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Verification: Safety Analysis
• Does there exist a trajectory of system H leading from 

a state in initial set IIII to a state in terminal set TTTT ?
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Calculating Reach Sets
• Two primary challenges

– How to represent set of reachable states

– How to evolve set according to dynamics

• Discrete systems xxxxkkkk+1 = δδδδ(xxxxkkkk)
– Enumerate trajectories and states
– Efficient representations: Binary Decision Diagrams

• Continuous systems dxdxdxdx/dtdtdtdt = ffff(xxxx)?
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Typical Systems: ODEs
• Common model for continuous state spaces
• Lipschitz continuity of ffff ensures existence of a 

unique trajectory
– Trajectories cannot cross, so boundary of reachable set 

derives from boundary of initial or target set
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Working with Sets
• Optimal control works with a single optimal trajectory
• Verification works with sets of trajectories

– Takes a nondeterministic (but not probabilistic) viewpoint

• Basic construct is reachability
– Many versions: forward and backward, sets or tubes

– When available, what should the input(s) do?

• Many related concepts in control theory
– Invariant sets, controlled invariant sets, stability

• Safety is not the only verification goal
– Liveness is a common goal, but often harder to verify
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Forward Reachability
• Start at initial conditions and compute forward

may be omitted 
if model is clear 

from context
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Backward Reachability
• Start at terminal set and compute backwards
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Exchanging Algorithms
• Algorithms are (mathematically) interchangeable if 

system dynamics can be reversed in time

• For example:
• Then
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Lagrangian Approaches
• “Lagrangian” computation is performed along trajectories of the 

system
– Compare with “Eulerian” computation, which occurs on a grid which 

does not move with the trajectories

• Typically defined in terms of forward reach sets & tubes

• Advantages:  Compact representation of sets, 
overapproximation guarantees, demonstrated high dimensions

• Disadvantages: restricted dynamics, reliance on trajectory 
optimization, restrictive set representation
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Examples of Lagrangian Schemes
• Timed automata

– Derivatives are zero or one; continuous variables are “stopwatches”

– Uppaal [Larsen, Pettersson…], Kronos [Yovine,…], …

• Rectangular differential inclusions (“linear” hybrid automata)
– Derivatives lie in some constant interval
– Hytech, Hypertech [Henzinger, Ho, Horowitz, Wong-Toi, …]

• Polyhedra and (mostly) linear dynamics
– Derivatives are linear (or affine) functions

– Checkmate [Chutinan & Krogh], d/dt [Bournez, Dang, Maler, Pnueli, 
…], PHAVer [Frehse], Coho [Greenstreet, Mitchell, Yan], others 
[Bemporad, Morari, Torrisi, …], …

• Ellipsoids and linear dynamics 
– [Botchkarev, Kurzhanski, Kurzhanskiy, Tripakis, Varaiya, …]

• Zonotopes and linear dynamics

– [Girard, le Guernic & Maler]
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Four Examples of Lagrangian Schemes
• CheckMate & convex polygons
• Zonotopes
• Ellipsoids
• Coho & projectagons

• Note:
– Choices are heavily influenced by my expertise

– I may choose different (and potentially conflicting) variable 
names in these slides when compared with the assigned 
papers
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CheckMate
• Designed to verify properties of Polyhedral Invariant Hybrid 

Automata (PIHA)
– Hybrid automata with invariants/guards defined by conjunctions of 

linear inequalities (convex polyhedra)

• Works by computing an Approximate Quotient Transition 
System (AQTS)
– Discrete transition system which conservatively simulates the 

hybrid automata’s evolution

• Released as an add-on to Mathworks’ Simulink / Stateflow
– Model can be constructed graphically
– Same model can be simulated and verified
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Continuous Algorithm

from Chutinan & Krogh, 
IEEE Trans. AC,
fig. 4, p. 68 (2003)
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Continuous Algorithm’s Issues
• Global nonlinear optimization provides no guarantees

– Dilated convex hull may not contain all possible trajectories

• Trajectories are approximated numerically

• Accomodating inputs requires additional trust in optimization 
procedure

from Chutinan & Krogh, Proc IEEE CDC, fig. 2, p. 2091 & fig. 3, p 2092 (1998)

CheckMate reach tube examples for 
2D Van der Pol model and a 3D linear model
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Constructing the AQTS
• Reach tube construction is used to determine what set of states 

on an incoming polyhedral invariant face maps to which set of 
states on an outgoing polyhedral invariant face

• Sets of states on face are mapped to discrete states in the 
AQTS (with possible subdivisions)

from Chutinan & Krogh, 
IEEE Trans. AC,
fig. 3, p. 67 (2003)
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Primary CheckMate Papers
• Alongkrit Chutinan & Bruce H. Krogh, “Computing Polyhedral 

Approximations to Flow Pipes for Dynamic Systems,” Proc. 
IEEE Conference on Decision & Control, pp. 2089–2094 (1998)
– Details of the scheme for approximating continuous “flow pipes”

(forward reach tubes)

