Reach Sets and the Hamilton-Jacobi Equation

Ian Mitchell

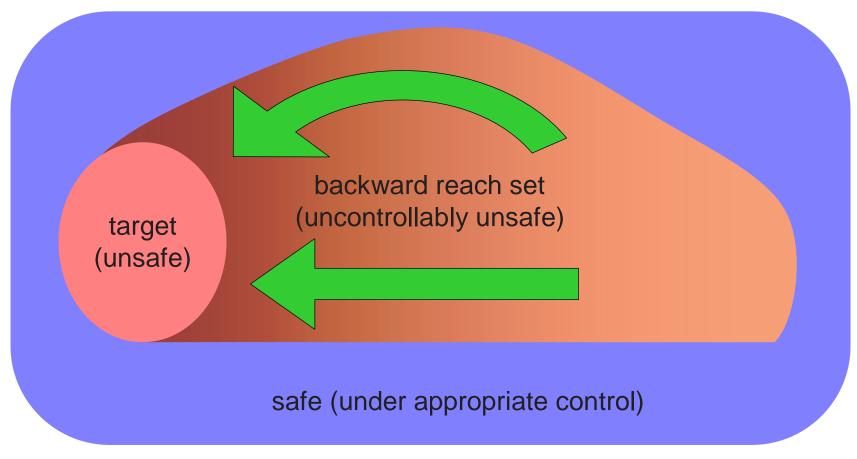
Department of Computer Science The University of British Columbia

Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford)

research supported by National Science and Engineering Research Council of Canada DARPA Software Enabled Control Project

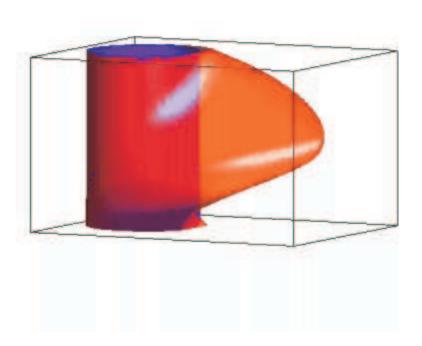
Reachable Sets: What and Why?

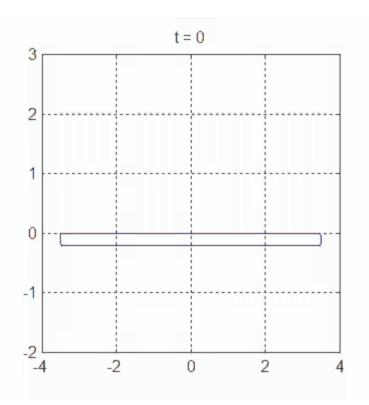
- One application: safety analysis
 - What states are doomed to become unsafe?
 - What states are safe given an appropriate control strategy?



Calculating Reach Sets

- Two primary challenges
 - How to represent set of reachable states
 - How to evolve set according to dynamics
- Discrete systems $x_{k+1} = \delta(x_k)$
 - Enumerate trajectories and states
 - Efficient representations: Binary Decision Diagrams
- Continuous systems dxIdt = f(x)?



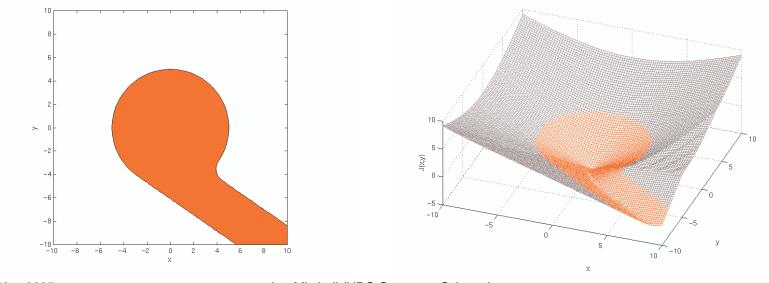


Implicit Surface Functions

- Set G(t) is defined implicitly by an isosurface of a scalar function φ(x,t), with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

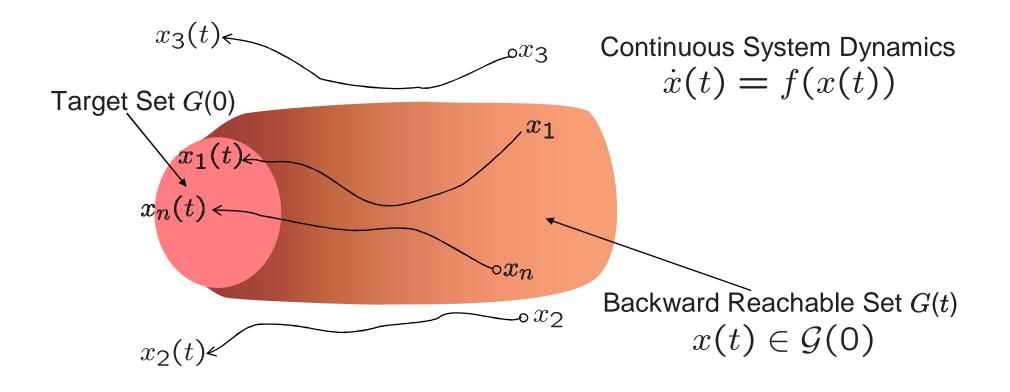
 $\phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$

$$\mathcal{G}(t) = \{ x \in \mathbb{R}^n \mid \phi(x, t) \le 0 \}$$



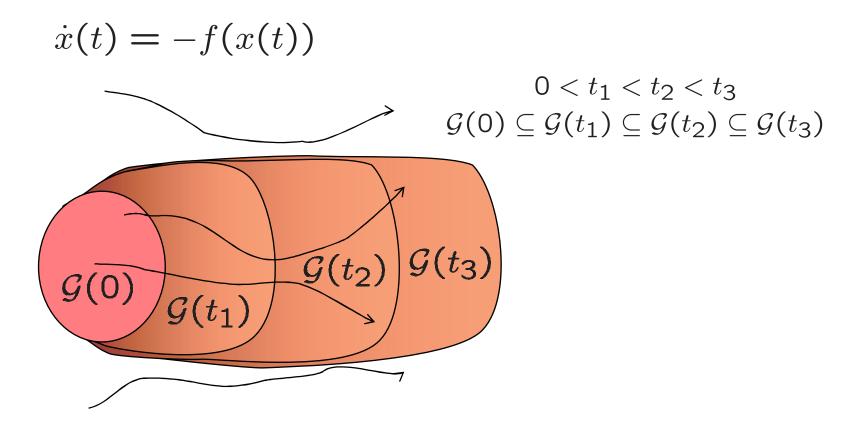
Continuous Backward Reachable Sets

- Set of all states from which trajectories can reach some given target state
 - For example, what states can reach G(t)?



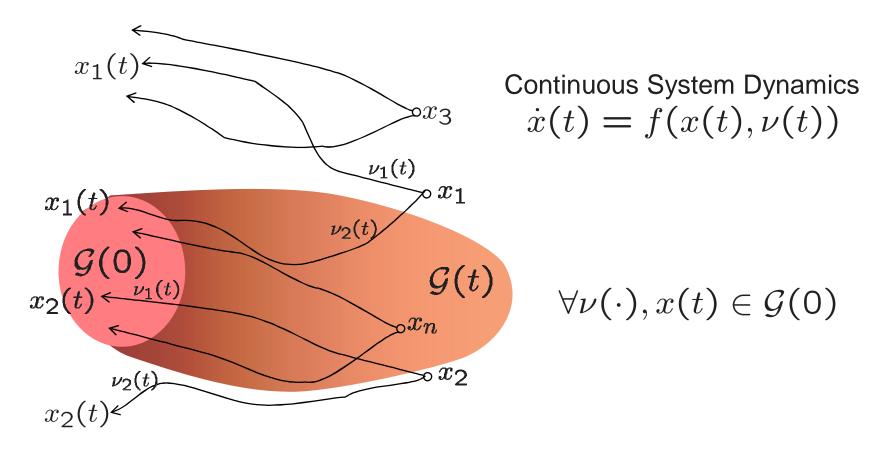
Why "Backward" Reachable Sets?

