DC oper-
ating points for a ring oscillator with an odd number of stages.

1 Introduction

A fundamental problem in the study of circuits is DC operating point analysis: what
voltages will the nodes of the circuit settle to if the inputs to the circuit remain in-
definitely at their quiescent values? Many critical properties of a circuit’s behavior are
directly connected to analysing its DC operating point(s). The first question is, how
many DC operating points does the circuit have? For some circuits (e.g. oscillators),
there should be no stable equilibrium points; thus, such circuits should have no DC op-
erating points. Circuits such as amplifiers, on the other hand, typically have a unique
DC operating point, and the small signal analysis to characterize such circuits is carried
out at this point. Other circuits that are intended to retain digital state information such
as Schmitt triggers, flip-flops and sense amplifiers have multiple, distinct DC operating
points corresponding to the distinct, discrete states of the circuit.

In this paper we use ideas from formal verification to analyse DC operating points in
a semantically and numerically rigorous fashion. Before doing so, however, we first de-
fine DC operating points and then examine some of the difficulties faced by traditional
operating point analysis.

1.1 Definitions

We can define the continuous state of a circuit with a vector x where the components of
x represent the voltages and/or currents in the circuit. Let n denote the dimension of x.



If we assume that the circuit’s behavior is described by an ordinary differential equation
(ODE), then we write:

d
dt x = f (x, in) (1)

where f is a function, possibly non-linear, describing the dynamics of the circuit, and
in is a vector of inputs to the circuit. If the circuit has m inputs, then in is a function
from time to input values: in ∈ R≥0 → Rm. Likewise, x ∈ R≥0 → Rn is a function
from time to circuit states. The existence and uniqueness of solutions to Equation 1 are
guaranteed for any initial state x(0) as long as f and in satisfy some basic smoothness
conditions (see [5] for details). In particular, unique solutions are guaranteed to exist
for “reasonable” circuit models, including the ones used as examples in this paper.

For a particular constant input in ∈ Rm, x ∈ Rn is a DC equilibrium point of the
circuit with input in iff

f (x, in) = 0 (2)

Furthermore, we will call x a stable equilibrium point iff there is some ε > 0 such that
for any x̃ ∈ R≥0 → Rn satisfying

d
dt x̃ = f (x̃, in), x̃ is a solution to Eq. 1

‖x̃(0)− x‖ < ε, x̃ starts “near” x
(3)

then limt→+∞x̃(t) = x. In other words, x is a stable equilibrium point if all trajectories
starting near x converge to x.

The stability of an equilibrium point x can be determined by examining the eigen-
values of the Jacobian operator of f . Let J( f ,x, in) ∈ Rn×n be the Jacobian matrix for
f at state x for input in:

Ji, j( f ,x, in) = ∂
∂x j

fi(x, in)|x=x (4)

If all eigenvalues have real parts that are less than zero, then x is a stable equilibrium
point. If any eigenvalue has a positive real part, then we will call x an unstable equi-
librium1. If any eigenvalue is purely imaginary (real component of zero), then higher
order derivatives must be considered to determine the stability of x; this situation is a
degenerate case that we will not consider further here.

Let in0 be a vector representing quiescent input values for a circuit, and let

X0( f , in0) = {x | x is a stable equilibrium of f with input in0} (5)

X0 is the set of DC operating points for the circuit with input in0. Note that X0 may be
empty; in which case, the circuit has no stable state. Likewise, X0 may contain multiple,
distinct points; in which case, the circuit can settle to any of these stable states.

A problem related to finding the DC operating points of a circuit is finding the
circuit’s DC transfer relation. In this case, for each input in a specified space, we find the
DC operating points for that input. For example, we could sweep the input of an inverter

1 If there are a mixture of eigenvalues with negative and positive real components, then the cir-
cuit can show what are commonly called metastable behaviors, but we will treat such behaviors
as unstable for the purposes of this paper.



circuit from ground to power to observe how the output goes from power to ground. As
we illustrate in Section 3, this DC transfer relation can provide a simple visualization
of the circuit’s operation. It is also commonly used for characterizing properties of a
circuit such as its noise margin.

