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Abstract. This paper describes a deductive verification framework &flaws the use of

general purpose decision procedures and traditional nobdeking along with domain spe-
cific inference rules. The latter allow established aldwnis for timing verification and other
hardware verification tasks to be imported into the verificaframework. To demonstrate
this approach, a SRT divider is verified using a transistgell model with timing.

1 Introduction

Most formal verification of hardware designs is based orestptice exploration
or theorem proving. State space exploration provides aonzatic approach for
verifying properties of designs described by relativelyairmodels. In principle,
theorem proving techniques can be applied to much largemamd detailed design
descriptions. However, the large demands for the time oéxgsers prevents the
wide-scale application of theorem proving techniques.

The strengths and weaknesses of state-space exploratich@srem proving
are in many ways complementary. This has motivated sevexraht efforts to com-
bine the two techniques [5]. One approach is to embed spateesexploration al-
gorithms as decision procedures in a general purpose tineoraver [21]. In this
approach, the design and specification are representedrbylfas in the logic of the
prover, and decision procedures are oracles, introdu@agtheorems into the sys-
tem. Alternatively, some researchers have augmentedstatee exploration tools
with simple theorem proving capability [12,1,19]. We exdehis approach with the
integration ofdomain specifidecision procedures. For example, to verify timing
properties of a divider, a simple, depth-first, tree-waloaithm determines tim-
ing relations within the design. In principle, this algarit could be formalized in
a higher-order logic and proven correct; however, such fomté$ not directly ger-
mane to the question of whether or not the divider is correct.

We view the verification task as one of maximizing the proligtaf producing
a correct design subject to schedule and budget constridsitsy informal, domain-
specific decision procedures in a deductive framework, wevesify critical prop-
erties of real designs that would not be practical to venffyfieorem proving and/or
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model checking alone. Section 2 elaborates this claim.i@e8tdescribes our im-
plementation of this framework, and section 4 presents eufigation of a self-
timed divider using this tool.

1.1 Running Example: Asynchronous Divider Verification

Our divider verification establishes refinement betweegmssively more detailed
descriptions of the design written in the Synchronized Sitions language [25].
The highest level model is an abstract specification of FRABRT division on ra-
tional numbers; we prove functional correctness of therélym at this level. The
most detailed model formalizes the transistor-level stmgcalong with its timing
properties. Each level of the hierarchy inherits the safepperties of the higher
levels: by showing that the top-level model divides collseete establish that all
of the lower level models divide correctly as well. Althoutiiere have been many
published verifications of dividers, we believe that our kvig distinguished by
spanning the complete design hierarchy.

1.2 Synchronized Transitions

A Synchronized Transitions (abbr. ST) [25] program is atiahstate predicate and
a collection of transitions. A transition is a guarded comthdor example,

<K X>Yy =X, Y=Yy, X >

is a transition that is enabled to swamndy whenx is greater thay. Transitions
may be combined using the asynchronous combinjattor example ||tz|| - . . ||tn-
Program execution consists of repeatedly selecting aiti@mstesting its guard,
and, if the guard is satisfied, performing the multi-assigntnThe order in which
transitions are selected is unspecified: this non-detésmimodels arbitrary delays
in a speed-independent model. ST provides other combmatat other language
features which are not presented in this paper.

1.3 Semantics

We employ avp semantics (see [8]) for ST. P is a program and) is a predicate,
thenwp (P, Q) is the weakest condition that must hold such tfais guaranteed

to hold after any single action allowed Wy is performed. Consider a transition
<< G— M>>:the guard(, denotes a function from program states to the Booleans;
the multi-assignment}/, denotes a function from states to statesvp\semantics

of ST includes
wp(KG—-M>Q)=G=QoM

wp(ti|ltall - . [tn, @) = )\ wp(t:, Q)
i=1
We make extensive useiof/ariants. A predicatel is an invariant iff holding in
some state ensures thawvill hold in all possible subsequent states of the program.



In particular, is an invariant ofP iff I = wp(P,I). A predicateq is asafety
property of P if @ holds in all states reachable in any executiorPofAs shown
in [13], Q is a safety property oP if and only if there is an invariant such that
Qo= Iandl = Q.

