
Notes on Non-Chronologic Backtracking,
Implication Graphs, and Learning

Alan J. Hu
for CpSc 513

Univ. of British Columbia

2004 February 19

These are supplementary notes on these aspects of a modern DPLL-style complete SAT solver.
I think part of what makes these things hard to understand sometimes is that multiple related ideas
get lumped together. In these notes, I’m going to try to distill out the essential ideas, without
worrying about how to do everything in the best possible manner. If you’re impatient, jump to
Section 5

1 Exhaustive Enumeration

OK, forget for the moment everything you know about SAT, other than the basic problem: you’ve
got a bunch of clauses, and you’re trying to find a satisfying assignment, or prove that no satisfying
assignment exists. The obvious approach is to systematically generate every possible assigment,
and test whether that assignment satisfies the clauses. The approach has to be systematic if we
want to be able to prove unsatisfiability – you have to guarantee that you’ll try every possibility
eventually. (If you don’t care about that, you can try randomtruth assignments, which puts us in
the realm of stochastic local search, which is Holger’s expertise.)

The easiest way to systematically try all truth assignmentsis to march through them in nu-
merical (binary) order, the way you’d do a truth table. I’m going to show you something slightly
messier, because that leads to the next step.

Assume you have some data structure for holding a (possibly partial) truth assignment to the
variables, and another data structure for holding the clauses. Here’s some pseudo-C for an im-
plementation. You’d call this function initially with the empty (all variables unassigned) truth
assignment:

int sat(truth_assignment t, clauses c)
{

variable v;

1



v = pick_unassigned_variable(t);
if (v==NULL) {
/* all variables assigned, check SAT */
if (evaluate(t,c)==1) return SAT;
else return UNSAT;

}

assign_false(v,t); /* Assign v to 0 in t */
if (sat(t,c)==SAT) return SAT;

/* Not satisfiable when v=0, try v=1. */
unassign(v,t);
assign_true(v,t);
if (sat(t,c)==SAT) return SAT;

/* Not satisfiable regardless of what we assign to v. */
/* Therefore, this (sub-)problem isn’t satisfiable. */
unassign(v,t);
return UNSAT;

}

In the above code, ifpick_unassigned_variables always picks variables in the same order,
then you’ll search things in the same order as a truth table would. However, the code works fine as
long as it always picks an unassigned variable. (The different parts of the truth table could have its
rows ordered differently.)

The other thing to note about the code is that we are exploiting the way programs work in order
to simplify our implementation. In particular, we are usingthe recursive call stack to keep track of
our partial assignments, and the sequential code in the function to remember whether we’ve tried
0, 1, or both possibilities for assigning a given variable.

2 Backtracking

The above code is actually already doing backtracking. It’sjust that we’re walking all the way to
the bottom of the search tree (assigning a value to every variable) before we backtrack. With SAT,
as soon as we find that any clause is 0 (with a partial truth assignment), we know that it’s useless
to continue assigning variables, so we may as well backtrackimmediately at that point. This is
a big efficiency improvement. To do this, let’s assume we havea functionpartial_evaluate
that returns SAT if the (possibly partial) assignment already satisfies the clauses, UNSAT if the
assignment already falsifies the clauses, and UNKNOWN otherwise.

int sat(truth_assignment t, clauses c)
{

variable v;

2



int temp;

temp = partial_evaluate(t,c);
if (temp==SAT) return SAT;
if (temp==UNSAT) return UNSAT;

v = pick_unassigned_variable(t);
/* Must be unassigned variables, otherwise partial_evaluate

would have returned SAT or UNSAT. */
assert (v!=NULL);

assign_false(v,t); /* Assign v to 0 in t */
if (sat(t,c)==SAT) return SAT;

/* Not satisfiable when v=0, try v=1. */
unassign(v,t);
assign_true(v,t);
if (sat(t,c)==SAT) return SAT;

/* Not satisfiable regardless of what we assign to v. */
/* Therefore, this (sub-)problem isn’t satisfiable. */
unassign(v,t);
return UNSAT;

}

As an implementation note, one could also write thepartial_evaluate function to return
the clauses that result from plugging in the truth assignment. This clause list is what would be
passed to the recursive calls tosat. Implementing that way means the partial evaluation work gets
ammortized over the various partial assignments. The downside is that you’d need to either save
the old clause list on a stack, so that you can restore your previous clause list, or have code to undo
the effect of the partial evaluation.

This is a natural and easy way to write a SAT solver, and is pretty much what everyone did for
the past 30 years or so. The main question would be how to pick a“good” unassigned variable,
and various tricks to know when you can avoid making one recursive call or the other. Practical,
complete SAT-solving largely stagnated.

3 Non-Chronologic Backtracking — Inspiration

One of the big breakthroughs was non-chronologic (aka conflict-directed) backtracking. This is
normally explained along with the unit clause rule, but let’s ignore that for now. Doing so makes
it much easier to see the basic idea.

3



Suppose you ran our backtracking solver on the following problem:

(a+ z)(b+ c+d + · · ·+ x+ y)(z̄)

and suppose that thepick_unassigned_variable function happens to pick the variables in al-
phabetical order.