1.2 Limitations of Traditional DC Operating Point Analysis

DC operating point analysis is the starting point for circuit simulation tools such as
SPICE. When performing transient analysis, SPICE first identifies the DC operating
point of the circuit and uses this point as the initial state for the simulation. When per-
forming small-signal analysis, SPICE uses the DC operating point as the point about
which to perform the sensitivity analysis. However, this analysis can be problematic,
and the problems are both numerical and semantic. The numerical difficulties arise be-
cause finding a solution to Equation 2 involves finding the root of a non-linear, vector
valued function. The root-search problem becomes intractable for circuits with a moder-
ate number of nodes for anything but relatively trivial dynamics. Thus, various heuristic
methods are employed, and they cannot be guaranteed to find a solution.

The semantic problems arise because Equation 2 may have no stable solutions (e.g.
for an oscillator), or it may have many solutions (e.g. a Schmitt trigger). Either situation
is incompatible with the assumption of most simulation tools that the simulation starts
from a uniquely defined initial state. Thus, when attempting to simulate such circuits,
simulators such as SPICE report an error that a DC operating point could not be iden-
tified. To cope with these “errors” designers typically add initial condition statements
(to force particular node voltages or branch currents to particular values), or they avoid
the problem by, for example, starting the circuit in a state with no power applied (so
that all voltages and currents are uniquely zero), ramping the power supply up to the
operating value, and letting the numerical vagaries of the simulation algorithm bring
the circuit to some state. Unfortunately, these methods “solve” the problem of finding a
DC operating point by imposing additional constraints that do not reflect the behavior
of the real circuit. Thus, these techniques can mask true design errors, resulting in a
circuit that works in simulation but fails on the test bench.

1.3 Our Approach

From a formal verification perspective, a circuit with multiple DC operating points is
simply an example of non-determinism: when power is applied, the circuit will converge
to one of these points, but we don’t know which one. This non-determinism need not
be a problem if our analysis examines the circuit’s behavior from an initial state set that
contains all of these points. Likewise, a circuit may have no DC operating point. This
situation means that it never settles to a stable state, which may be the desired behavior;
for example, in an oscillator circuit. In this case, we can verify the designer’s intention
that the circuit has no stable equilibrium points.

In the remainder of this paper, we present a technique for identifying the DC equi-
libria of a circuit and characterizing the stability of these equilibrium points. We do not



claim to solve the intractable problem of finding all roots of a multidimensional, non-
linear function. Instead we use interval arithmetic combined with SAT solving tech-
niques to identify regions that definitely contain (stable) equilibrium points, and regions
that may contain such points. The union of these regions could provide the set of points
in the continuous state space to use for further verification. For example, these regions
appear to be small enough that each such region could be treated as a point by traditional
circuit simulation tools. By computing a collection of regions rather than looking for a
unique DC operating point, we provide a simple and semantically sound alternative to
traditional operating point analysis.

To demonstrate our techniques, we examine a Schmitt trigger and a ring oscillator.
For the Schmitt trigger we are able to definitely determine DC operating points for
all but a small subset of input voltages, and to determine the existence of two such
operating points for midrange inputs, thus confirming the hysteresis (memory) of the
circuit. For n-stage ring oscillators, we are able to determine the existence of two DC
operating points for n even and no such points for n odd, as expected.

These results are generated through a software toolchain. We have written some
software called OOmspice that takes netlist descriptions and circuit parameters and gen-
erates appropriate circuit models for the various subsequent tools, which were written
by others and are publicly available: HySAT, INTLAB, and EigTool.

The rest of the paper is organized as follows: Section 2 describes in detail the
method and tools used to locate and classify DC equilibrium points of a circuit. Sec-
tion 3 demonstrates the approach on the Schmitt trigger and ring oscillator examples.
Section 4 provides a brief overview of related work.

Circuit description

OOmspice

HySAT INTLAB

DCanalysis EigTool

equations f.m

simulation
(waveforms)

Jacobian Interval Matrix

spectra plotsstate space
constraints

Fig. 1. Analysing DC Equilibria.

2 Finding DC Operating Points

Figure 1 diagrams our approach to finding and classifying DC operating points of a
circuit. The designer writes the circuit description as a MATLAB script file using an API
provided by our tool, OOmspice. This description is at the netlist level and resembles
a traditional SPICE input file. From this description, OOmspice produces two represen-
tations for the dynamics of the circuit ( f from Equation 1). The first description is a



system of symbolic equations that can be manipulated by theorem provers and other
verification tools (e.g. HySAT). The second description is a MATLAB function that can
be used for simulation or as a description of the dynamics for the INTLAB tools. As
described in Section 2.2, we use HySAT to identify regions that might contain DC equi-
librium points. Then, INTLAB is used to confirm or refute each proposed equilibrium.
As described in 2.3, in certain boundary conditions, INTLAB may fail to either confirm
or refute the existence of an equilibrium—this situation indicates a boundary case that
calls for non-determinism in higher-level abstractions. Finally, we use EigTool to clas-
sify each equilibrium point as stable, unstable, or indeterminate. The DCanalysis box
in the figure represents the MATLAB functions that we have written to implement these
tests by coordinating the interactions of the tools mentioned above. The remainder of
this section describes each step of this analysis procedure in greater detail.