Intuitively, programP”’ is arefinement of P if every reachable state transition
that P’ can make corresponds to a moverafMore formally, refinement is defined
with respect to ambstraction mapping A that maps the states éf to P. P’ isa
refinement ofP under abstraction mapping iff for every reachable statg of P’
and every state), that is reachable by performing a single transitiorP6from s,
eitherA(s}) = A(s}) (a stuttering action), or there is a transitonfothat effects a
move fromA(s}) to A(s5).

2 \Verification Approach

Like many theorem provers, our verification tool presents@udtive style of verifi-
cation. However, there are three ways in which our approéfdrelfrom traditional
theorem proving:

Integration of informal reasoning. Domain-specific decision procedures can be
used in our framework. Such procedures provide an algoritemcapsulation
of informal domain expertise.

Syntactic embedding of the HDL. Our framework favours an embedding of the
hardware description language (e.g. ST) at a syntactid. léverence rules
operate directly on the HDL's abstract syntax.

Merging of inference rules and decision proceduresin traditional theorem provers,
inference rules provide pattern-based rewriting of prdmigations, while deci-
sion procedures (if any) decide the validity of leaf obligas in a proof tree. In
our framework, inference rules may perform non-trivial gartations to decide
the soundness of a proof step, or to derive the result of @mente step.

2.1 Informal reasoning in formal verification

Atfirst, the suggestion of allowing informal reasoning tamteoduced into a formal

proof appears to be outrageous: if an informal inference reilunsound, it can

invalidate any proof in which the rule is used. However, infal rules provide a

practical way to tailor our verification tool to specific doimaand verify properties
that would not be practical to address by strictly formalrapgphes. When errors
are found in a design, the verification is worthwhile everoiine steps are justified
only informally.

Informal reasoning is commonplace in many verification iffoFor example,
model-checking is typically applied to an abstraction af ttesign that was pro-
duced informally by a verification expert [11,20]. Althoutire absence of errors
in the abstraction does not guarantee the correctness aictinal design, errors
found in the abstraction can reveal errors in the actuabdesany theorem-prover
based verifications model functional units at the registerdfer level; the gate- and



transistor-levels of the design are validated only throsighulation and informal
reviews [24].

We make two uses of informal rules. First, an informal rula paovide an al-
gorithmic encoding of domain knowledge where a formal@ain logic would be
unacceptably time-consuming. For example, the timingyei@procedure that we
used derives a graph whose nodes correspond to the chammelated regions of
the transistor-level circuit. The circuit topology is sgatically encoded in the text
of the ST program, and the procedure derives timing boundsgih graph traversal.
The correspondence between the graph and the originalt@rwlithe soundness of
the graph traversal have only been shown informally.

Second, we use several ‘semi-formal’ rules for reasonirmuaBT programs.
For instance, the proof rules for reasoning about invasissdfety properties, and
refinements are founded on theorems that were formally pr@lthough the proofs
have not been mechanically checked). These theorems a@ as formal seman-
tics of a core language only, and their extension to the &nlguage with records,
arrays, functions, and modules is informal.

2.2 Syntactic embedding of the HDL

Verification requires a description of the design as a foenmuthe appropriate logic.
Four ways to obtain such a description are:

1. Describe the design directly in a general purpose lodiith this approach,
the full expressiveness of the logic is available to the gtesi [9]. However,
many designers find such logics unfamiliar, and most toalsofber aspects
of the design process (e.g. simulation, synthesis, phiyd&sgn, etc.) support
special-purpose specification or hardware descriptioguages.

2. Deeply embed the HDL in the logj6]. With this approach, the syntax of the
HDL as well as its semantic interpretation are defined withim logic. This
provides a rigorous embedding where statements of the H@brhe objects
of an abstract data type in the logic, and proof-rules foHBd&. can be proven
as theorems in the logic, using the definitions of the serodutictions. The
effort for producing such an embedding can be substantibbugh it may be
possible to amortize this effort over many designs.

3. Shallowly embed the HDL in the logi/ith this approach, the translation from
the HDL to the logic occurs outside of the logic. Shallow enhiags can be
easier to implement than deep embeddings because theatirangbrocess is
informal with a corresponding loss of rigour. Because paogstructures are
not represented in the logic, theorems that refer to theasyintstructure of the
HDL description can be neither stated nor proven [6].

