
13 Sept 05 Ian Mitchell (UBC Computer Science) 4

Course Topics I
• Introduction

– Overview: why should you take this course?

– Administrivia: how do you get a good grade (and hopefully learn 
something)?

• Circuit equivalence and BDDs
– Canonical representations
– Binary Decision Diagrams

• Dynamic models and logics
– Transition systems, finite state machines & automata

– Well-posed models, Markovian assumption, nondeterminism
– Temporal logics: CTL
– Safety, liveness & fairness

• Model checking
– Explicit state
– Symbolic

13 Sept 05 Ian Mitchell (UBC Computer Science) 5

Course Topics II
• Fixpoint methods

– Concurrent models: synchronous & asynchronous

– Weakest precondition
– Invariants & progress functions
– Synchronized Transitions

• Timed automata
– Finite state bisimulation

• Hybrid systems
– Differential equations for continuous systems
– Well-posed hybrid models
– Lyapunov functions

– Reachability

• Models of computation
– Soundness, completeness and complexity
– Moving between MoCs



13 Sept 05 Ian Mitchell (UBC Computer Science) 6

Administrivia
• http://www.cs.ubc.ca/~mitchell/Class/CS513.2005
• Prerequisites:

– Graduate standing (CS, math, engineering)
– Backgrounds vary, so will try to keep course self-contained
– Be comfortable with logic and proof

• Grades
– 3 – 5 homework assignments
– Midterm and/or final exam
– Mini-project (essentially a project proposal)

• Collaboration
– work together on the problem, but write your own solutions
– cite your sources

• References
– No required text
– No course notes
– Many research papers

13 Sept 05 Ian Mitchell (UBC Computer Science) 7

Conceptual Framework
• Models

– How do we describe the behavior of the system?

– Circuits, finite state machines, programs, differential equations, …

• Goals
– What verification or validation task would we like to accomplish?
– Equivalence, safety, liveness, fairness, refinement, …

• Techniques
– What mathematical framework allows us to formally state the 

problem and determine a solution?

– Canonical forms, reachable sets, restricted design languages, 
Lyapunov functions, fixpoint iteration, …

• Tools
– How do we implement the operations of our technique?
– Binary decision diagrams, Hamilton-Jacobi PDEs, compilers, …