- To distinguish from forward reachable set
- To compute, run dynamics backwards in time from target set



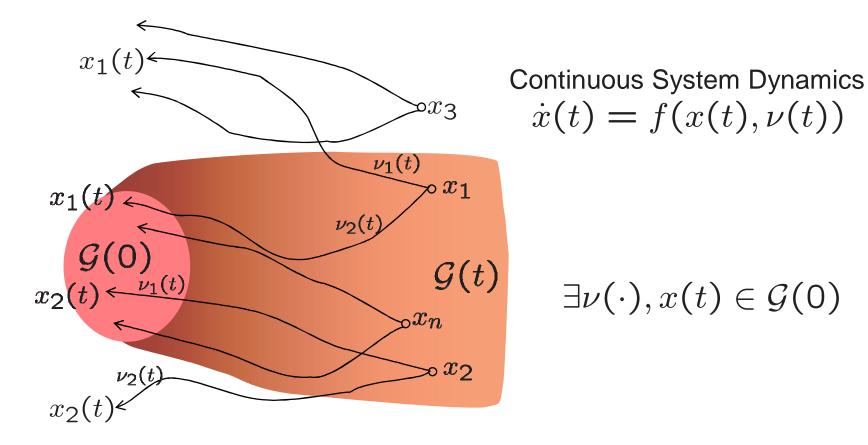
Reachable Sets (controlled input)

- For most of our examples, target set is unsafe
- If we can control the input, choose it to avoid the target set
- Backward reachable set is unsafe no matter what we do



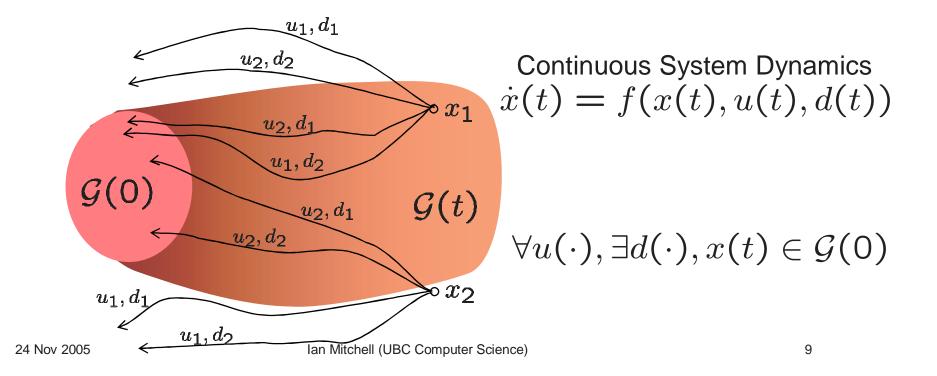
Reachable Sets (uncontrolled input)

- Sometimes we have no control over input signal
 - noise, actions of other agents, unknown system parameters
- It is safest to assume the worst case



Two Competing Inputs

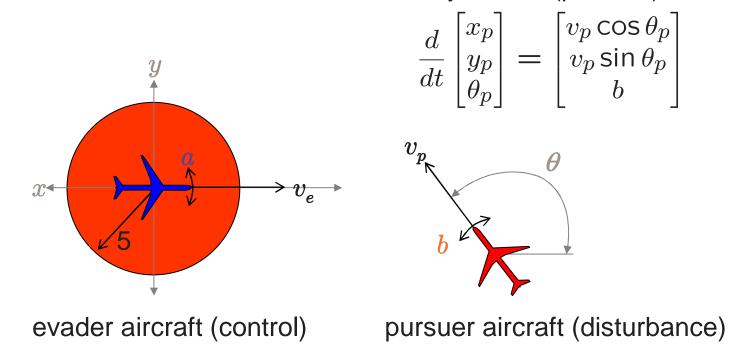
- For some systems there are two classes of inputs v = (u,d)
 - Controllable inputs $u \in U$
 - Uncontrollable (disturbance) inputs $d \in D$
- Equivalent to a zero sum differential game formulation
 - If there is an advantage to input ordering, give it to disturbances



Game of Two Identical Vehicles

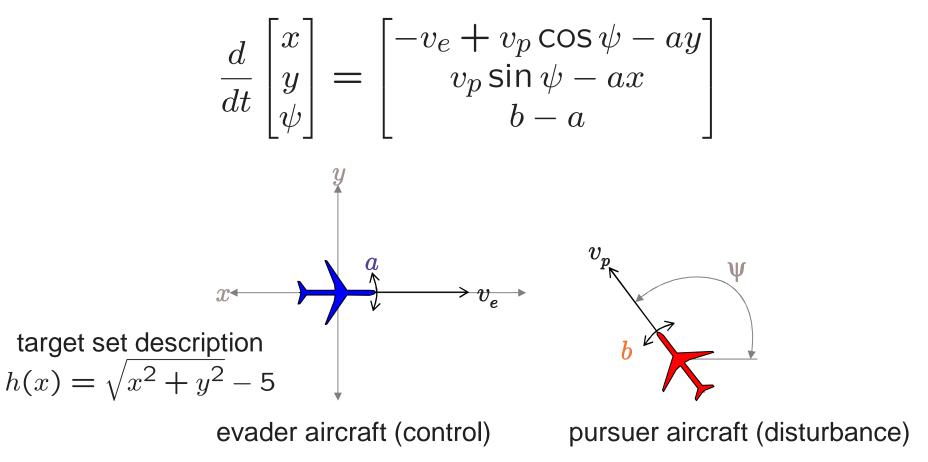
- Classical collision avoidance example
 - Collision occurs if vehicles get within five units of one another
 - Evader chooses turn rate $|a| \leq 1$ to avoid collision
 - Pursuer chooses turn rate $|b| \le 1$ to cause collision
 - Fixed equal velocity $v_e = v_p = 5$

dynamics (pursuer)



Collision Avoidance Computation

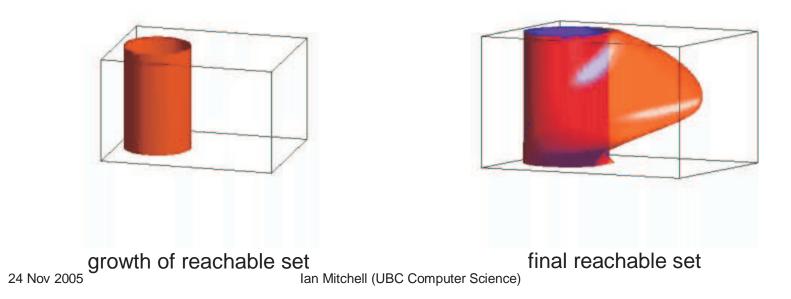
- Work in relative coordinates with evader fixed at origin
 - State variables are now relative planar location (x,y) and relative heading ψ



Evolving Reachable Sets

Modified Hamilton-Jacobi partial differential equation

 $D_t \phi(x, t) + \min \left[0, H(x, D_x \phi(x, t))\right] = 0$ with Hamiltonian : $H(x, p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} f(x, a, b) \cdot p$ and terminal conditions : $\phi(x, 0) = h(x)$ where $G(0) = \{x \in \mathbb{R}^n \mid h(x) \leq 0\}$ and $\dot{x} = f(x, a, b)$



Time-Dependent Hamilton-Jacobi Eq'n

$D_t\phi(x,t) + H(x, D_x\phi(x,t)) = 0$

- First order hyperbolic PDE
 - Solution can form kinks (discontinuous derivatives)
 - For the backwards reachable set, find the "viscosity" solution [Crandall, Evans, Lions, ...]
- Level set methods
 - Convergent numerical algorithms to compute the viscosity solution [Osher, Sethian, ...]
 - Non-oscillatory, high accuracy spatial derivative approximation
 - Stable, consistent numerical Hamiltonian
 - Variation diminishing, high order, explicit time integration

Solving a Differential Game

- Terminal cost differential game for trajectories $\xi_f(\cdot; x, t, a(\cdot), b(\cdot))$ $\phi(x, t) = \sup_{a(\cdot)} \inf_{b(\cdot)} h\left[\xi_f(0; x, t, a(\cdot), b(\cdot))\right]$ where $\begin{cases} \xi_f(t; x, t, a(\cdot), b(\cdot)) = x \\ \dot{\xi}_f((s; x, t, a(\cdot), b(\cdot)) = f(x, a(s), b(s)) \\ terminal payoff function h(x) \end{cases}$
- Value function solution $\phi(x,t)$ given by viscosity solution to basic Hamilton-Jacobi equation

