Lagrangian Approaches to Forward Reachability in Continuous State Spaces

Ian Mitchell
Department of Computer Science
The University of British Columbia

research supported by
National Science and Engineering Research Council of Canada

Verification: Safety Analysis

- Does there exist a trajectory of system H leading from a state in initial set I to a state in terminal set T ?

Trajectory $\xi_{\mathrm{H}}(s ; z, t): \mathbb{T} \rightarrow \mathbb{Z}$

- $\mathbb{T}=[-\mathcal{T},+\mathcal{T}]$ is time interval
- \mathbb{Z} is state space of H
- $s \in \mathbb{T}$ is current time
- $z \in \mathbb{Z}$ is initial state
- $t \in \mathbb{T}$ is initial time

Assumption:
Given z and t
trajectory is unique

```
terminal set T
```


Calculating Reach Sets

- Two primary challenges
- How to represent set of reachable states
- How to evolve set according to dynamics
- Discrete systems $x_{k+1}=\boldsymbol{\delta}\left(x_{k}\right)$
- Enumerate trajectories and states
- Efficient representations: Binary Decision Diagrams
- Continuous systems $d x / d t=f(x)$?

Typical Systems: ODEs

- Common model for continuous state spaces
- Lipschitz continuity of f ensures existence of a unique trajectory
- Trajectories cannot cross, so boundary of reachable set derives from boundary of initial or target set

ODE $\dot{z}(t)=f(z(t))$
with initial conditions $z\left(t_{0}\right)=z_{0}$ gives rise to trajectory $\xi_{H_{C}}\left(t ; z_{0}, t_{0}\right)$ where

- $f: \mathbb{Z} \rightarrow \mathbf{T} \mathbb{Z}$ are (Lipschitz) dynamics
- Often $\mathbb{Z} \subseteq \mathbb{R}^{d_{z}}$

System specified by $\mathrm{H}_{\mathrm{C}}=(\mathbb{Z}, f)$

Working with Sets

- Optimal control works with a single optimal trajectory
- Verification works with sets of trajectories
- Takes a nondeterministic (but not probabilistic) viewpoint
- Basic construct is reachability
- Many versions: forward and backward, sets or tubes
- When available, what should the input(s) do?
- Many related concepts in control theory
- Invariant sets, controlled invariant sets, stability
- Safety is not the only verification goal
- Liveness is a common goal, but often harder to verify

Forward Reachability

- Start at initial conditions and compute forward

Backward Reachability

- Start at terminal set and compute backwards

Exchanging Algorithms

- Algorithms are (mathematically) interchangeable if system dynamics can be reversed in time

$$
\begin{gathered}
\text { Backward dynamic system } \overleftarrow{H} \\
\text { such that } \forall s, t \in \mathbb{T} \\
\xi_{\mathrm{H}}(s ; z, t)=\bar{z} \Longleftrightarrow \xi_{\overleftarrow{H}}(s ; \bar{z}, t)=z
\end{gathered}
$$

- For example: $\overleftarrow{\mathrm{H}_{\mathrm{C}}}=(\mathbb{Z},-f)$
- Then

$$
\begin{aligned}
F(\mathrm{H}, S,[0, t]) & =B(\overleftarrow{\mathrm{H}}, S,[0, t]) \\
F(\mathrm{H}, S, t) & =B(\overleftarrow{\mathrm{H}}, S, t)
\end{aligned}
$$

Lagrangian Approaches

- "Lagrangian" computation is performed along trajectories of the system
- Compare with "Eulerian" computation, which occurs on a grid which does not move with the trajectories
- Typically defined in terms of forward reach sets \& tubes
- Advantages: Compact representation of sets, overapproximation guarantees, demonstrated high dimensions
- Disadvantages: restricted dynamics, reliance on trajectory optimization, restrictive set representation

Examples of Lagrangian Schemes

- Timed automata
- Derivatives are zero or one; continuous variables are "stopwatches"
- Uppaal [Larsen, Pettersson...], Kronos [Yovine,...], ...
- Rectangular differential inclusions ("linear" hybrid automata)
- Derivatives lie in some constant interval
- Hytech, Hypertech [Henzinger, Ho, Horowitz, Wong-Toi, ...]
- Polyhedra and (mostly) linear dynamics
- Derivatives are linear (or affine) functions
- Checkmate [Chutinan \& Krogh], d/dt [Bournez, Dang, Maler, Pnueli, .], PHAVer [Frehse], Coho [Greenstreet, Mitchell, Yan], others [Bemporad, Morari, Torrisi, ...], ...
- Ellipsoids and linear dynamics
- [Botchkarev, Kurzhanski, Kurzhanskiy, Tripakis, Varaiya, ...]
- Zonotopes and linear dynamics
- [Girard, le Guernic \& Maler]