You’ll see that the code first triesa = 0, then it will spend a long time trying all 224 possible
assignments tob, . . . ,y, with each of these searches eventually failing becausea = 0 impliesz = 1
from the first clause, but the last clause saysz = 0.

You can imagine many clever tricks for avoiding this problem(and that’s what people did, and
some of these tricks are generally useful). However, what people didn’t see for a long time, prob-
ably because the easy programming structure of the recursive backtracking code blinded them to
this possibility, is that one way to avoid this problem is to “backtrack” in a weird way. Intuitively,
we get stuck trying to find an assignment toz, and the only relevant variables area andz. All the
intermediate assignments tob, . . . ,y were irrelevant. So rather than backtrack “chronologically”
(backing up to the most recent untried possibility in the recursive call stack), we should backtrack
“non-chronologically” or “conflict-driven” by backing up to the most recentrelevant untried pos-
sibility. So, we’d try assigninga = 0, and thenb = 0, etc., down toy = 0, where we’d backtrack
and tryy = 1 (because of the big clause), and thenz = 0, which fails, causing us to tryz = 1. When
that fails, too, we’d like to figure out somehow that the assignments tob, . . . ,y aren’t relevant, and
backtrack all the way back to tryinga = 1.

How do we determine what’s relevant? In general, this turns out to be tricky. If you believe
that, jump to the next section. If you want to see why this is hard, consider:

(a+ ȳ)(b+ z)(c+d + · · ·+ x)(y+ z̄)(ā)

Again, assuming that we pick the variables in alphabetical order, we’d trya = 0, b = 0, and so on,
down tox = 0, oops, backtrack,x = 1. At that point, we’d tryy = 0, and thenz = 0, which fails
the second clause(b + z), so we’d backtrack and tryz = 1, which fails the last clause(y + z̄), so
we backtrack and tryy = 1, which fails the first clause(a + ȳ). So, how far back to we backtrack
now? If we look at the clause that failed,(a + ȳ), it’s not obvious that the most recent,relevant
untried possibility is actually to tryb = 1. What we’re seeing is that, in general, what variable
assignments were relevant is not local to the clause that is failing at a given point in the search;
instead, it depends on the history of the backtracking. In this example,b is relevant becauseb = 0
forcedz = 1, which eliminated the possible solution fory = 0. This sort of analysis is expensive in
general, and the research community assumes it’s thereforenot feasible.

4 Conflict and the Unit Clause Rule

It turns out there is a special case in which it’s easy to tell what the relevant variable assignments
were. If after making an assignment, the resulting clauses insist that a given variable be both true
and false at the same time, this is called “conflict”. For example, when we looked at:

(a+ z)(b+ c+d + · · ·+ x+ y)(z̄)

4



as soon as we assigneda = 0, then the(a + z) clause would insist thatz = 1, but the(z̄) clause
insists thatz = 0, so we have a conflict. In some sense, a conflict is a one-levellookahead in
our backtracking, in which we see immediately that both assignments toz are already guaranteed
to fail, given our assignments so far. Therefore,upon seeing a conflict, we can look at only
the clauses involved in the conflict, and backtrack to the most recent untried decision in
those clauses. So now, in our example, as soon as we assigneda = 0, we’d detect a conflict and
immediately backtrack to the most recent untried possibility, namelya = 1.

In the messier example:

(a+ ȳ)(b+ z)(c+d + · · ·+ x)(y+ z̄)(ā)

we’d assigna = 0, thenb = 0, etc. down toy = 0, which produces a conflict onz, so then we try
y = 1, which fails (but doesn’t produce a conflict), so we don’t erroneously backtrack all the way
back toa, and we inefficiently backtrack only up to tryingw = 1, etc.

Hmm... we’ve seen that our conflict analysis is basically looking ahead slightly for cases where
a variable is forced to be true and false at the same time. Whenis a variable forced to take a value?
When the partial assignment causes all the other literals ina clause to be false, so the last literal
must be true. For example, in the clause(c + d + · · · + x), after tryingc = d = · · · = w = 0, the
clause has only the unassigned literalx, so we are forced to havex = 1. A clause in which only one
literal is left unassigned is called a “unit clause”, and the“unit clause rule” says to immediately
make the satisfying assignment to that unassigned literal,since it’s forced. The unit clause rule is
in some sense a generalization of the lookahead we’re using to define conflicts.

Armed with the unit clause rule, both of our examples are solved instantly. For the first one:

(a+ z)(b+ c+d + · · ·+ x+ y)(z̄)

The last clause is unit, immediately forcingz = 0, which makes the first clause(a+z) unit, forcing
a = 1. Then, we proceed to pick assignments forb throughx, which then triggers the unit clause
rule again to makey = 1. For the messier example:

(a+ ȳ)(b+ z)(c+d + · · ·+ x)(y+ z̄)(ā)

the last clause is unit, forcinga = 0, which makes the first clause unit, forcingy = 0, which forces
z = 0, which forcesb = 1. Then, we pick an assignment forc throughx.