- [Evans & Souganidis, 1984]

$$D_t \phi(x,t) + H(x, D_x \phi(x,t)) = 0$$
where
$$\begin{cases}
H(x,p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T f(x, a, b) \\
\phi(x,0) = h(x)
\end{cases}$$

$$\phi(x_1,t) \leq 0$$

$$f_f(x, x_1, t, a(x), b(x)) = 0$$

$$f_f(x, x_2, t, a(x), b(x))$$

Modification for Optimal Stopping Time

- How to keep trajectories from passing through G(0)?
 - [Mitchell, Bayen & Tomlin IEEE TAC 2005]
 - Augment disturbance input

$$\tilde{b} = \begin{bmatrix} b & \underline{b} \end{bmatrix} \text{ where } \underline{b} : [t, 0] \to [0, 1]$$

$$\tilde{f}(x, a, \tilde{b}) = \underline{b}f(x, a, b)$$

$$\tilde{f}(x, a, \tilde{b}) = \underline{b}f(x, a, b)$$

Augmented Hamilton-Jacobi equation solves for reachable set

$$D_t \phi(x,t) + \tilde{H}(x, D_x \phi(x,t)) = 0 \text{ where } \begin{cases} \tilde{H}(x,p) = \max \min_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T \tilde{f}(x,a,\tilde{b}) \\ \phi(x,0) = h(x) \end{cases}$$

 Augmented Hamiltonian is equivalent to modified Hamiltonian $\tilde{H}(x,p) = \max_{a \in \mathcal{A}} \min_{\tilde{b} \in \tilde{\mathcal{B}}} p^T \tilde{f}(x,a,\tilde{b})$ $= \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} \min_{\underline{b} \in [0,1]} \underline{b} p^T f(x, a, b)$ $= \min \left[0, \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T f(x, a, b) \right] = \min \left[0, H(x, p) \right]$

24 Nov 2005

Ian Mitchell (UBC Computer Science)

 $\dot{\phi}(x_2,t) \leq 0$

Alternative Eulerian Approaches

- Static Hamilton-Jacobi (Falcone, Sethian, ...)
 - Minimum time to reach
 - (Dis)continuous implicit representation
 - Solution provides information on optimal input choices
- Viability kernels (Aubin, Saint-Pierre, ...)
 - Based on set valued analysis for very general dynamics
 - Discrete implicit representation
 - Overapproximation guarantee
- Time-dependent Hamilton-Jacobi (this method)
 - Continuous solution
 - Information on optimal input choices available throughout entire state space
 - High order accurate approximations
- All three are theoretically equivalent

Forward Reachability

- Forwards reachable set is computed by following trajectories
- Examples:
 - Timed automata: Uppaal [Larsen, Pettersson...], Kronos [Yovine,...], ...
 - Rectangular differential inclusions: Hytech, Hypertech [Henzinger, Ho, Horowitz, Wong-Toi, …]
 - Polyhedra and linear dynamics: Checkmate [Chutinan & Krogh], d/dt [Bournez, Dang, Maler, Pnueli, ...], others [Bemporad, Morari, Torrisi, ...], [Greenstreet & Mitchell], ...
 - Ellipsoids and linear dynamics [Botchkarev, Kurzhanski, Tripakis, Varaiya, …]
 - Discretization (predicate abstraction) on grid [Kurshan & McMillan] or by cylindrical algebraic decomposition [Tiwari & Khanna]
- Advantages: Compact representation of sets, overapproximation guarantees
- Disadvantages: Linear dynamics, reliance on trajectory optimization, restrictive set representation, potentially large error

State Space Decomposition

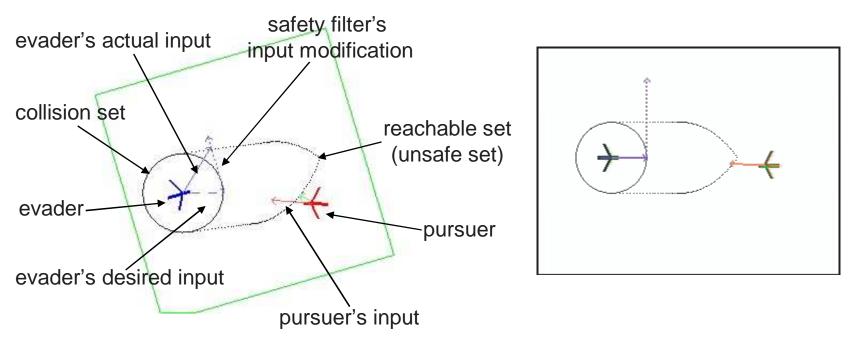
- Partition state space and compute reachability over partition
- Examples
 - Uniform grids: Kurshan & MacMillan and many others
 - Timed Automata "Region Graph": Alur & Dill
 - Cylindrical Algebraic Decomposition: Tiwari & Khanna
- Advantages: No need to integrate dynamics, direct control over size of representation
- Disadvantages: Restricted classes of dynamics, "wrapping" problem (discrete system has transitions that do not exist in continuous system)

Lyapunov-like Methods

- Invariant sets are isosurfaces of Lyapunov-like functions
- Examples:
 - Convex optimization: Boyd, Hindi, Hassibi
 - Sum of Squares: Prajna, Papachristodoulou, Parrilo
- Advantages: Short certificate proves analytic invariance, no need to integrate dynamics
- Disadvantages: Restricted class of dynamics, difficult to extract counterexamples

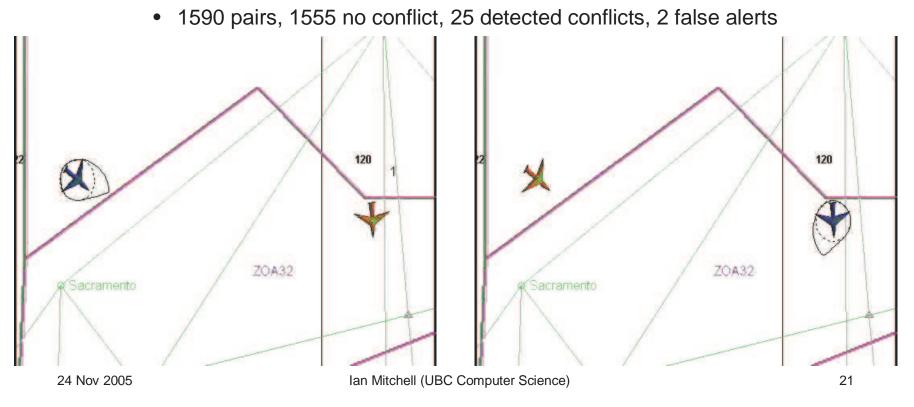
Application: Softwalls for Aircraft Safety

- Use reachable sets to guarantee safety
- Basic Rules
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- Evader's input is filtered to guarantee that pursuer does not enter the reachable set



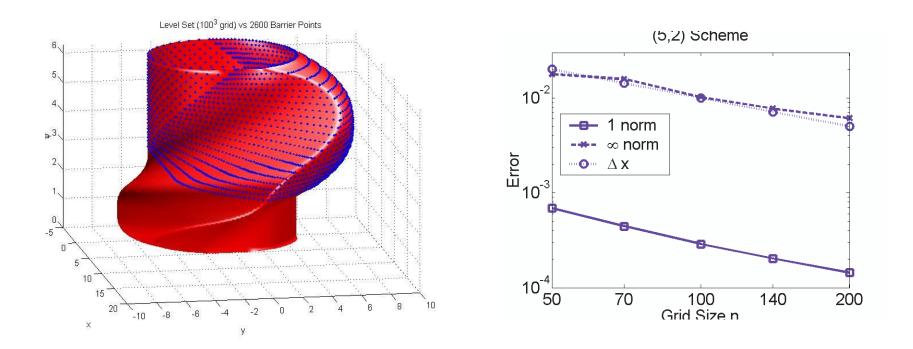
Application: Collision Alert for ATC

- Use reachable set to detect potential collisions and warn Air Traffic Control (ATC)
 - Find aircraft pairs in ETMS database whose flight plans intersect
 - Check whether either aircraft is in the other's collision region
 - If so, examine ETMS data to see if aircraft path is deviated
 - One hour sample in Oakland center's airspace—