Four Examples of Lagrangian Schemes

- CheckMate \& convex polygons
- Zonotopes
- Ellipsoids
- Coho \& projectagons
- Note:
- Choices are heavily influenced by my expertise
- I may choose different (and potentially conflicting) variable names in these slides when compared with the assigned papers

CheckMate

- Designed to verify properties of Polyhedral Invariant Hybrid Automata (PIHA)
- Hybrid automata with invariants/guards defined by conjunctions of linear inequalities (convex polyhedra)
- Works by computing an Approximate Quotient Transition System (AQTS)
- Discrete transition system which conservatively simulates the hybrid automata's evolution
- Released as an add-on to Mathworks' Simulink / Stateflow
- Model can be constructed graphically
- Same model can be simulated and verified

Continuous Algorithm

- Start with an initial set X_{0}
- Reach set $V_{t_{k}}\left(X_{0}\right)$ at a later time t_{k} can be determined by simulating trajectories from each vertex of X_{0}
- Given reach set at t_{k} and t_{k+1}, initial approximation of reach tube for $\left[t_{k}, t_{k+1}\right]$ is convex hull of $V_{t_{k}}\left(X_{0}\right)$ and $V_{t_{k+1}}\left(X_{0}\right)$
- Trajectories may curve, so use optimization to push edges of convex hull outward until reach tube contains all reachable states
- For linear dynamics $\dot{x}=\mathbf{A} x$, analytic solution is $\xi\left(t ; x_{0}, t_{0}\right)=e^{\mathbf{A}\left(t-t_{0}\right)} x_{0}$, so optimization is a linear program for any fixed t (easy to solve)

from Chutinan \& Krogh, IEEE Trans. AC, fig. 4, p. 68 (2003)

Continuous Algorithm's Issues

- Global nonlinear optimization provides no guarantees
- Dilated convex hull may not contain all possible trajectories
- Trajectories are approximated numerically
- Accomodating inputs requires additional trust in optimization procedure

CheckMate reach tube examples for
2D Van der Pol model and a 3D linear model

from Chutinan \& Krogh, Proc IEEE CDC, fig. 2, p. 2091 \& fig. 3, p 2092 (1998)

Constructing the AQTS

- Reach tube construction is used to determine what set of states on an incoming polyhedral invariant face maps to which set of states on an outgoing polyhedral invariant face
- Sets of states on face are mapped to discrete states in the AQTS (with possible subdivisions)

Primary CheckMate Papers

- Alongkrit Chutinan \& Bruce H. Krogh, "Computing Polyhedral Approximations to Flow Pipes for Dynamic Systems," Proc. IEEE Conference on Decision \& Control, pp. 2089-2094 (1998)
- Details of the scheme for approximating continuous "flow pipes" (forward reach tubes)
- Alongkrit Chutinan \& Bruce H. Krogh, "Verification of InfiniteState Dynamic Systems using Approximate Quotient Transition Systems," IEEE Trans. on Automatic Control, vol. 46, num. 9, pp. 1401-1410 (2001)
- Procedure for constructing the AQTS and hence verifying a model for a continuous system, assuming a scheme for computing continuous reachable sets
- Alongkrit Chutinan \& Bruce H. Krogh, "Computational Techniques for Hybrid System Verification," IEEE Trans. on Automatic Control, vol. 48, num. 1, pp. 64-75 (2003)
- Journal version of CDC paper, including proof of flow pipe approximation convergence \& detailed batch evaporator example
- Numerous other papers (see CheckMate web site)

CheckMate Outcomes

- Most complete tool for hybrid systems with non-constant dynamics
- (Partially) integrated with commercial design package
- Handles hybrid system verification, not just continuous reachability
- Generates counter-examples on failure
- Later work integrated Counter-Example Guided Abstraction Refinement (CEGAR) [Clarke, Fehnker, Han, Krogh, Stursberg, Theobald, TACAS 2003]
- Unable to move beyond low dimensions
- Polyhedral representation grows too complex
- One proposal: Oriented Rectangular Hull representation [Krogh \& Stursberg, HSCC 2003]

