
CPSC 513: Integrated Systems Design
Introduction to Formal Verification

Ian Mitchell
Department of Computer Science
The University of British Columbia

On behalf of 
Mark Greenstreet & Alan Hu

Integrated Systems Design Lab

Fall Semester, 2008-2009



9 Sept 08 Ian Mitchell (UBC Computer Science) 2

What is Verification?

product creation
(one engineer’s view)

market research
& funding

product
engineering

sales &
support

design
verification
& validation

production testing

informal formal

simulation

emulation

model checking theorem proving

equivalence
checking

Lyapunov
functions



9 Sept 08 Ian Mitchell (UBC Computer Science) 3

Why Use Formal Verification?
• Preproduction verification & validation

– Physical prototypes are too slow, costly, complex, and/or 
dangerous to use during iterative design

– Much cheaper to discover bugs earlier in the design process

• Simulation for early design work
– User designed test cases can find most bugs
– Random testing can uncover unexpected bugs

– Comprehensive input and/or behavior coverage is often impossible

• Verification for (some) late design work
– Safety critical or high reliability applications must not fail
– May be easier, cheaper and/or faster to apply formal methods than 

to design comprehensive tests



9 Sept 08 Ian Mitchell (UBC Computer Science) 4

Course Topics I
• Introduction

– Overview: why should you take this course?

– Administrivia: how do you get a good grade (and hopefully learn 
something)?

• Circuit equivalence, BDDs and SAT
• Dynamic models and logics

– Transition systems, finite state machines & automata
– Well-posed models, Markovian assumption, nondeterminism
– Temporal logics: CTL

– Safety, liveness & fairness

• Model checking
– Explicit state
– Symbolic

• Software verification



9 Sept 08 Ian Mitchell (UBC Computer Science) 5

Course Topics II
• Fixpoint methods

– Concurrent models: synchronous & asynchronous

– Weakest precondition
– Invariants & progress functions
– Synchronized Transitions

• Timed automata
– Finite state bisimulation

• Hybrid systems
– Differential equations for continuous systems
– Well-posed hybrid models
– Lyapunov functions

– Reachability

• Models of computation
– Soundness, completeness and complexity
– Moving between MoCs



9 Sept 08 Ian Mitchell (UBC Computer Science) 6

Administrivia
• http://www.cs.ubc.ca/~mitchell/Class/CS513.2008W1

• Prerequisites:
– Graduate standing (CS, math, engineering)

– Backgrounds vary, so will try to keep course self-contained
– Be comfortable with logic and proof

• Grades
– 3 – 5 homework assignments and/or leading class discussions
– Course project (proposal, oral presentation, written report)

• Collaboration
– Work together on the problem, but write your own solutions

– Cite your sources

• References
– No required text
– No course notes

– Many research papers



9 Sept 08 Ian Mitchell (UBC Computer Science) 7

Conceptual Framework
• Models

– How do we describe the behavior of the system?

– Circuits, finite state machines, programs, differential equations, …

• Goals
– What verification or validation task would we like to accomplish?
– Equivalence, safety, liveness, fairness, refinement, …

• Techniques
– What mathematical framework allows us to formally state the 

problem and determine a solution?

– Canonical forms, reachable sets, restricted design languages, 
Lyapunov functions, fixpoint iteration, …

• Tools
– How do we implement the operations of our technique?
– Binary decision diagrams, Hamilton-Jacobi PDEs, compilers, …

• Case studies
– Real problems validated or verified