Validating the Numerical Algorithm

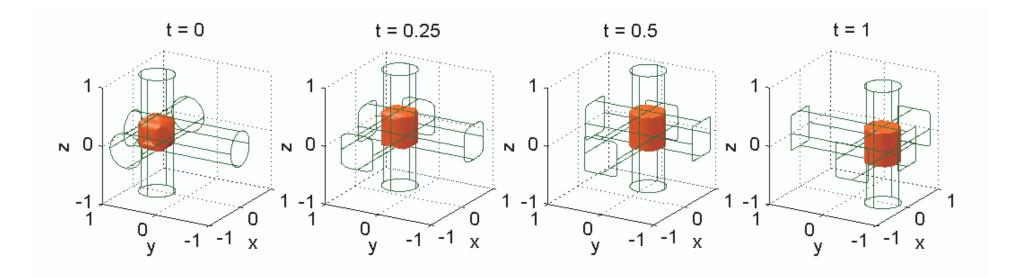
- Analytic solution for reachable set can be found [Merz, 1972]
 - Applies only to identical pursuer and evader dynamics
 - Merz's solution placed pursuer at the origin, game is not symmetric
 - Analytic solution can be used to validate numerical solution
 - [Mitchell, 2001]



Ian Mitchell (UBC Computer Science)

Projective Overapproximation

- Overapproximate reachable set of high dimensional system as the intersection of reachable sets for lower dimensional projections
 - [Mitchell & Tomlin, JSC 2003]
 - Example: rotation of "sphere" about z-axis



Hamilton-Jacobi in the Projection

- Consider x-z projection represented by level set $\phi_{xz}(x,z,t)$
 - Back projection into 3D yields a cylinder $\phi_{xz}(x,y,z,t)$
- Simple HJ PDE for this cylinder

$$D_t \phi_{xz}(x, y, z, t) + \sum_{i=1}^3 p_i f_i(x, y, z) = 0 \quad \text{where } \begin{cases} p_1 = D_x \phi_{xz}(x, y, z, t) \\ p_2 = D_y \phi_{xz}(x, y, z, t) \\ p_z = D_z \phi_{xz}(x, y, z, t) \end{cases}$$

- But for cylinder parallel to *y*-axis,
$$p_2 = 0$$

$$D_t \phi_{xz}(x, y, z, t) + p_1 f_1(x, y, z) + p_3 f_3(x, y, z) = 0$$

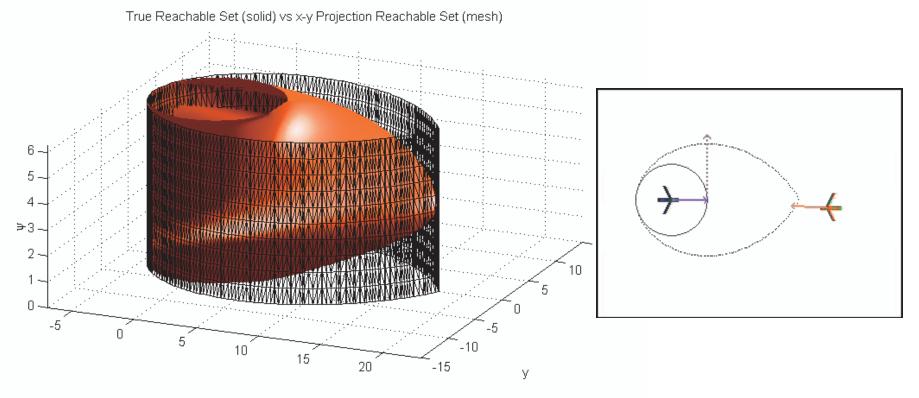
- What value to give free variable y in $f_i(x,y,z)$?
 - Treat it as a disturbance, bounded by the other projections

$$D_t \phi_{xz}(x, y, z, t) + \min_y \left[p_1 f_1(x, y, z) + p_3 f_3(x, y, z) \right] = 0$$

• Hamiltonian no longer depends on y, so computation can be done entirely in x-z space on $\phi_{xz}(x,z,t)$

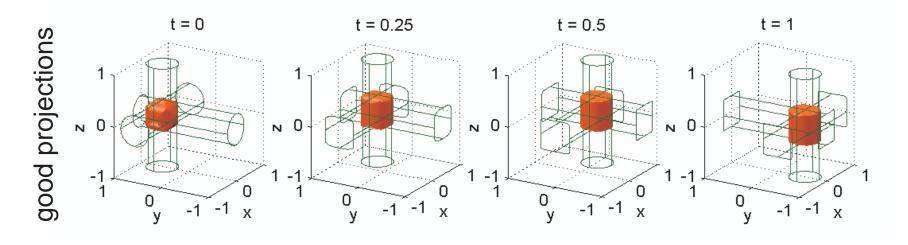
Projective Collision Avoidance

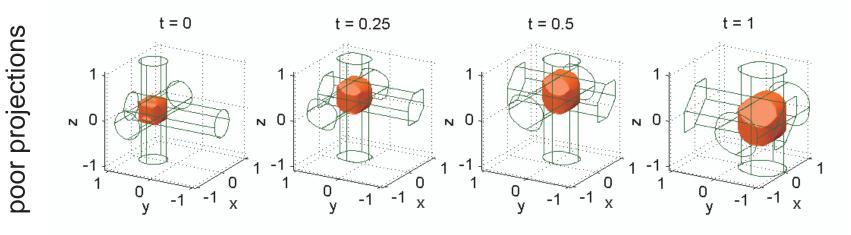
- Work strictly in relative x-y plane
 - Treat relative heading $\psi \in [0, 2\pi]$ as a disturbance input
 - Compute time: 40 seconds in 2D vs 20 minutes in 3D
 - Compare overapproximative prism (mesh) to true set (solid)



Projection Choices

- Poorly chosen projections may lead to large overapproximations
 - Projections need not be along coordinate axes
 - Number of projections is not constrained by number of dimensions