• Alongkrit Chutinan & Bruce H. Krogh, “Verification of Infinite-
State Dynamic Systems using Approximate Quotient Transition 
Systems,” IEEE Trans. on Automatic Control, vol. 46, num. 9, 
pp. 1401–1410 (2001)
– Procedure for constructing the AQTS and hence verifying a model 

for a continuous system, assuming a scheme for computing 
continuous reachable sets

• Alongkrit Chutinan & Bruce H. Krogh, “Computational 
Techniques for Hybrid System Verification,” IEEE Trans. on 
Automatic Control, vol. 48, num. 1, pp. 64–75 (2003)
– Journal version of CDC paper, including proof of flow pipe 

approximation convergence & detailed batch evaporator example

• Numerous other papers (see CheckMate web site)
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CheckMate Outcomes
• Most complete tool for hybrid systems with non-constant 

dynamics
– (Partially) integrated with commercial design package

– Handles hybrid system verification, not just continuous reachability
– Generates counter-examples on failure
– Later work integrated Counter-Example Guided Abstraction 

Refinement (CEGAR) [Clarke, Fehnker, Han, Krogh, Stursberg, 
Theobald, TACAS 2003]

• Unable to move beyond low dimensions
– Polyhedral representation grows too complex
– One proposal: Oriented Rectangular Hull representation [Krogh & 

Stursberg, HSCC 2003]
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A Brief Description of d/dt
• Similar basic idea to CheckMate

– Encorporates “griddy polyhedron”
construction to control complexity 
of full reach set representation

– Various continuous reachability
extensions: competing inputs, 
projections, …

• Many publications
– Eugene Asarin, Olivier Bournez, 

Thao Dang & Oded Maler, 
"Approximate Reachability Analysis 
of Piecewise-Linear Dynamical 
Systems" in Hybrid Systems 
Computation & Control (Nancy 
Lynch & Bruce H. Krogh eds.), 
LNCS 1790, pp. 20-31 (2000)

– Fig. 2, p. 25 shown at right
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Zonotopes
• Representation of general convex polyhedra is too complex in 

higher dimensional spaces

• Instead, choose a category of sets that can be efficiently 
represented

• Zonotopes:
– Image of a hypercube under an affine projection
– Minkowski sum of a finite set of line segments

gggg1
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Zonotope Features
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Linear Dynamics with Bounded Inputs
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Continuous Algorithm
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Conservative Approximations

from Girard,
HSCC 2005,
fig. 2, p. 295
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Further Work
• Complexity of zonotopes in basic algorithm grows with time

– Can conservatively constrain the order of the zonotope

• [Girard, Le Guernic & Maler, HSCC 2006]
– Refactorizes the Minkowski sum to avoid growth of order
– Constructs underapproximations and interval hull approximations
– Discusses extension to hybrid automata (requires set intersection)

• [Girard & Le Guernic, HSCC 2008]
– “Efficient” Algorithm for zonotope intersection with hyperplane

from Girard, HSCC 2005, fig. 4, p. 298 

Reach tube for an oscillatory sink
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Zonotope Outcomes
• Still primarily a research project

– MATISSE tool implements the continuous reachable set 
computation (including HSCC 2006?)

• Demonstrated on continuous toy examples in dimension 100 
(HSCC 2005) and 200 (HSCC 2006)

• Demonstrated on low dimensional hybrid examples

• Zonotope representation has interesting trade-offs
– Difficulty of computing set intersection and (presumably) union may 

make abstraction refinement challenging

– Complexity (zonotope order) can be controlled over a wide range
– Infinity norm bounds require well scaled system dynamics and 

inputs
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Ellipsoids
• An alternative class of sets which can be efficiently represented 

in high dimensions

• Represent as the zero level set of a quadratic function
– So computational costs in a given dimension are similar to LQR or 

Kalman filtering

zzzz

λλλλ1(Z)

λλλλ2(Z)
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Two ellipsoids (red & blue)
and an ellipsoid bounding
their intersection (green) 

Two ellipsoids (red & green), their actual 
Minkowski sum (black), and two ellipsoids 

bounding their Minkowski sum (cyan & blue)

• Compact representation: ½nnnn2 + O(nnnn)

• Operations (union, intersection, Minkowski sum, etc.) on 
ellipsoids rarely give rise to ellipsoids
– However, inner and/or outer bounding ellipsoids of the results can 

often be constructed analytically or by convex optimization

– See various works by Kurzhanski, Kurzhanskiy, Vályi, Varaiya and 
many others

Ellipsoid Features



October 2008 Ian Mitchell (UBC Computer Science) 28

Ellipsoidal Reachability
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External Bounding Ellipses
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• Actual derivation allows dynamics and input set to 
be time-dependent

• Also derived for systems with two inputs: “control”
and “disturbance”
– State xxxx is reachable if there exists an initial 

condition in IIII and a feedback control signal uuuu(·) that 
drives a trajectory to xxxx for every possible 
disturbance signal vvvv(·)