2.1 OOmspice

We are currently developing a software tool that we call OOmspice: Object Oriented
MATLAB Spice. OOmspice provides a circuit description capability similar to SPICE;
by embedding this description language in MATLAB, designers have the expressive-
ness of a flexible scripting language with loops, conditionals, functions, recursion, etc.
Our emphasis in OOmspice is to provide a common framework to produce models for
formal verification tools based on circuit descriptions that are accessible to practicing
designers. The heart of this translation from netlist to models is an intermediate repre-
sentation of the circuit dynamics based on symbolic equations. OOmspice first creates
a set of equations that corresponds directly to the netlist, and then uses symbolic rewrite
techniques to produce an equivalent but simpler model that can be used by other tools.
This model can be output as a set of symbolic equations for use by symbolic tools
such as HySAT. Alternatively, a MATLAB function can be produced. Using the standard
MATLAB integrators, OOmspice can perform circuit simulations with this function; for
example, the plots of waveforms in Section 3. This MATLAB function for the dynamics
is also used by methods in INTLAB as described in Section 2.3.

2.2 HySAT

HySAT [2] is an unsatisfiability solver for boolean combinations of arithmetic con-
straints. Given such a formula, HySAT will either refute the formula or it will report
a region where the formula might hold. Therefore, we give HySAT the formula that is
satisfied by DC equilibria states. Initially, we give HySAT a formula covering the entire
state space. (e.g. each voltage can be anywhere in [0,Vdd ]). If HySAT refutes the for-
mula, we conclude that the circuit has no DC equilibria, and therefore no DC operating
points. Otherwise, our analysis performs the following two operations on the candidate
region Q (a hyperrectangle) that HySAT has identified:

1. Forward Q to INTLAB for further analysis as described in Section 2.3.
2. Augment the formula that we ask HySAT to analyse to exclude points in Q.

In this manner, we obtain candidate regions that may contain DC equilibria until HySAT
establishes that the remaining space does not contain any equilibrium points.



2.3 INTLAB

For each candidate region Q identified by HySAT, we use INTLAB [6] to further refine
the analysis. For each region considered, INTLAB can produce one of the following
results:

Refutation: In particular, INTLAB can show that there are one or more components of
dx
dt that do not change sign in the hyperrectangle proposed by HySAT, and therefore
that the hyperrectangle cannot contain an equilibrium.

Narrowing: INTLAB can produce a hyperrectangle H that is contained in Q and is
guaranteed to contain an equilibrium point. Recall that the region proposed by
HySAT is only a candidate—it may be devoid of any actual equilibrium points. In
our experience, the region H produced by INTLAB is usually much smaller than the
region originally proposed by HySAT. In fact, candidate HySAT regions comparable
in size with INTLAB solutions can be obtained through a refined tuning of HySAT
options; however, achieving these results in HySAT often dramatically increased its
execution time, while INTLAB could perform this narrowing very quickly.

Corner Cases: It is important to note that while HySAT is guaranteed to refute the ex-
istence of DC equilibrium points if none exist, INTLAB is only guaranteed to verify
the presence of such points if they do. Thus, there is a possibility that INTLAB may
neither refute nor confirm the presence of a DC equilibrium in a region proposed
by HySAT. One possible cause of this situation is that Q contains a multiple root or
closely spaced roots of the function f . This situation indicates a boundary case that
calls for non-determinism in higher-level abstractions. We give such an example in
Section 3.1. Alternatively in the case of closely spaced roots, INTLAB may generate
an H containing one root but give no indication that other roots exist in the region,
thus causing these roots to be missed. We currently do not detect this situation, and
it remains a topic for future work.