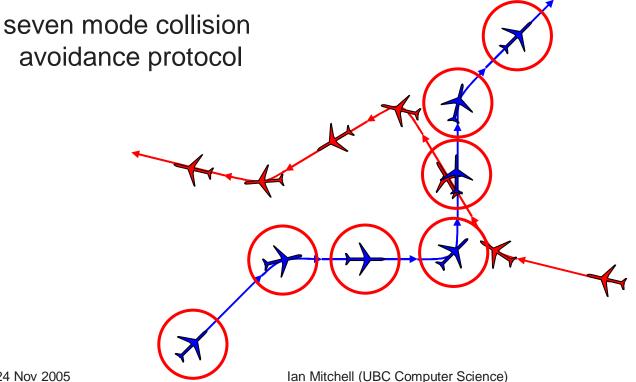


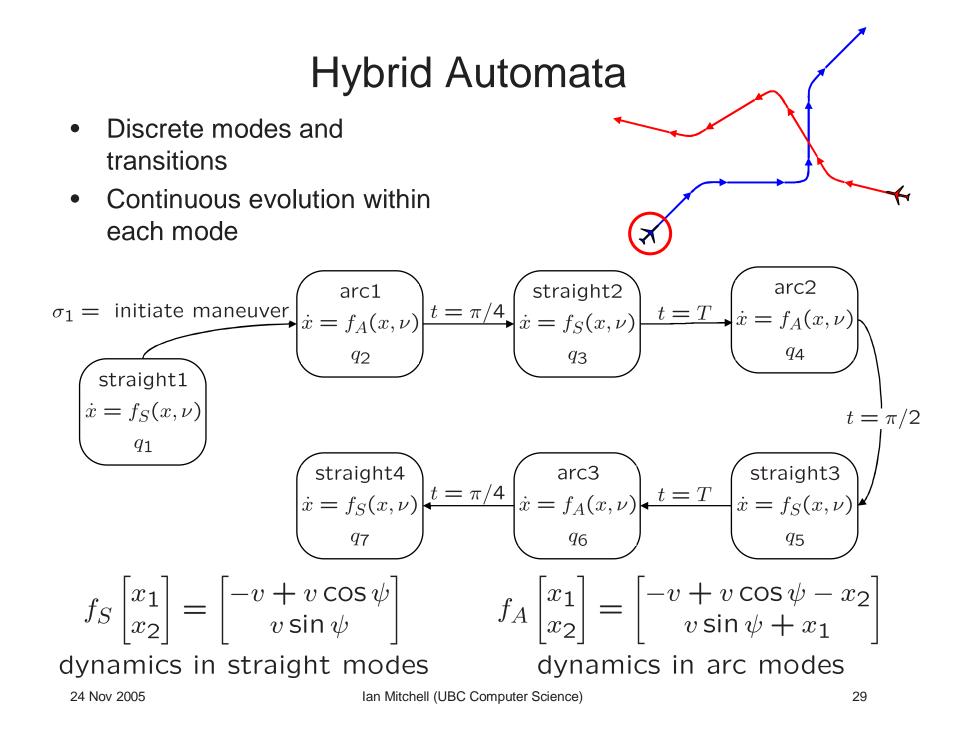
Hybrid System Reach Sets

Combining Continuous and Discrete Evolution

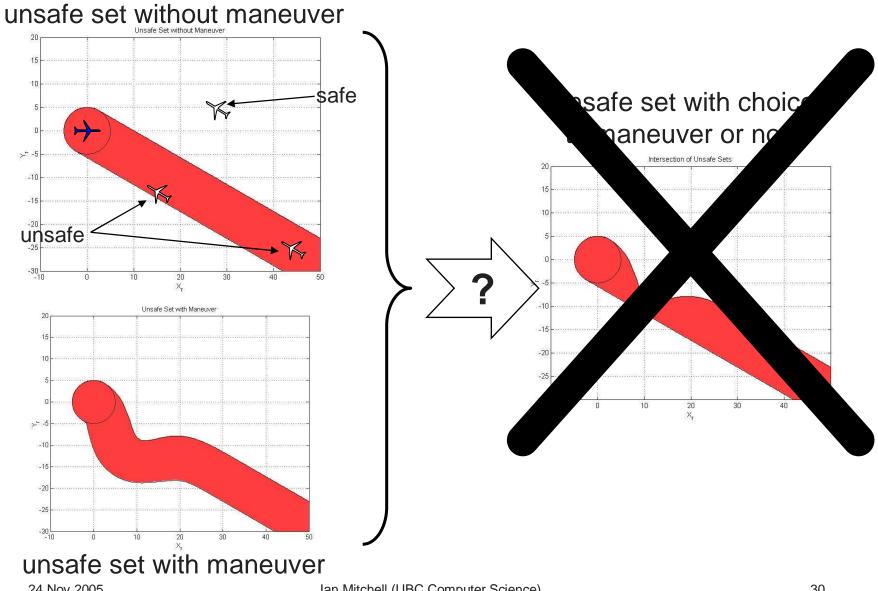
Why Hybrid Systems?

- Computers are increasingly interacting with external world
 - Flexibility of such combinations yields huge design space
 - Design methods and tools targeted (mostly) at either continuous or discrete systems
- Example: aircraft flight control systems





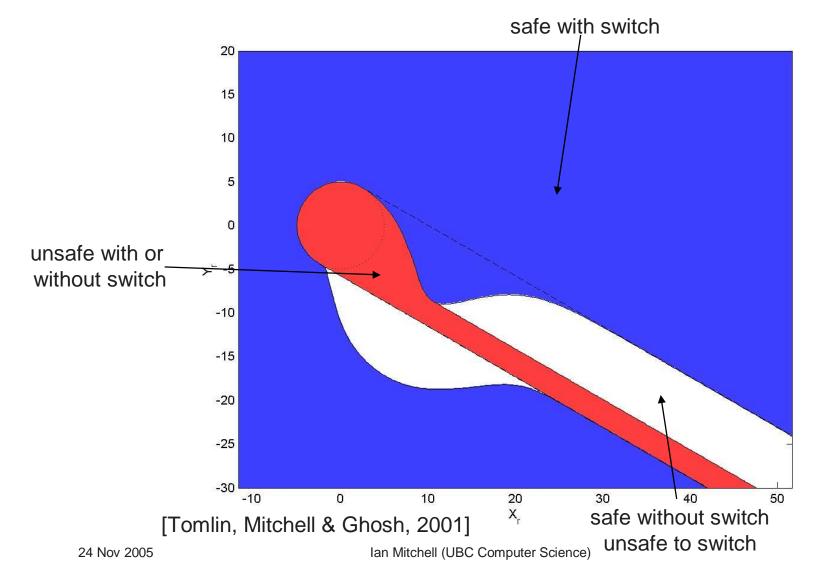
Seven Mode Safety Analysis



24 Nov 2005

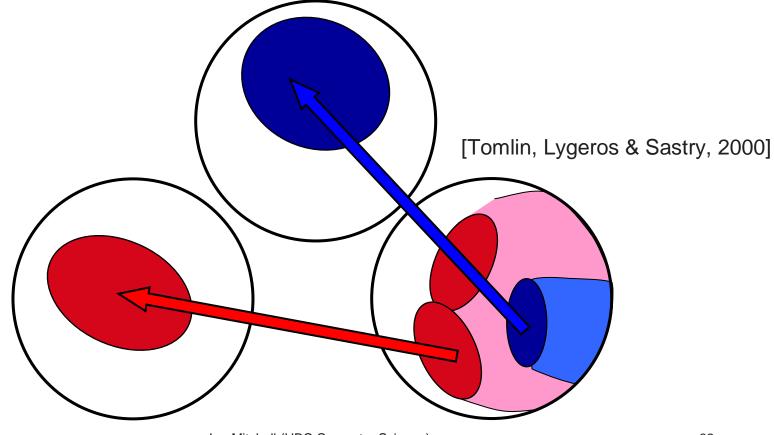
Seven Mode Safety Analysis

• Ability to choose maneuver start time further reduces unsafe set



Computing Hybrid Reachable Sets

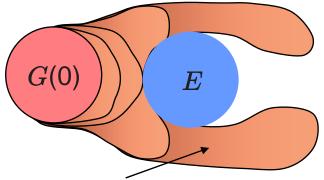
- Compute continuous reachable set in each mode separately
 - Uncontrollable switches may introduce unsafe sets
 - Controllable switches may introduce safe sets
 - Forced switches introduce boundary conditions



Reach-Avoid Operator

• Compute set of states which reaches G(0) without entering E

 $G(t) = \{x \in \mathbb{R}^n \mid \phi_G(x, t) \le 0\}$ $E = \{x \in \mathbb{R}^n \mid \phi_E(x) \le 0\}$



Reach-Avoid Set G(t)

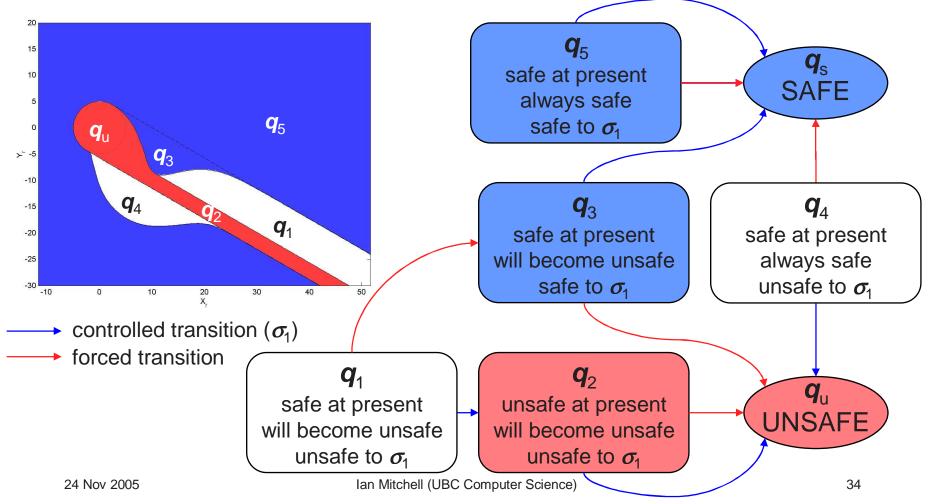
- Formulated as a constrained Hamilton-Jacobi equation or variational inequality
 - [Mitchell & Tomlin, 2000]