• In practice, compute bounding ellipsoids for 
several different ℓℓℓℓ
– For verification, test if all (outer) or any (inner) 

ellipsoid intersects with the target
– For visualization and other operations, can compute 

bounding ellipsoids for intersections and unions

– Shown at right: two outer and three inner bounding 
ellipsoids; actual reach set is contained in the 
intersection of the outer and the union of the inner

Further Work

from Kurzhanski & Varaiya, 
HSCC 2000, fig. 2 & 3, p. 212–213 
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• Described in a whole series of papers by Kurzhanski & Varaiya

• Implemented in Ellipsoidal Toolbox (ET) by Kurzhanskii
– Documentation for ET provides concise summary of previous work

• Demonstrated in dozens of dimensions

• Demonstrated on low dimensional hybrid problems [Botchkarev
& Tripakis, HSCC 2000] and ET

• Ellipsoid representation has different trade-offs
– Extensive historical work on geometric operations makes extension 

to hybrid system reachability seem more feasible
– Complexity of representation cannot be tuned: always ½nnnn2 + O(nnnn)

– General linear input with ellipsoidal bounds adds flexibility

Ellipsoid Outcomes

from Kurzhanskii, 
ET techrep, 

fig. 7.3, p. 51 
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• Two dimensions is easy: Lots of fast, powerful algorithms
– Can we design an algorithm that primarily works in two dimensional 

subsets of the full state space?

• “Projectagons”
– Subset of high dimensional polyhedrons which can be represented 

as the intersection of a collection of prisms
– Each prism is the infinite extension (into the other dimensions) of a 

bounded (potentially nonconvex) two dimensional polygon

– We actually track only the two dimensional projections

Coho & Projectagons

from Greenstreet & Mitchell
HSCC 1999, fig. 1, p. 104
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Evolving a Projection (1)
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Evolving a Projection (2)
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• Geometry and mathematics are well separated
– Geometry operations in Java, linear programs (LPs) and model 

computation in Matlab

• LPs are nasty
– Lots of (nearly) redundant and (nearly) degenerate inequalities
– Lots of sparsity (only two nonzeros per row)
– Need to walk the projection (start from nearly optimal point)

– Need guaranteed optimum for guaranteed overapproximation
– Led to specialized LP implementation by Laza & Yan: takes 

advantage of special structure, uses regular floating point 
calculations to start but guarantees solution accuracy through 
interval arithmetic and if necessary arbitrary precision arithmetic

• Careful simplification of projections is important
– Need to keep number of edges under control, but accuracy 

degrades significantly if nonconvexity is removed

• Choice of projections is not always obvious

Practical Aspects
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• Implemented at UBC in Coho toolset

• Demonstrated on seven dimensional realistic circuit model of a 
toggle element [Yan & Greenstreet, FMCAD 2007]
– Included verification of composability to construct a ripple counter

• Projectagons are not as scalable as zonotopes & ellipsoids, but 
can represent nonconvex reach sets
– Ample opportunity for parallelization

• Algorithm has considered automatic construction of linear plus 
error models from nonlinear circuit models

Coho Outcomes

from Greenstreet & Mitchell, HSCC 1999, fig. 6, p. 113 from Yan & Greenstreet, FMCAD 2007, fig. 6, p. 205
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Three Other General Approaches
• Eulerian methods (fixed grid reachability)
• State space decomposition (discrete reachability)
• Lyapunov-like methods
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Eulerian Approaches
• Time dependent Hamilton-Jacobi

– Lygeros, Mitchell, Tomlin, Sastry
– Finite horizon terminal value
– Continuous implicit representation

• Static Hamilton-Jacobi 
– Falcone, Ferretti, Soravia, Sethian, Vladimirsky
– Minimum time to reach
– (Dis)continuous implicit representation

• Viability kernels 
– Saint-Pierre, Aubin, Quincampoix, Lygeros
– Based on set valued analysis for very general dynamics
– Discrete implicit representation
– Overapproximation guarantee

• Backward reachability approach typical of Eulerian algorithms
– Representation not moving (although it may adapt)
– Generally handle nonlinear and multiple inputs
– No examples beyond four dimensions?
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State Space Decomposition
• Partition state space and compute reachability over partition

• Examples
– Uniform grids: Kurshan & MacMillan, Belta and many others

– Timed Automata “Region Graph”: Alur & Dill
– Cylindrical Algebraic Decomposition: Tiwari & Khanna

• Advantages: No need to integrate dynamics, direct control over 
size of representation

• Disadvantages: Restricted classes of dynamics, “wrapping”
problem (discrete system has transitions that do not exist in 
continuous system)
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Lyapunov-like Methods
• Invariant sets are isosurfaces of Lyapunov-like functions

• Examples:
– Convex optimization: Boyd, Hindi, Hassibi

– Sum of Squares: Prajna, Papachristodoulou, Parrilo

• Advantages: Short certificate proves analytic invariance, no 
need to integrate dynamics

• Disadvantages: Restricted class of dynamics, no refinement 
parameter to reduce false negatives, difficult to extract 
counterexamples
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