A Brief Description of d / dt

- Similar basic idea to CheckMate
- Encorporates "griddy polyhedron" construction to control complexity of full reach set representation
- Various continuous reachability extensions: competing inputs, projections, ...
- Many publications
- Eugene Asarin, Olivier Bournez, Thao Dang \& Oded Maler, "Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems" in Hybrid Systems Computation \& Control (Nancy Lynch \& Bruce H. Krogh eds.), LNCS 1790, pp. 20-31 (2000)
- Fig. 2, p. 25 shown at right

Zonotopes

- Representation of general convex polyhedra is too complex in higher dimensional spaces
- Instead, choose a category of sets that can be efficiently represented
- Zonotopes:
- Image of a hypercube under an affine projection
- Minkowski sum of a finite set of line segments
$Z=\left(c,<g_{1}, \ldots, g_{p}>\right)$ denotes

$$
Z=\left\{x \in \mathbb{R}^{n} \mid x=c+\sum_{i=1}^{i=p} \lambda_{i} g_{i}, \lambda_{i} \in[-1,+1]\right\}
$$

where $c, g_{1}, g_{2}, \ldots, g_{p}$ are vectors in \mathbb{R}^{n}

$$
Z=\left(c,<g_{1}, g_{2}, g_{3}>\right)
$$

Zonotope Features

- Compact representation: storage cost $n(p+1)$
- Closed under linear transformation: if $\mathcal{L} x=\mathbf{A} x+b$ then

$$
\mathcal{L} Z=\left(\mathcal{L} c,<\mathcal{L} g_{1}, \ldots, \mathcal{L} g_{p}>\right)
$$

- Closed under Minkowski sum:

$$
Z^{(1)}+Z^{(2)}=\left(c^{(1)}+c^{(2)},<g_{1}^{(1)}, \ldots, g_{p^{(1)}}^{(1)}, g_{1}^{(2)}, \ldots, g_{p^{(2)}}^{(2)}>\right)
$$

- Conversion to other representations can be expensive; for example, a zonotope may have $2 p$ choose $n-1$ facets
- Computation of intersection and union may be difficult; for example, see [Girard \& Le Guernic, HSCC 2006]

Linear Dynamics with Bounded Inputs

Restrict class of ODEs to the form

$$
\dot{x}=\mathbf{A} x+u, \quad u \in U
$$

where U in this case is a hypercube

$$
U=\left\{u \in \mathbb{R}^{n} \mid\|u\|_{\infty} \leq \mu\right\}
$$

- $f(x, u)=\mathbf{A} x+u$ is Lipschitz in x, so standard existence and uniqueness results apply
- Trajectories now denoted by $\xi\left(t ; x_{0}, t_{0}, u(\cdot)\right)$ where function $u(\cdot): \mathbb{R} \rightarrow U$ is an input signal
- Reach set with fixed (but not necessarily constant) input signal is the same as the input-free case
- Reach set with general input signal is the union over all possible fixed input signals

Continuous Algorithm

- Decompose full reach tube into segments

$$
F(I,[0, T])=\bigcup_{i} F(I,[i r,(i+1) r])
$$

for some small timestep r

- Time-independent ODEs have the semigroup property

$$
\xi\left(t_{1}+t_{2} ; x_{0}, 0\right)=\xi\left(t_{2} ; \xi\left(t_{1} ; x_{0}, 0\right), t_{1}\right)
$$

We can use the semigroup property to deduce

$$
F(I,[i r,(i+1) r])=F(F(I,[(i-1) r, i r]), r)
$$

- Therefore, if we can conservatively approximate $F(I,[0, r])$ and $F(Z, r)$ for any Z, we can conservatively approximate $F(I,[0, T])$