4. Syntactic embeddings a syntactic embedding, the logic is extended to include
proof-rules for the HDL, and the syntax of the HDL becomed pathe syntax
of the logic. Because programs appear ‘literally’ in probfigations, theorems
about syntactic forms can be included as proof rules; resiiihferences can be
interpreted in the original domain; and it is easier to pnéseunter-examples
in terms of the original program.



We use a syntactic embedding of ST into the logic of our thegoeover. The
core logic of the prover is first-order with quantifiers, elifyaand arithmetic oper-
ations. We extend this logic with inference and rewritingpsufor the ST combina-
tors,wp, invariants, safety properties, refinement, and timinghgsis.

We have found that a syntactic embedding simplifies the imphgation of
semi-formal or informal inference rules. Such rules aremfbased on syntactic
analysis of the underlying program. These rules are easierglement, and hope-
fully less prone to implementation errors, because theattstyntax of the program
is immediately available in the syntactic embedding. Femttore, proof systems
based on syntactic proof rules tend to match the design#tigive understanding
of the HDL.

There are noteworthy drawbacks to this approach. Becaagediof rules effec-
tively become axioms of the logic, it is impossible to prokie tonsistency of the
proof system. Doing so would require a formulation of a castglformal seman-
tics of the logic, and thus the specification language, whightecisely what we are
trying to avoid. Furthermore, as with shallow embeddingsneta-reasoning about
the semantics of the specification language is possible.

2.3 Merging of Decision Procedures and Inference Rules

Traditional mechanized theorem provers generally use dedysion procedures in
the classic sense of an algorithm that decides the valiflafarmula. Such decision
procedures are used to discharge proof obligations in desagomatic step, i.e.
they operate on the leaves of a proof tree. Proof steps anterithe proof tree,

however, are generally justified by matching them with aeiiefce rule schema,
and possibly checking side conditions or provisos.

We remove the restriction of decision procedures to leafyabbns and allow
inference rules to use arbitrary algorithms to decide thandness of a proof step.
Theoretically, lifting this restriction has no significaesuch an “inference proce-
dure” can be replaced by the corresponding leaf decisiorgghares, and inferences
using propositional logic. However, there are significanatgtical advantages to our
approach. In many cases, it is convenient to let the inferenle compute the de-
rived obligations rather than requiring the user to protigsn. Of course, one could
perform two computations of the derived obligation: onesa@ié of the trusted core
to derive the result for the user, and the other in the coretifjwthe result. Such an
approach has obvious disadvantages with respect to efficeemd software main-
tenance. These problems would be particularly severe iaragwork such as ours
where it is supposed to be easy to add and extend domairfispefdrence rules
and decision procedures. Our “inference procedures” geaisimple mechanism
for avoiding these problems.

3 Prototype Implementation

We have implemented a proof-of-concept verification eminent for our approach.
It has three architectural components. A generic core gesvproof state and the-



orem objects, as well as a tactic interface. The second coemas a library of
common decision procedures, while the third comprises dlde that is specific to
a particular object logic. The system has been implement&tiindard ML of New
Jersey [4]. As in HOL, ML also forms the user-interface fag firoof checker.

3.1 Generic Core

Similar to theorem proving environments such as HOL, PVS$abelle [10,17,18],
a (backwards-style) proof in our proof checker is represghy a sequence of proof
states. A proof state consists of the claim, the pendingyabtins, and some book-
keeping information. The claim and obligations are judgteevhich can be, for
instance, a sequent (in a sequent calculus), or a formusar(atural deduction style
calculus). In the initial proof state of a proof, the list cdrling obligations con-
sists only of the claim. Rules of inference are implementefliactions from proof
state to proof state, and are used to transform one or morirgeabligations into
zero or more (simpler) obligations. The available prooésudire registered with the
claim state and cannot be modified afterwards; in a sensgpiiome hypotheses
of the theorem. This permits user-defined domain-specitiofmules to be intro-
duced without modification of the core.