For each hyperrectangle H that INTLAB produces that contains an equilibrium, INT-
LAB further produces a Jacobian interval matrix JH for that hyperrectangle. For any
point x ∈ H each element of the Jacobian matrix of f at x is contained in the interval
that is the corresponding element of JH . In this sense, JH contains the Jacobian matri-
ces for all points in H. INTLAB provides a procedure for the Jacobian calculation of
non-linear functions based on automatic differentiation. Automatic differentiation is an
approach to obtain the derivative of the function through a sequence of symbolic deriva-
tion and evaluation (Interval evaluation in INTLAB) of the basic function constituents,
which are combined in accordance with the chain rule [20]. As described in Section 2.4,
we use JH and routines in EigTool to classify each equilibrium point identified at this
step.

2.4 Hurwitz methods and EigTool

To classify an equilibrium as a DC operating point or not, the stability of that equilib-
rium must be determined. As described earlier, the stability of an equilibrium depends
on the real component of the eigenvalues of the Jacobian matrix of the dynamics of the
circuit at that equilibrium. For a single equilibrium point such classification involves



merely computing the eigenvalues of a matrix. Unfortunately, we do not know the pre-
cise location of the equilibrium, but rather a box H which contains it. Therefore, we
examine the eigenvalues of all Jacobian matrices for all states in H. This set of Jacobian
matrices is represented as an interval matrix JH = [AC−∆,AC +∆].

By examining potential eigenvalues of JH , we seek to categorize the stability of
any equilibrium in H into one of three classes: definitely stable, definitely unstable,
and unknown. The former category has been well-studied in the control literature (see,
for example [19]); in simple form, we wish to demonstrate that all eigenvalues of all
matrices within JH have negative real components. Although no necessary and suffi-
cient conditions for stability of non-symmetric interval matrices are available, there is
a simple sufficient test. We say that an interval matrix [AC−∆,AC + ∆] is stable if (the
“Hurwitz test”):

λmax(A′C)+ρ(∆′) < 0, (6)

where A′C = 1/2(AC + AT
C) and ∆′ = 1/2(∆ + ∆T ) are the symmetric components of the

center and offset matrices respectively, λmax(A) is the maximum eigenvalue of the sym-
metric matrix A and ρ(A) is the spectral radius of matrix A [21]. If this test is passed
then H contains a DC operating point.

To declare that H does not contain a DC operating point, we would like to demon-
strate that all matrices in JH have at least one eigenvalue with positive real component
and hence that the DC equilibrium is unstable. Unfortunately, this property does not
seem to have been studied in the interval matrix literature. While we intend to inves-
tigate whether existing methods can be modified to test for this property, for now we
have turned to a less discerning but still rigorous method of demonstrating instability
using the concept of matrix pseudospectra.

The spectrum Λ(A) of a (non-interval, non-symmetric) matrix A is its set of eigen-
values:

Λ(A) = {z ∈ C | det(zI−A) = 0}.
There are several equivalent definitions of the ε-pseudospectrum (for some ε > 0) [1],
but for our purposes the most useful is

Λε = {z ∈ C | z ∈ Λ(A+E) for some E with ‖E‖ ≤ ε}.

In other words, the ε-pseudospectrum contains all points which are eigenvalues of ma-
trices A+E for some matrix E with ε bounded norm. Although any norm can be used in
the definition, we will focus on the 2-norm pseudospectrum because tools are available
to compute it; in particular, we will use EigTool [24].

To demonstrate that all matrices within interval matrix JH = [AC−∆,AC + ∆] have
an eigenvalue with a positive real component, we examine the ε-pseudospectrum of
AC with ε = ‖∆‖2. If that set contains at least one component lying entirely in the
right halfplane, then every matrix in the interval matrix must have at least one un-
stable eigenvalue and we can classify any equilibrium as unstable. Note that like the
Hurwitz test, the pseudospectrum is also a sufficient test, because the set of matrices
AC + E for ‖E‖2 ≤ ‖∆‖2 is a superset of the interval matrix [AC −∆,AC + ∆]. In fact,
the pseudospectrum can also be used to diagnose stability: If all components of the
ε-pseudospectrum lie in the left halfplane then the interval matrix is definitely stable.



The Hurwitz test (Equation 6) is equivalent to examining the real axis component of the
pseudospectrum.

In this paper we use EigTool to graphically plot the desired pseudospectrum (or a
pseudospectrum for larger ε) and perform the test visually. If we are unable in the future
to find a direct test for instability of interval matrices, the algorithms underlying EigTool
could be adapted to produce a more efficient and automated pseudospectrum-based test
by just looking for intersections of the ε-pseudospectrum with the complex axis.