Conservative Approximations

- Let $\|\cdot\|=\|\cdot\|_{\infty}$, "+" for sets be interpreted as the Minkowski sum and $\square(\rho)=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq \rho\right\}$ (which is a zonotope)
- $F(Z, r) \subseteq e^{r \mathrm{~A}} Z+\square\left(\beta_{r}\right)$ where

$$
\beta_{r}=\frac{e^{r\|\mathbf{A}\|}-1}{\|\mathbf{A}\|} \mu,
$$

- $F(Z,[0, r]) \subseteq P+\square\left(\alpha_{r}+\beta_{r}\right)$ where

$$
\left.\left.\begin{array}{rl}
\alpha_{r} & =\left(e^{r\|\mathbf{A}\|}-1-r\|\mathbf{A}\|\right) \sup _{x \in Z}\|x\| \\
P & =\frac{1}{2}\left(c+e^{r \mathbf{A}} c,\left\langle\begin{array}{c}
g_{1}+e^{r \mathbf{A}} g_{1}, \ldots, g_{p}+e^{r \mathbf{A}} g_{p}, \\
c-e^{r \mathbf{A}} c, \\
g_{1}-e^{r \mathbf{A}} g_{1}, \ldots, g_{p}-e^{r \mathbf{A}} g_{p}
\end{array}\right\rangle\right.
\end{array}\right\rangle\right)
$$

HSCC 2005,
fig. 2, p. 295

- These approximations can be shown to converge (in the Hausdorff metric) as $r \rightarrow 0$

Further Work

- Complexity of zonotopes in basic algorithm grows with time
- Can conservatively constrain the order of the zonotope
- [Girard, Le Guernic \& Maler, HSCC 2006]
- Refactorizes the Minkowski sum to avoid growth of order
- Constructs underapproximations and interval hull approximations
- Discusses extension to hybrid automata (requires set intersection)
- [Girard \& Le Guernic, HSCC 2008]
- "Efficient" Algorithm for zonotope intersection with hyperplane

Reach tube for an oscillatory sink

Zonotope Outcomes

- Still primarily a research project
- MATISSE tool implements the continuous reachable set computation (including HSCC 2006?)
- Demonstrated on continuous toy examples in dimension 100 (HSCC 2005) and 200 (HSCC 2006)
- Demonstrated on low dimensional hybrid examples
- Zonotope representation has interesting trade-offs
- Difficulty of computing set intersection and (presumably) union may make abstraction refinement challenging
- Complexity (zonotope order) can be controlled over a wide range
- Infinity norm bounds require well scaled system dynamics and inputs

Ellipsoids

- An alternative class of sets which can be efficiently represented in high dimensions
- Represent as the zero level set of a quadratic function
- So computational costs in a given dimension are similar to LQR or Kalman filtering

Ellipsoid $\mathcal{E}(z, \mathbf{Z}) \subset \mathbb{R}^{n}$ is specified by

$$
\mathcal{E}(z, \mathbf{Z})=\left\{x \in \mathbb{R}^{d} \mid(x-z)^{T} \mathbf{Z}^{-1}(x-z) \leq 1\right\}
$$

where $\mathbf{Z} \in \mathbb{R}^{n \times n}$ is the symmetric positive definite shape matrix and $z \in \mathbb{R}^{n}$ is the center

Ellipsoid Features

- Compact representation: $1 / 2 n^{2}+\mathcal{O}(n)$
- Operations (union, intersection, Minkowski sum, etc.) on ellipsoids rarely give rise to ellipsoids
- However, inner and/or outer bounding ellipsoids of the results can often be constructed analytically or by convex optimization
- See various works by Kurzhanski, Kurzhanskiy, Vályi, Varaiya and
many others

Two ellipsoids (rèd \& blue) and an ellipsoid bounding their intersection (green)

Two ellipsoids (red \& green), théir áctual Minkowski sum (black), and two ellipsoids bounding their Minkowski sum (cyan \& blue)

Ellipsoidal Reachability

- Restrict dynamics to be linear

$$
\dot{x}=\mathbf{A} x+\mathbf{B} u
$$

where A, B are matrices, and input $u \in U=\mathcal{E}(p, \mathbf{P})$

- Even if $I=\mathcal{E}\left(x_{0}, \mathbf{X}_{0}\right)$, reach set $F(I, t)$ is not an ellipse
- It is possible to construct tight external and internal bounding ellipses which touch the reach set at known points $\ell^{*}(t)$
- Choose $\ell^{*}(t)$ as a solution to the adjoint of the homogenous dynamics

$$
\dot{\ell}^{*}=-\mathbf{A}^{T} \ell^{*} \quad \text { for some } \ell^{*}(0)=\ell_{0}
$$

so $\ell^{*}(t)=e^{-\mathbf{A}^{T} t} \ell_{0}$

- We can write a recurrance for the tight ellipsoids' parameters

External Bounding Ellipses

- Construct outer bounding ellipsoid

$$
X_{\ell}^{+}(t)=\mathcal{E}\left(x_{c}(t), \mathbf{X}_{\ell}^{+}(t)\right) \text { such that } F(I, t) \subseteq X_{\ell}^{+}(t)
$$