A proof state with no pending obligations corresponds toaven claim, i.e. a
theorem To allow for theorems to be used in later proofs without hgub check,
and therefore execute, their proof before each use, we ggdhieorem objects,
which associate a claim with a proof, i.e. a function thaetathe claim proof state
and returns a proof state with no pending obligations. Téa@srcan only be used in
a proof if they were imported into the initial proof state. \Wevide facilities that
analyze the dependency between theorems, ensure the aloeircularity, check
all proofs that a theorem depends on, and generate reports.

All of the above components are parameterized in the synitéxeologic and
a well-formedness predicate for proof obligations. Theap@aterization is realized
through SML functors.

To facilitate the interactive development of proofs, weyide a simple goal
package, which maintains a current proof-state to whicésrabn be applied, and
allows proof steps to be undone. As indicated above, a pnomii system is a SML
function from proof states to proof states. We provide alipof higher-order func-
tions on proof rules (analogous to tacticals in e.g. HOL ab#dle) which facilitate
the construction of proofs from basic proof rules. This ienfmore effective and
produces more readable proofs than writing a proof ‘fromatr in plain SML.

3.2 Library of Common Decision Procedures

This library comprises core routines of several commongdusecision procedures.
The library is independent of a particular object logictamgiating a decision pro-
cedure for a logic requires writing a small amount of inteefaode.

To support Boolean tautology checking as well as symbolidehohecking, the
library provides an abstract data type for boolean exprassn a canonical repre-
sentation. The underlying implementation of this data fgfestate-of-the art BDD



package [23] that was integrated into the SML/NJ runtimeesys The interface
provides full access to the control aspects of the BDD paekagch as variable
reordering strategies, cache sizes etc. Based on the BDikagecwe have imple-
mented a package for symbolic manipulation of bit-vectasarithmetic operation
thereon.

Components for arithmetic decision procedures includeciauge for arbitrary
precision integer and rational arithmetic, polynomiatg]j a decision procedure for
linear arithmetic.

Based on these procedures, we have implemented a decisioedoire that dis-
charges arbitrary tautologies composed of linear inetiesiwith boolean connec-
tives. We have not implemented a decision procedure for auatibns of theories
(e.g. [15,22]) as our simple procedures were sufficient lier divider proof. All
decision procedures include counter-example faciliesibn-valid formulas.

3.3 Object Logic for Synchronized Transitions

We have instantiated the generic core with a logic suitabteréasoning about
ST programs. The proof system is a sequent calculus for @tplityped first-
order logic that is extended with all types, constants aretatprs of ST, including
transition-valued expressions.

As indicated in section 2.2, assertions on ST programs, asigivariants, safety
properties and refinement, are formulated in terms of patelicon transition-val-
ued expressions. We provide proof rules, such aswthdvased rule for invari-
ants, that allow such obligations to be reduced to obligatihat are purely within
quantifier-free logic with boolean connectives, arithmgfiexpressions, and arrays
and records under store and select.

As an example, consider a proof state that includes the pgmtiligation:

HasInvariant(<<i >0 — 4. =i — 1>||<i< N - =i+ 1>,0<i<N)

This obligation states that the two transitions mainta d¢iven invariant. An ap-
plication of the proof rule foHasInvariantrewrites this obligation as

0<i<N)=wp(xKi>0—i=i—1>||<<Ki< N =i =i+1>,0<i < N)

An application of the proof rule fowp, which implements the semantics given in
section 1.3, yields:

(0<i<N)=(
i>0)=(0<14
(

(( N))
A((E<N)= OS +1

1<
<N))
)

This last obligation can be discharged using the decisioegature for linear in-
equalities with boolean connectives.

Further proof rules include the usual rules for sequent mdations, rewrites,
simplification and lifting ofif-expressions, quantifier manipulations, and arithmetic



simplifications. Together with decision procedures forpmsitional calculus and
linear arithmetic, these are frequently sufficient to desge obligations arising from
assertions about ST programs. More specialized proofwilkise explained briefly
in the context of the divider verification presented in th@aider of the paper.

4 Example: Proving a Self-Timed Divider Correct

We evaluated the proof checker by verifying Williams’ seified divider [27],
which implements the radix-2 SRT algorithm [7]. We recounsted the design from
the descriptions in [27] and [28]. A variation of this desigrincorporated in the
HAL SPARC CPU.