3 Experimental Results

We demonstrate the proposed methodology on two basic circuits: an (inverting) Schmitt
trigger, and ring oscillators built from chains of inverters. For the Schmitt trigger, we
examine the effect of the input signal on the number and properties of DC equilibria.
For the ring oscillator, we examine the effect of the number of inverters on the number
and properties of the DC equilibria. We use a simple, first-order transistor model:

ids = kW
2L (V 2

gsx−V 2
gdx)

where:
k = 270×10−6 A

V 2 , for nfet k = −90×10−6 A
V 2 , for pfet

W = gate width, L = gate length
Vs = source voltage Vg = gate voltage
Vd = drain voltage
Vth = 0.4V, threshold for nfet Vth = −0.4V, threshold for pfet

Vgse = Vg−Vs−Vt Vgde = Vg−Vd −Vt
Vgsx = max(V gse,0), for nfet Vgsx = min(V gse,0), for pfet
Vgdx = max(V gde,0), for nfet Vgdx = min(V gde,0), for pfet

The values for k and Vth are typical for a 180nm CMOS process. The power supply
voltage is 1.8V . For the circuits described here, all n-channel transistors have a shape
factor, W/L, of 8

3 , and all p-channel transistors have a shape factor of 16
3 . Each node has

a capacitance estimated as a weighted sum of the widths of the gates and drains/sources
connected to the node.

The public tools used in the analysis have a number of parameters which affect
their execution; for example, HySAT has parameters which determine the terminal level
of refinement, and EigTool has parameters which determine which pseudospectra to
plot. At present, these parameters are chosen manually for each example, because no
single fixed parameter value is appropriate for all examples. Automatic determination
of suitable parameters is a topic for future study.

3.1 Schmitt Trigger

Figure 2(a) shows an inverting Schmitt trigger circuit whose output behavior exhibits
hysteresis; for the range of input voltages where this hysteresis occurs, the output volt-
age depends on the past output voltage. Starting with input low and output high, a rising
input will eventually cause the output to go low; if the input is now lowered the output
will remain low until the input crosses some much lower voltage threshold; for a plot
of the input/output characteristics see figure 2(b). The hysteretic switching behavior is



(a) Schematic.
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(b) Simulation.
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(c) Equilibrium Regions.

Fig. 2. Schmitt trigger.

useful in level-crossing detectors because it reduces the chances of output chattering.
Schmitt triggers are also used in the implementation of relaxation oscillators or multi-
vibrator circuits.

The DC transfer function of the Schmitt trigger can be determined by examin-
ing the location and properties of its DC equilibria for fixed inputs. For each input
voltage, we perform the analysis described in the previous section: locate potential
DC equilibria and then examine their stability. We sampled the DC characteristics
of the Schmitt trigger for Vin from 0V to 1.8V on a grid with step size 0.01V, and
additional refinement of the grid was performed near the bifurcation regions to nar-
row the interval in which our results were inconclusive. The range of Vout in which
the DC equilibria lie for each sampled Vin are shown in Figure 2(c). The circuit ex-
hibits five qualitatively distinct regions of behavior based on the number of equilibria.
There is a single equilibrium region with high output for Vin ∈ [0,0.642]V, three dis-
tinct equilibrium regions for Vin ∈ [0.649,1.121]V, and a single equilibrium region with
low output for Vin ∈ [1.127,1.8]V. In the narrow intervals Vin ∈ [0.642,0.649]V and
Vin ∈ [1.121,1.127]V HySAT returns a potential equilibrium region which is not vali-
dated by INTLAB to contain an equilibrium, and so our tests are inconclusive. A higher-
level abstraction of the Schmitt trigger should describe a non-deterministic behaviour
in these inconclusive regions. For example, when Vin ∈ [0.642,0.649]V, the output will
remain high if it was previously high. On the other hand, if the output had been low,
then it might remain low, or it might transition to a high-value. Using non-determinism



in this fashion captures the essential properties of the Schmitt trigger circuit without
over-constraining its behavior.
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Fig. 3. Pseudospectra of the interval Jacobians of various DC equilibrium points of the Schmitt
trigger, generated with EigTool.