 $D_t \phi_G(x,t) + \min \left[0, H(x, D_x \phi_G(x,t))\right] = 0$
subject to: $\phi_G(x,t) \ge \phi_E(x)$

• Level set can represent often odd shape of reach-avoid sets

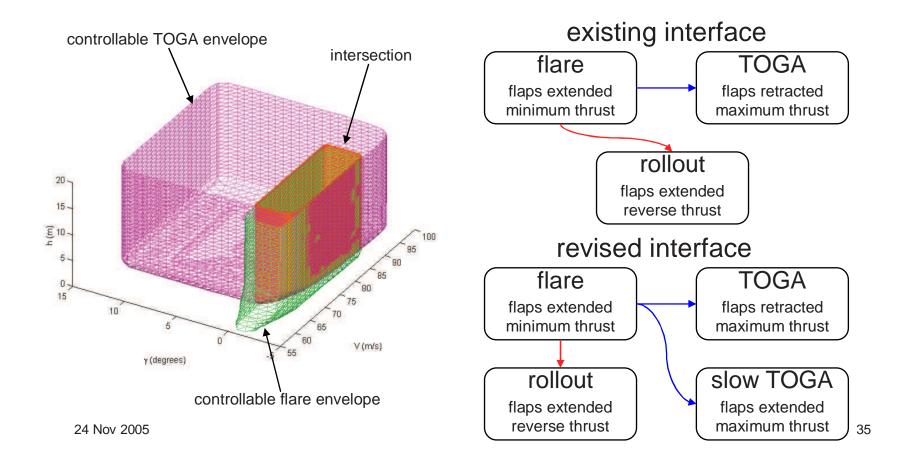
Application: Discrete Abstractions

- It can be easier to analyze discrete automata than hybrid automata or continuous systems
 - Use reachable set information to abstract away continuous details



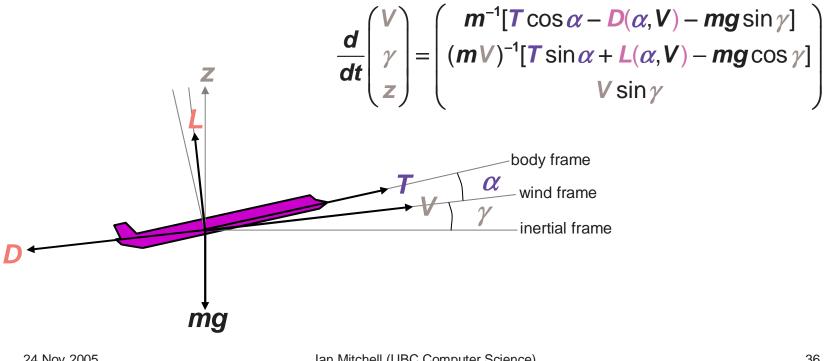
Application: Cockpit Display Analysis

- Controllable flight envelopes for landing and Take Off / Go Around (TOGA) maneuvers may not be the same
- Pilot's cockpit display may not contain sufficient information to distinguish whether TOGA can be initiated



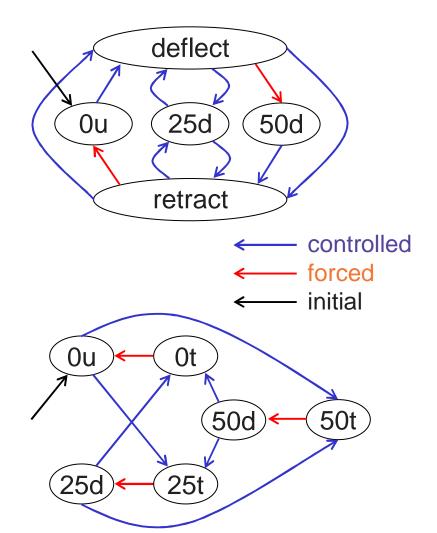
Application: Aircraft Autolander

- Airplane must stay within safe flight envelope during landing •
 - Bounds on velocity (V), flight path angle (γ), height (z)
 - Control over engine thrust (T), angle of attack (α), flap settings
 - Model flap settings as discrete modes of hybrid automata
 - Terms in continuous dynamics may depend on flap setting
 - [Mitchell, Bayen & Tomlin, 2001]



Landing Example: Discrete Model

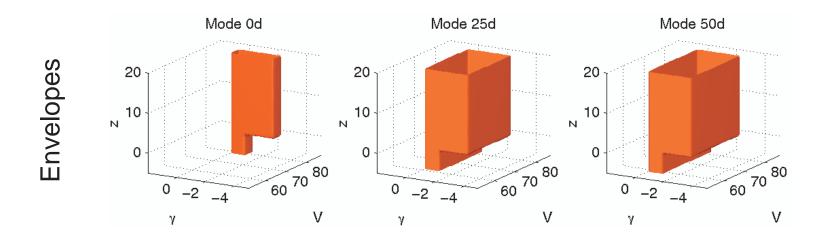
- Flap dynamics version
 - Pilot can choose one of three flap deflections
 - Thirty seconds for zero to full deflection

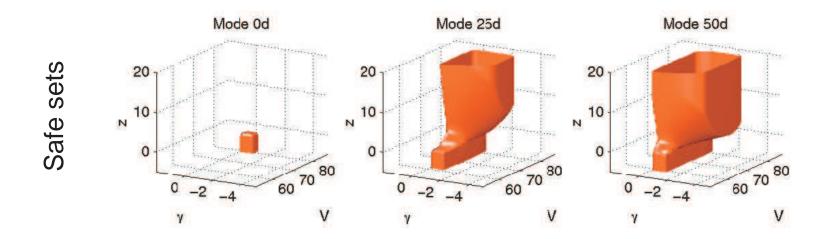


- Implemented version
 - Instant switches between fixed deflections
 - Additional timed modes to remove Zeno behavior

Ian Mitchell (UBC Computer Science)

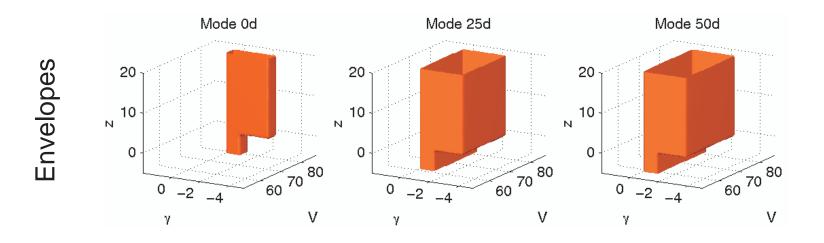
Landing Example: No Mode Switches

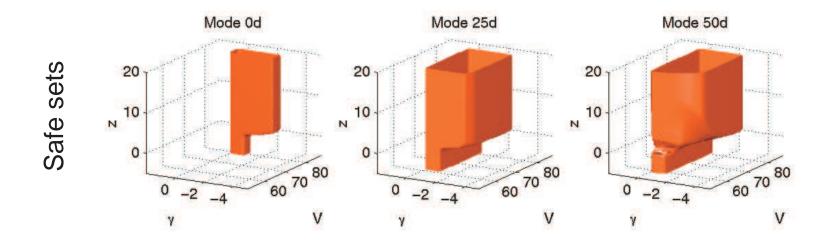




Ian Mitchell (UBC Computer Science)

Landing Example: Mode Switches

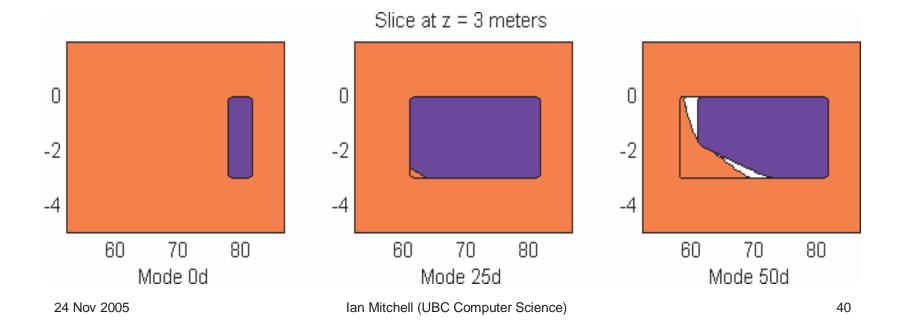




Ian Mitchell (UBC Computer Science)