- Center is just a trajectory (remember $u \in \mathcal{E}(p, \mathbf{P})$)

$$
\dot{x}_{c}(t)=\mathbf{A} x_{c}(t)+\mathbf{B} p \quad x_{c}(0)=x_{0}
$$

- Shape satisfies a matrix ODE

$$
\begin{aligned}
\dot{\mathbf{X}}_{\ell}^{+}(t) & =\mathbf{A X}_{\ell}^{+}(t)+\mathbf{X}_{\ell}^{+}(t) \mathbf{A}^{T}+\pi_{\ell}(t) \mathbf{X}_{\ell}^{+}(t)+\frac{\mathbf{B P B}^{T}}{\pi_{\ell}(t)} \\
\mathbf{X}_{\ell}^{+}(0) & =\mathbf{X}_{0} \\
\pi_{\ell}(t) & =\left(\frac{\ell^{T} \mathbf{Y}(t) \mathbf{B P B}^{T} \mathbf{Y}^{T}(t) \ell}{\ell^{T} \mathbf{Y}(t) \mathbf{X}_{\ell}^{+}(t) \mathbf{Y}^{T}(t) \ell}\right)^{\frac{1}{2}} \\
\mathbf{Y}(t) & =e^{\mathbf{A} t}
\end{aligned}
$$

- A similar recurrance can be defined for an inner ellipsoid $X_{\ell}^{-}(t)$ such that $X_{\ell}^{-}(t) \subseteq F(I, t)$

Further Work

- Actual derivation allows dynamics and input set to be time-dependent
- Also derived for systems with two inputs: "control" and "disturbance"
- State x is reachable if there exists an initial condition in I and a feedback control signal $u(\cdot)$ that drives a trajectory to x for every possible disturbance signal $v(\cdot)$
- In practice, compute bounding ellipsoids for several different ℓ
- For verification, test if all (outer) or any (inner) ellipsoid intersects with the target
- For visualization and other operations, can compute bounding ellipsoids for intersections and unions
- Shown at right: two outer and three inner bounding ellipsoids; actual reach set is contained in the intersection of the outer and the union of the inner

from Kurzhanski \& Varaiya, HSCC 2000, fig. 2 \& 3, p. 212-213

Ellipsoid Outcomes

- Described in a whole series of papers by Kurzhanski \& Varaiya
- Implemented in Ellipsoidal Toolbox (ET) by Kurzhanskii
- Documentation for ET provides concise summary of previous work
- Demonstrated in dozens of dimensions
- Demonstrated on low dimensional hybrid problems [Botchkarev \& Tripakis, HSCC 2000] and ET
- Ellipsoid representation has different trade-offs
- Extensive historical work on geometric operations makes extension to hybrid system reachability seem more feasible
- Complexity of representation cannot be tuned: always $1 / 2 n^{2}+\mathcal{O}(n)$
- General linear input with ellipsoidal bounds adds flexibility

Coho \& Projectagons

- Two dimensions is easy: Lots of fast, powerful algorithms
- Can we design an algorithm that primarily works in two dimensional subsets of the full state space?
- "Projectagons"
- Subset of high dimensional polyhedrons which can be represented as the intersection of a collection of prisms
- Each prism is the infinite extension (into the other dimensions) of a bounded (potentially nonconvex) two dimensional polygon
- We actually track only the two dimensional projections

Projections
from Greenstreet \& Mitchell HSCC 1999, fig. 1, p. 104

Maximal
Reachable
Space

Evolving a Projection (1)