Next, we examine the stability properties of the equilibria using EigTool. Figure 3
shows the pseudospectra for selected regions containing DC equilibrium points. In each
plot are one or more points representing the eigenvalue(s) of the center matrix AC for
the interval Jacobian for the equilibrium region. Surrounding each eigenvalue are one
or two contours showing the extent of the ε-pseudospectrum for some ε = 10ρ, where ρ
is specified in the bar beside the plot. The stability of an eigenvalue of the interval Jaco-



bian is conclusively determined if the contour corresponding to the 10ρ-pseudospectrum
does not cross the imaginary axis for ρ = log10(‖∆‖2).

For example, figure 3(a) shows the pseudospectrum of the interval Jacobian for the
single DC equilibrium region located for Vin = 1.8V. In this case log10(‖∆‖2) ≈ 6.9
and the largest contour corresponds to ρ = 9.9. The circular contours containing the
two leftmost eigenvalues are clearly in the left halfplane and hence represent stable
behaviors; however, the contour containing the rightmost eigenvalue appears to straddle
the imaginary axis. In order to better characterize this eigenvalue, figure 3(b) zooms in
to show the pseudospectrum for ρ = 6.97 (so ε > ‖∆‖2 still holds) and it becomes clear
that this eigenvalue is also in the left halfplane. Consequently any DC equilibrium in the
specified region of the state space is stable as expected. This fact can also be confirmed
by applying the Hurwitz test to the interval Jacobian.

We can draw a similar conclusion about the single equilibrium region that exists for
Vin = 0.6V from figure 3(c). Note that in this case the leftmost pseudospectrum contour
actually contains two eigenvalues, which merely implies that either eigenvalue could be
anywhere within this contour.

For Vin = 1V HySAT identifies and INTLAB validates three regions containing equi-
libria. The pseudospectra of two of these (corresponding to the highest and lowest Vout )
look similar to those examined above and hence the corresponding equilibria can be
classified as stable. The pseudospectrum for the final region is shown in figure 3(d).
Since the rightmost eigenvalue is clearly in the right halfplane, we can classify this
equilibrium as unstable, and the circuit behaves as expected.

As was mentioned above, there are two regions of the input voltage for which the
equilibrium location procedure was inconclusive: HySAT identified (large) regions in
which an equilibrium could not be ruled out, but INTLAB was unable to validate those
equilibria. An obvious approach would be to treat those regions as suspect and examine
their interval Jacobians. Figure 3(e) shows the pseudospectrum for the interval Jacobian
of the potential equilibrium region identified by HySAT for Vin = 1.124. Because the
equilibrium region is large, the width of the interval matrix is also large (log10(‖∆‖2)≈
10.25) and hence so is the relevant pseudospectrum. It is not surprising but perhaps
comforting that the stability analysis procedure is just as inconclusive as the equilibrium
location procedure in this case: all of the eigenvalues could lie on either side of the
imaginary axis.

3.2 Ring Oscillators

Ring oscillators are often used to characterize fabrication processes and are adapted to
form voltage controlled oscillators in phase locked loops. As illustrated in Figure 4(a), a
ring oscillator is built from inverters connected in series, with the final inverter’s output
feeding back to the first inverter’s input. It should be intuitively clear that for an even
number of stages (inverters) the ring will become stuck (with half the outputs high and
half low) while for an odd number of stages the voltages will oscillate.

We apply the DC equilibrium location procedure for ring oscillators with different
numbers of inverters. Odd rings were found to have a single region containing a DC
equilibrium point while even rings were found to have three such regions. The stability
of the equilibrium in each of these regions can then be analyzed. Figure 5(a) shows
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Fig. 4. 3-Stage Ring Oscillator
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(a) The (unstable) DC equilibrium
point of a 3-stage oscillator (where
log10(‖∆‖2) = 5.376).
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(b) The (unstable) DC equilib-
rium point of a 25-stage oscilla-
tor (where log10(‖∆‖2) = 6.22).
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Fig. 5. Pseudospectra of the interval Jacobians of various DC equilibrium points of ring oscillators
with various numbers of inverters, generated with EigTool.



the pseudospectrum for the interval Jacobian of the single DC equilibrium region of
a 3-stage oscillator, and it is clear that this equilibrium is unstable because there is
an eigenvalue in the right halfplane. Similar results were found for other odd-stage
oscillators; for example, figure 5(b) shows the pseudospectrum for a 25-stage oscillator.
Therefore we conclude that odd-stage oscillators (with no output load) will not get stuck
at a DC equilibrium point.

The same is not true for even-stage oscillators. Figure 5(c) shows the pseudospec-
trum for one of the DC equilibrium regions for a 4-stage oscillator. Both eigenvalues
are in the left halfplane, so this equilibrium is stable. Of the other two DC equilibrium
regions for this oscillator, one was similarly stable and one was unstable. Intuitively this
result makes sense—one of the stable regions corresponds to the first inverter’s output
being high and the other stable region to this output being low. Similar stability results
were confirmed by the Hurwitz test for other even-stage oscillators. From these results
we conclude that even-stage oscillators are likely to become stuck in stable equlibria.

4 Related Work

In recent years, the growing interest in developing formal methods for the verification of
analog and mixed signal (AMS) designs has led to a wide variety of ideas [26]. Overap-
proximation of the reachable states using geometric shapes initially proposed in [9] was
further developed and implemented in several tools [4, 15, 16, 25] among others. Those
reachability methods were used to verify several interesting properties like bounds of
currents and voltages across the circuits, checking stability, and switching conditions.
Fixed point inclusion was the primary mathematical tool to demonstrate the oscillatory
behavior that characterizes certain circuits [3, 15]. Unlike exhaustive reachability analy-
sis, we can deduce properties like stability or instability (a precondition for oscillation)
only by inspecting the corresponding DC behavior. One advantage of our method is
that we avoid the time bounded requirement associated with reachability analysis. Re-
cently, SAT and SAT-modulo-theories approaches have been applied for bounded model
checking (BMC) [12, 13] of AMS designs, where for each step an SMT procedure is
called to check for property satisfaction. Unfortunately, such approach requires the cir-
cuit to be described in an oversimplified manner. Also, inherited from BMC is its partial
verification capability as a complete state space coverage cannot be guaranteed.

From another verification perspective, extending analog simulation with assertions
has recently gained a lot of attention. Initiated with the work done in [17], assertion
based verification was applied to solve a variety of problems [11, 7, 8] that required
monitoring design constraints like voltage bounds and timing requirements. While it
was applied to industrial size designs, assertion methods inherit many problems com-
mon to simulation-based validation, such as coverage limitations and the lack of confi-
dence towards the approximate results provided by simulators.

The problem of finding the DC operating point is critical to the analysis of cir-
cuits, and remains an active area of research (e.g. [18]). From a verification perspective,
[14] employed a search-based approach to verify the start-up conditions for a differ-
ential ring-oscillator. Recent work has explored finding the DC behavior using SAT
based methods [23]. While our approach also uses SAT techniques, our methods go



beyond [23] by providing characterization of the DC equilibria and the ability to work
directly with non-linear models rather than piecewise linear approximations.

Literature touching the different aspects of the formal verification of analog circuits
is quite wide and spans through many different research domains. We highlighted only
the most relevant work while in depth investigations can be found in references therein.
Also the survey [26], can be helpful for the comparison of different approaches.

5 Conclusion

In this paper we have presented a preliminary procedure for locating the equilibria of
an analog circuit model and classifying their stability in order to find the DC operating
point(s) of that circuit. This procedure involves integration of a diverse set of tools
and techniques from formal verification. The procedure was able to successfully locate
and classify the equilibria for all but two tiny intervals (of width 0.007V and 0.006V
out of a total range of 1.8V) of the input for a Schmitt trigger, and for ring oscillators
with moderate numbers of stages (up to 25 so far). The analysis procedure has so far
proved surprisingly scalable; for example, the verification of the 25 stage oscillator
model required less than five minutes, and we have not yet encountered circuits where
the verification takes significantly longer or returns indeterminant results for significant
parts of the state space. The current bottleneck is generation of the symbolic model in
OOmspice (about 20 minutes for the 25 stage oscillator), and we are working on our
code to increase the efficiency of this step.

There are a number of limitations that we plan to address in future work. First,
we are currently using a very simple transistor model because of its convenient sym-
bolic form, but we would like to include the option of more complex, empirically de-
rived models. Second, we need to treat the possibility of multiple roots more rigorously.
Third, we would like to automate the instability test that is currently performed visually
on the output of EigTool. Fourth, we need to provide an automatic translation between
OOmspice netlist and Spice netlist that will be helpful when comparing the presented
approach with the Spice based heuristic methods for DC analysis. Finally, we plan to
tackle circuits with more complex behaviors; for example, we are currently working on
the the Rambus oscillator and an arbiter.
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