Landing Example: Synthesizing Control

- For states at the boundary of the safe set, results of reach-avoid computation determine
 - What continuous inputs (if any) maintain safety
 - What discrete jumps (if any) are safe to perform
 - Level set values & gradients provide all relevant data



Viability Theory

An Alternative Approach Based on Set Valued Analysis

Differential Inclusions

• Dynamics defined by differential inclusion

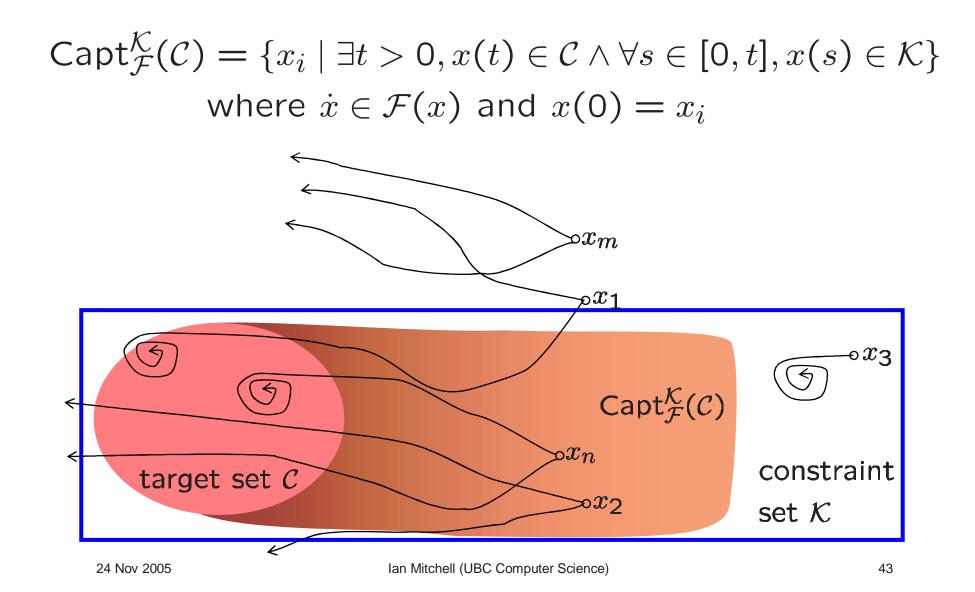
$$\frac{dx}{dt} \in \mathcal{F}(x), \quad \mathcal{F}(x) : \mathbb{R}^n \to \mathcal{P}(\mathbb{R}^n)$$

- For example

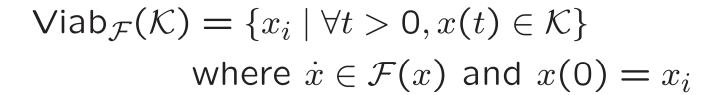
$$\mathcal{F}(x) = \{ y \in \mathbb{R}^n \mid \exists b \in \mathcal{B}, y = f(x, b) \}$$

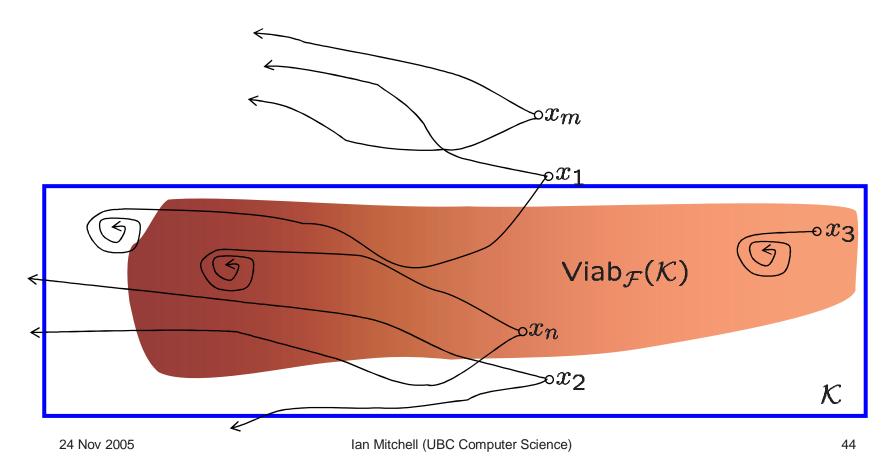
- Set-valued map $\mathcal{F}(x)$ has Lipschitz-like but less restrictive conditions
 - For example, discontinuous f(x,b) can be represented
- Extensions exist for differential game settings

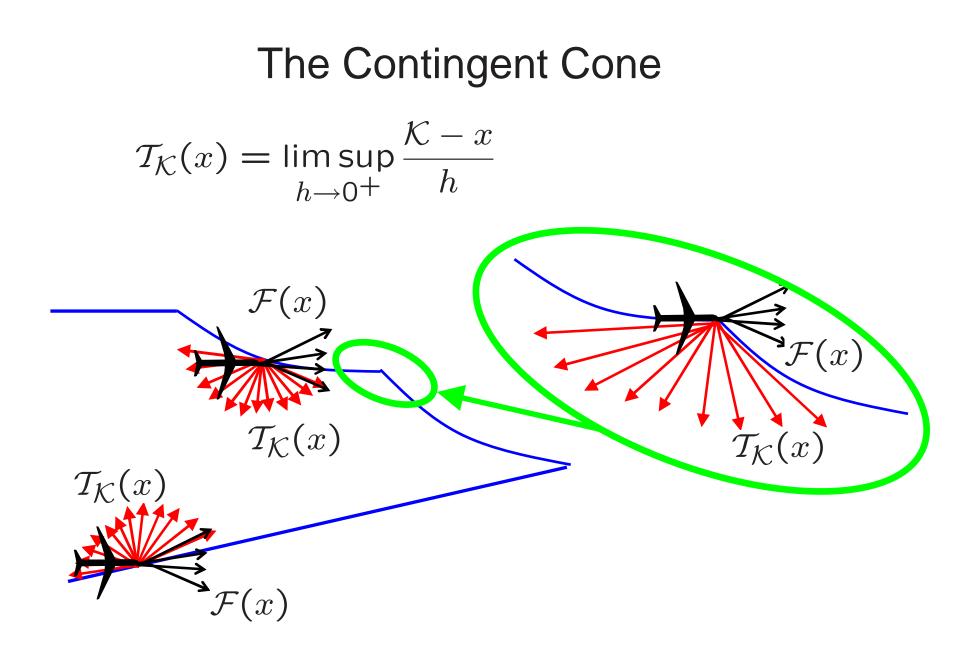
Capture Basin



Viability Kernel

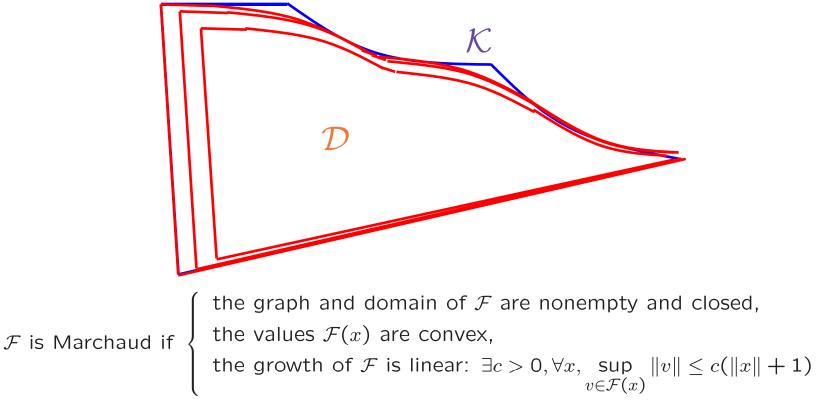






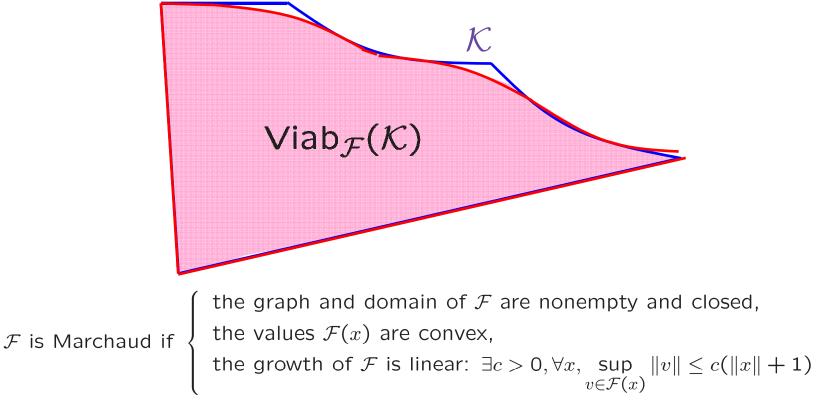
Defining the Viability Kernel

Assume \mathcal{F} is Marchaud and \mathcal{K} is closed. Then $\operatorname{Viab}_{\mathcal{F}}(\mathcal{K})$ is the largest closed \mathcal{D} such that $\mathcal{F}(x) \cap \mathcal{T}_{\mathcal{D}}(x) \neq \emptyset$.