5 Implication Graphs

As we just saw, the unit clause rule can cause a cascade of forced variable assignments. In order
to be able to backtrack non-chronologically, we need some way to keep track of and “see through”
these forced assignments. The data structure invented to dothis is called an “implication graph”.

An implication graph is a DAG (directed, acyclic graph). Vertices are labeled with an assign-
ment to a variable. There are two kinds of vertices: decisionvertices, which indicate a decision
the backtracking search has decided to try, and deduced or implied vertices, whose value is forced

5



by the unit clause rule. An edge leads from one vertexv1 to another vertexv2 if the assignment at
v1 was (part of) what became the unit clause that forcedv2. For example, returning to our messier
formula:

(a+ ȳ)(b+ z)(c+d + · · ·+ x)(y+ z̄)(ā)

the unit clauses immediately generate a bunch of implied vertices:

b + zy + !za + !y!a
b=1z=0y=0a=0

As we start the backtracking search, we then start generating decision vertices, which I will draw
with squares. Note that decision vertices have no incoming edges, since they were decisions of the
search procedure, not implications of other decisions:

y=0 z=0 b=1
!a a + !y y + !z b + z

d=0
2

w=0
21

. . .

x=1
21

a=0

c=0
1

The assignment ofx = 1 is another implied vertex. I didn’t bother labeling all thearrows with
the big(c + d + · · · + x) clause that forced that assignment. Note that I’ve put little numbers on
the nodes. These numbers are “decision levels”, which indicate how deep in the backtracking we
are. We will use these to tell how far back to backtrack non-chronologically, and what parts of the
graph to erase when we backtrack.

6 Adding Learning

We need one more wrinkle to make everything work right. This wrinkle is called “learning”, and it
will magically make non-chronologic backtracking happen.Note that our above example has been
solved without requiring a backtrack, so we’ll need a more complex example. Consider:

(a+ x+ y)(a+b)(b̄+ c+d)(d̄ + e+ f )(x̄ + ȳ)(x+ ȳ)(x̄+ y).

Again, assume we’ll pick the variables in alphabetical order. We’ll therefore start with tryinga = 0,
which impliesb = 1; then, we’ll tryc = 0, which forcesd = 1; then, we’ll trye = 0, which forces

6



f = 1, yielding the implication graph:

3 3
f=1e=0

2
d=1

2
c=0

1
b=1

1
a=0

The next decision isx = 0, which immediately produces conflict:

c=0
2

d=1
2

e=0 f=1
33

x=0
4 y=1

4

y=0
4

CONFLICT!

Cut gives learned clause.

a=0
1

b=1
1

The key to learning is to note that the graph shows us that certain variable assignments led
inexorably to the conflict. If you trace backwards from the conflict in the implication graph, all
decision variables that are ancestors of the conflict are what caused the problem. In our example,
the problem is the assignmentsa = 0 andx = 0. Note that the decision levels 2 and 3 were
completely irrelevant, and the implication graph shows us this. Learning is the process of adding
a new clause (a “learned clause”) that tells us not to ever have a = 0 andx = 0 again: we add the
clause(a+ x). In general, any cut of the implication graph between the decision variables and the
conflict is a perfectly good learned clause.

Note that it’s not clear in general which cut(s)/clause(s) one should learn from a given conflict.
If we cut very close to the decision variables, this is good, because in the future, the learned clause
will catch us early and prevent us from going down this path again. However, a learned clause near
the decision variables won’t prevent us from bypassing the learned clause if we end up choosing
decision variables in a different order. Learning too many clauses will slow down the SAT solver,
because the set of clauses will grow too big. All in all, this is an open research question.

One rule that people agree on, though, is to always learn a clause that will force the search in a
different direction, if we were to attempt to choose the variables in the same order. Such a clause is
called an “asserting clause”. You can guarantee that a clause is asserting by having the cut separate

7



the most recent decision vertex from all of its deduced vertices. Then, you backtrack to the most
recent relevant decision vertex before that.

7 Non-Chronologic Backtracking

Now, at last, we’re ready to look at full non-chronologic backtracking. Returning to our running
example, we add the learned asserting clause to our clauses:

(a+ x+ y)(a+b)(b̄+ c+d)(d̄ + e+ f )(x̄+ ȳ)(x+ ȳ)(x̄+ y)(a+ x),

and then we backtrack back to decision level 1. Again, we trya = 0, but this time, the learned
clause becomes unit and forcesx = 1, which produces a conflict: (I’ve left the decision level 2 and
3 stuff here, out of laziness, but in reality, those nodes hadbeen deleted.)

c=0
2

d=1
2

e=0 f=1
33

x=1
1 y=1

1

y=0
1

CONFLICT!

a=0
1

b=1
1

Now, the asserting clause is just(a). We add that clause, and then backtrack all the way to the
beginning, and eventually get:

d=1
2

e=0 f=1
33

x=0
4

y=0
4

a=1
1

b=1
1

2
c=0

which is the satisfying assignment.

8