- Let projectagon be P and the prism represented by projection j be P_{j}, so $P=\cap_{j} P_{j}$
- Then $\mathrm{CH}(P) \subseteq \cap_{j} \mathrm{CH}\left(P_{j}\right)$, where $\mathrm{CH}(P)$ is the convex hull of P
- $\mathrm{CH}\left(P_{j}\right)$ is easily computed and can be represented by the conjuction of a set of linear inequalities
- Loosen ("bloat") all inequalities by ϵ
- Now consider an individual edge e_{i} in the two dimensional projection of P_{j}, which corresponds to a face of P
- Construct a box bounding all states within ϵ of e_{i} (also a conjuction of linear inequalities)
- The conjunction of all of the inequalities represents all states within ϵ of the face of P corresponding to e_{i}

Evolving a Projection (2)

- Construct an affine plus error model $\dot{x}=\mathbf{A} x+b+u$ for $u \in U$ and U a hyperrectangle that is valid within the conjunction of all these linear inequalities
- The forward time mapping of states under this dynamic is linear (if $b=0$ and $U=\emptyset$ then it is $e^{\mathbf{A} t}$)
- Use linear programming to compute the polygonal projection of the forward time mapping of e_{i}
- Repeat for all edges in the projection
- Compute the union of all forward time polygons (and all states inside that union)
- Simplify if necessary
- Repeat for all projections
- Repeat for next timestep

Practical Aspects

- Geometry and mathematics are well separated
- Geometry operations in Java, linear programs (LPs) and model computation in Matlab
- LPs are nasty
- Lots of (nearly) redundant and (nearly) degenerate inequalities
- Lots of sparsity (only two nonzeros per row)
- Need to walk the projection (start from nearly optimal point)
- Need guaranteed optimum for guaranteed overapproximation
- Led to specialized LP implementation by Laza \& Yan: takes advantage of special structure, uses regular floating point calculations to start but guarantees solution accuracy through interval arithmetic and if necessary arbitrary precision arithmetic
- Careful simplification of projections is important
- Need to keep number of edges under control, but accuracy degrades significantly if nonconvexity is removed
- Choice of projections is not always obvious

Coho Outcomes

- Implemented at UBC in Coho toolset
- Demonstrated on seven dimensional realistic circuit model of a toggle element [Yan \& Greenstreet, FMCAD 2007]
- Included verification of composability to construct a ripple counter
- Projectagons are not as scalable as zonotopes \& ellipsoids, but can represent nonconvex reach sets
- Ample opportunity for parallelization
- Algorithm has considered automatic construction of linear plus error models from nonlinear circuit models

from Greenstreet \& Mitchell, HSCC 1999, fig. 6, p. 113 Ian Mitchell (UBC Computer Science)

Three Other General Approaches

- Eulerian methods (fixed grid reachability)
- State space decomposition (discrete reachability)
- Lyapunov-like methods

Eulerian Approaches

- Time dependent Hamilton-Jacobi
- Lygeros, Mitchell, Tomlin, Sastry
- Finite horizon terminal value
- Continuous implicit representation
- Static Hamilton-Jacobi
- Falcone, Ferretti, Soravia, Sethian, Vladimirsky
- Minimum time to reach
- (Dis)continuous implicit representation
- Viability kernels
- Saint-Pierre, Aubin, Quincampoix, Lygeros
- Based on set valued analysis for very general dynamics
- Discrete implicit representation
- Overapproximation guarantee
- Backward reachability approach typical of Eulerian algorithms
- Representation not moving (although it may adapt)
- Generally handle nonlinear and multiple inputs
- No examples beyond four dimensions?

State Space Decomposition

- Partition state space and compute reachability over partition
- Examples
- Uniform grids: Kurshan \& MacMillan, Belta and many others
- Timed Automata "Region Graph": Alur \& Dill
- Cylindrical Algebraic Decomposition: Tiwari \& Khanna
- Advantages: No need to integrate dynamics, direct control over size of representation
- Disadvantages: Restricted classes of dynamics, "wrapping" problem (discrete system has transitions that do not exist in continuous system)

Lyapunov-like Methods

- Invariant sets are isosurfaces of Lyapunov-like functions
- Examples:
- Convex optimization: Boyd, Hindi, Hassibi
- Sum of Squares: Prajna, Papachristodoulou, Parrilo
- Advantages: Short certificate proves analytic invariance, no need to integrate dynamics
- Disadvantages: Restricted class of dynamics, no refinement parameter to reduce false negatives, difficult to extract counterexamples

Lagrangian Approaches to Forward Reachability in Continuous State Spaces

For more information contact

Ian Mitchell
Department of Computer Science
The University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell