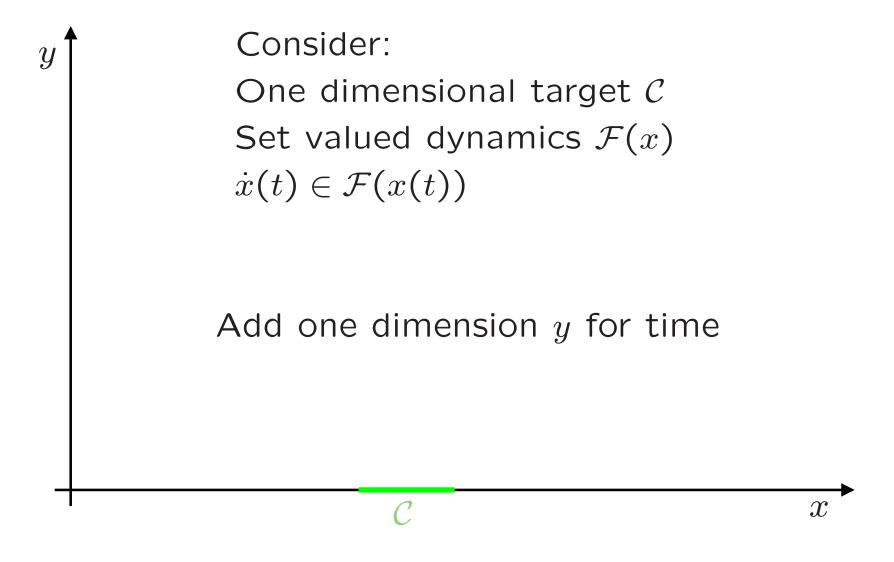


Defining the Viability Kernel

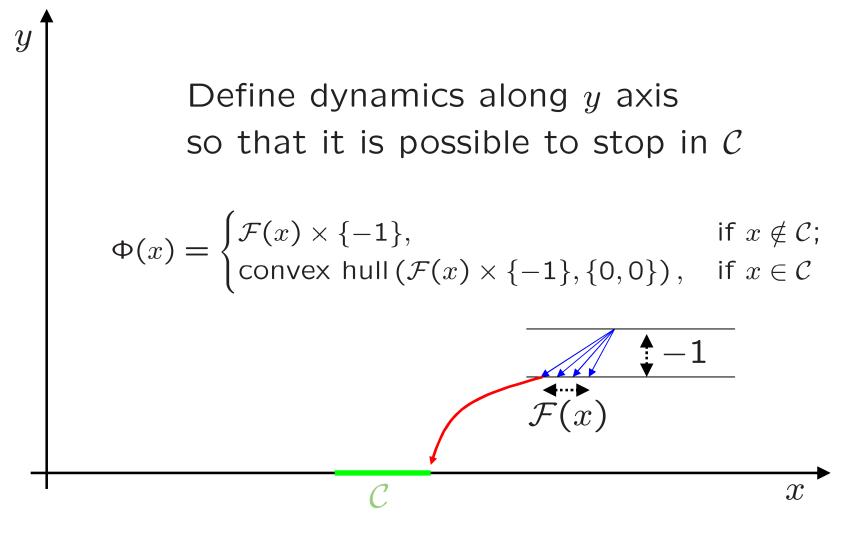
Assume \mathcal{F} is Marchaud and \mathcal{K} is closed. Then $\operatorname{Viab}_{\mathcal{F}}(\mathcal{K})$ is the largest closed \mathcal{D} such that $\mathcal{F}(x) \cap \mathcal{T}_{\mathcal{D}}(x) \neq \emptyset$.



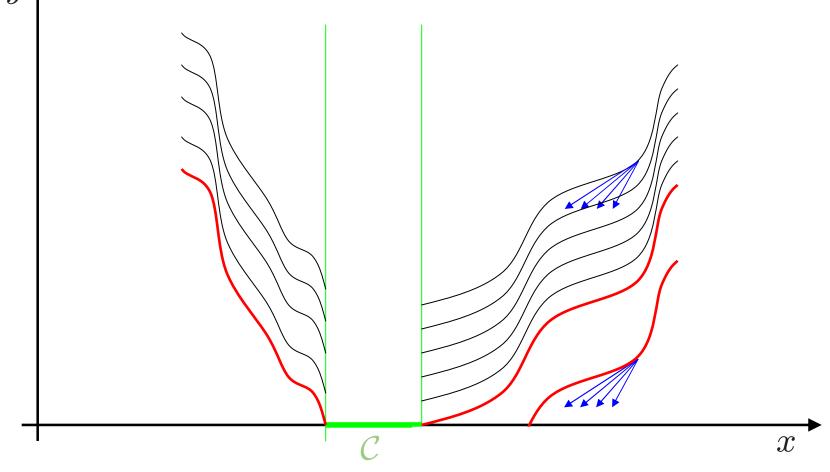
Connection to Minimum Time to Reach

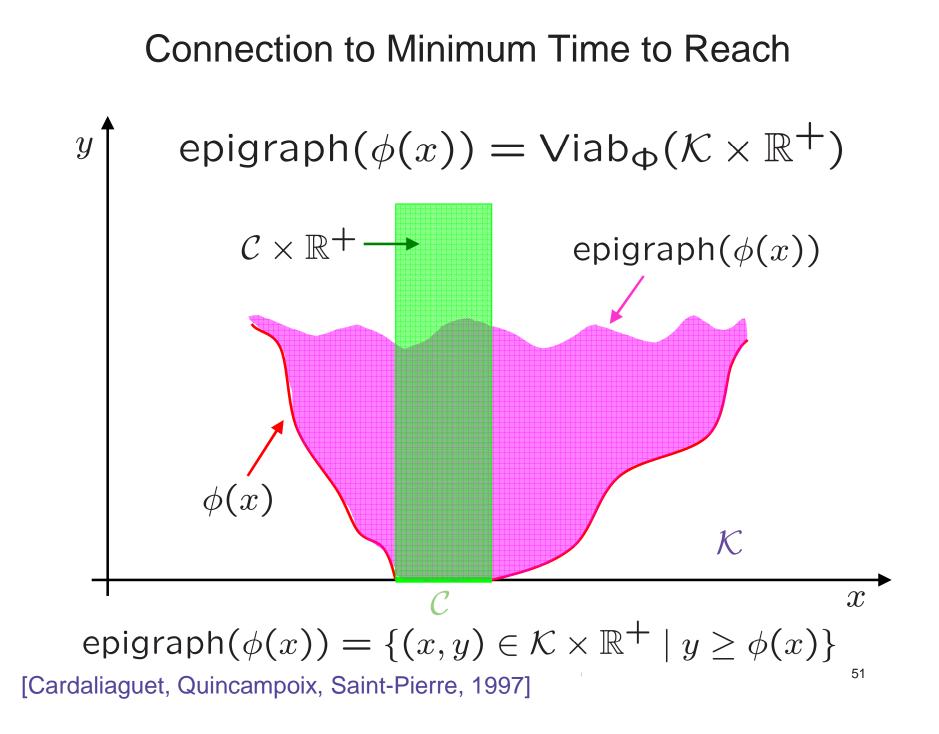


Connection to Minimum Time to Reach



Connection to Minimum Time to Reach $y \uparrow$





Minimum Time to Reach Example