4.1 Description of the Divider

As shownin figure 1, the divider consists of three
identical stages, each of which performs the com-

pb(0) | |pb(1) | |pb(2) . ) . . .
putation of a single iterative step of the SRT di-

‘ precharge control ‘

: : ? vision algorithm, and which pass intermediate

a|q(0) |a|a(l) |ala(2) . . .

g g 90 (2 results around in a circular fashion. Each stage

olr(o) | 1]r(n) |2 computes a new partial remainder (in carry-save
— representation) and quotient digit, based on the

result of the previous iteration which it receives
Fig. 1. Divider Architecture from the preceding stage. The design is self-timed,
with signals encoded as dual-rail values [26], and
implemented in precharged logic.

The precharge control block sequences the iterative catipat This block
reads the stage completion signals and regulates the mpesithe stages through
the precharge control signals. Taken together, the prget@mntrol block and the
dual-rail data-paths form a ring oscillator; three stepthefSRT algorithm are com-
puted in each period of the oscillation.

According to the precharge control signals, each stage ean bne of three
states: precharge, evaluate, or hold. The “precharge lggrdlsfor stage ispb(i) .
Whenpb(i) is low, stagé is precharging. Precharging leads to a state where ev-
ery dual-rail signal produced by the stage has the “emptitieveEvaluation leads
to a state where every signal has a “valid” value. A stageerhibiding state leaves
its outputs unchanged so that its successor can use thenmjout® the next par-
tial remainder and quotient bit. A simple invariant that teaps this sequencing is
central in many of our proofs.

Williams employed two optimizations to improve the perfamae of the di-
vider. First, he assumed that a stage can precharge faateitshpredecessor can
evaluate. Second, he assumed that the quotient bit of asifidpee the last output
to change during the evaluation stage. The first optiminadilows stage +1 to
precharge in parallel with the evaluation phase of stagéno timing assumptions
were made, these operations would have to be performedsiajlye The second



optimization allows the computation of staigel to start as soon as the quotient bit
from stage is output, without any extra hardware to check the comptiettatus of
the partial remainder. Due to these optimizations, variythe functionality of the
divider includes proof obligations that require timing bs#s. This timing analysis
establishes relative orderings of events in the operafitmeadivider and shows that
the assumptions on which the optimizations are based aeeéhcorrect.

4.2 A Refinement Hierarchy for the Divider

The transistor-level model

synr;t:ir;):;us/ <— Functional correctness of the divideris too |arge
to permit model check-
refinement ing, and too complicated
to verify from first prin-
Sy”;Téor;?”S/ < Absilnce of ciples using a theorem
’ overtiow prover. Therefore it is
refinement desirable to prove safety
Correctness of properties on a more ab-
sy;f_h\igztf:;s’ = deterministic stract, higher-level model
quotient-selection and show that these prop-
efinement erties hold in the more
detailed models. We used
speed-independent/ _ g;;zlc—t?niisespc;dent a hiera_rchy Qf r_nodels
bit-vector control as depicted in figure 2
. to verify the divider. Ar-
refinement rows indicate verifica-
timed/ Correctness of tion obligations: verti-

bit-vector timed control cal arrows correspond
to refinement proofs, hor-

refinement izontal arrows indicate
timed transistor— tcr;’;ﬁg?j:;fnemst other properties that ei-
level/dual-rail ther establish correctness

and stage signal timing

or assist in the refine-
ment proofs.

The first two refine-
ment steps are data refinements. Our top-level model hagle sitage which com-
putes a quotient bit and the next partial remainder in eagh $the divisor, dividend,
and remainder have rational values. In the first refinemept ste replace the ratio-
nal values with integer values, and the next refinement siplaces these integers
with bit-vectors.

The next two models elaborate upon the self-timed handsbadtotocols used
in the design. The speed-independent model has three dstatges and implements
a handshaking protocol that does not depend on the timiraysef the compo-
nents. In the timed, word-level model, bounds are given enr#tio of precharge
time to evaluation time.

Fig. 2. Verification Hierarchy



The lowest-level model corresponds directly to our transikevel implementa-
tion of the divider chip. Variables in this model are represe using dual-rail code.
In the higher level models, the remainder word was compused single, atomic
action. Here, each bit is set independently. In this tranisisvel model, a stage’s
completion status is determined solely by the quotientiipot.

4.3 Functional Correctness

In radix-2 SRT division, each quotient bit can have the valué or 1 (see [7]). If
the current remaindeR; is greater or equal to 0, 1 is a valid quotient digit choice. If
the remainder is negative, -1 is a valid choice for the nextigut digit. If2|R;| <
divisor, the quotient digit can also Beln our synchronous model of the divider this
overlapping choice for the digit is represented by threpditeoons combined with
the asynchronous combinator:

< 0<R; —q:=1 >
H<<—D§2*RiSD—>qi2:0 >
| < R; <0 —q=—1>

For example, if the current remainder is equaH0.2 x D, then either the first or
the second transition may be chosen for the next step. By usin-determinism,
we avoid cluttering this description with implementatioetails, and at the same
time modularize and simplify the proofs. Deterministic tjant bit selection is in-
troduced in the synchronous, bit-vector model.

The following two properties are invariants of the synclwesidivider model:

(4) | R < D

(ii) 2C — DY\ q;279 = R;2'~,
whereR; is the remainder determined in iteratiarFrom these two invariants and
the initial condition that the divisoP and dividendC' are normalized to satisfy

% < D < land0 < C < D, we proved that the computed quotient

Z;;}J q;2~7 asymptotically approaches the true quoti€ftD.

4.4 Refinement Proofs

This section gives short overviews of the refinement prooésraentions key prob-
lems within each proof. It is this chain of refinement proofsiath establishes that
the functional correctness proven on the abstract, syncluomodel also applies
to the transistor-level model. The divider models will béreed to as rational di-
vider, integer divider, bit-vector divider, speed-indegent divider, timed divider
and transistor-level divider.

In our approach, refinement is a safety-property. To esfabikfinement, we
must first show that initial states of the lower-level mod®respond to legal, initial
states of the higher-level model. Then, we must show tha¢&oh transition that
can be performed by the lower-level model, there is a cooeding transition of



the higher-level model, or that it is a stuttering move [1#fhe higher-level model.
These proof obligations are derived automatically by on¢hefproof rules that
encodes the semantics of our logic for ST.

Because refinement is a safety property, we can assume thatstate of the
lower-level model before a transition is performed mapsstate of the higher-level
model, it satisfies any safety properties that have beeblastad for higher-level
model. This allows us to use safety properties of the hidgnezt model in the proof
of refinement. This property is very helpful for our proofsrExample, arithmetic
properties that are established for the top-level modeiseaused when verifying
the other models. Likewise, invariants that are estabdidhye model-checking on
intermediate level models can be used when verifying ldeeet models. Because
of this, the verification of refinement is often simply a matigtautology checking.

Refinement between the Rational Divider and the Integer Dider. To convert
the integer values in the integer divider to the rationaledlvariables in the rational
divider one has to simply apply a division BY —!. To prove that the integer-valued
divider is arefinement of the rational-valued one, it needsetshown that overflows
do not happen. However, this is implied by the safety propetf| = QN%] < Dx
2]\,%1 which the integer divider model inherits from the rationidier.

Refinement between the Integer Divider and the Bit-Vector Drider. In the bit-
vector divider, carry-save representation is used for émeainder value. The ab-
straction mapping adds the carry and sum words to determ@eemainder value
at the integer level. Furthermore, the next quotient dgjitomputed deterministi-
cally in the bit-vector model based on the top bits of theyzaave adder without
resolving the carry of the bottom bits. For the refinemenbpitneeds to be shown
that for each quotient digit choice of the bit-vector model equivalent choice can
be made by the higher-level model.

Several safety properties of the higher-level models agd tsbound the values
of the divider and partial remainder at each iteration. Cimtb with properties of
the abstraction mapping, refinement is straightforwarchtons The proof obliga-
tions were discharged by the combination of a proof rule thdtices arithmetic
operations on bit-vectors to BDDs, and the BDD-based taggothecker.

When we first attempted this proof, we discovered quotidetsens that could
lead to a violation on the clause of the word-level invaritiat bounds the magni-
tude of the partial remainder. Using the counter-exampegated by our decision
procedures, we identified the cause, and modified the quatiection to correct
the error. As previously indicated, we reconstructed oudet®from published de-
scriptions [27,28]. It is likely that this error is an artifaof our interpretation of
these sources. We hope to have a clarification of this issuaddinal paper.

Refinement between the Bit-Vector Divider and Speed-Indepalent Divider.
The speed-independent model consists of three divideestagd all control is per-
formed by explicit handshaking without any timing assurmmipsi. For the abstraction



mapping it is necessary to determine which stage’s outpmtap to the output of
the synchronous model’s only stage. Intuitively, the peggk control ensures that at
any time, there is a stage whose output value is the lasbpegthainder computed,
and this stage can be identified by the state of the prechargeot. We verified a
hand-written invariant to show that the control logic optesaas intended. We then
wrote an abstraction function that selected the apprapadatput value for the par-
tial remainder based on the state of the precharge contsihglthis abstraction
function, the refinement property was easily proven.

Refinement between the Speed-Independent Divider and the fied Divider.

In the speed-independent model, the precharge controk Ipledorms an explicit
check to ensure that stage 1 is done precharging (i.e. its outputs are empty) before
stagei starts evaluating. The timed model starts both operationmrallel, and
timing bounds are used to ensure that precharging comjlefese evaluation. This
corresponds to William’s first optimization in the desigrttoé chip, as discussed in
section 4.1.

We use the approach of [2] to model time: a real-valued végigbadded to
the program to model the current time, transition guards@engthened to express
lower bounds on delays, and an action for advancing timefiselso as to observe
upper bounds on delays (i.e. time may not progress beyornaxénum delay for
a pending action). In this model, the clause of the guardHerdvaluate action
that asserted that the successor stage is done prechagémpigced by a clause that
states that the successor stage started prechargingentffidar in the past. We then
verified an invariant that implies that whenever this timaoadition is satisfied, the
successor stage has finished precharging. With this imtarfinement was easily
verified (see [16] for details).

Refinement between the Timed Divider and Transistor-Level vider. To estab-
lish that the transistor-level model implements the timeddeér, two major prob-
lems have to be addressed. First, the dual-rail encoded@lsigr the transistor-
level model must be mapped to the bit-vectors of the timeitidivSecond, in the
transistor-level model only the quotient bit output is usiedetermine if a stage has
finished evaluation. It therefore needs to be shown that tledient bit of a stage
becomes valid only after all other outputs of a stage arelvahis corresponds to
William’s second optimization as mentioned in section 4.1.

The first problem was addressed by defining an appropriateaaien map-
ping. Solving the second problem requires an argument aheutming of events
as data values propagate from a stage’s inputs throughyitsétements after it en-
ters evaluation mode. Our verification adapted a simpletdfgst graph traversal
algorithm for timing verification of combinational logic fase in the self-timed
context. Thus, our timing verification procedure verifieattthe timing graph has
the desired property and generates side obligations gtat@ that the inputs to a
stage remain stable while it is in evaluation mode.



These side conditions are expressed as safety propertibs tfansistor-level
model. To discharge the resulting proof obligations, weoidticed a side hierarchy
of models that matched the handshaking of the original htasewith the details of
the computation abstracted away. Corresponding safepepties were proven for
the highest, speed-independentlevel of the side hierandtigh were then inherited
down (through refinement) to the transistor level and usedigoharge the side
conditions of the timing analysis.

The introduction of the side hierarchy allowed us to disgkaall proof obli-
gations without ever having to prove an invariant or safetpprty directly at the
transistor level. Due to the timed nature and the amounttafigeesent at this level,
this would have been extremely difficult and time-consumBee [16] for details
on the timing analysis and the use of the side hierarchy.

5 Conclusions

We have demonstrated an approach to the verification of leeddesigns that
combines deductive reasoning with algorithmic decisiarcpdures. Like theorem
provers such as HOL, Isabelle or PVS, our tool employs thnatf proof states,
to which a sequence of inference rules and decision proesdsiapplied to form a
proof. The most important distinction between our tool aratertraditional provers
is that the set of available inference rules and decisionguores is not fixed, but
may be extended with domain-specific rules. This permitsaeimg that would be
unacceptably costly to formalize rigorously in logic to b&oduced into a correct-
ness argumentin a controlled manner.

We have demonstrated the practical applicability of ourrapph by carrying
out a top-to-bottom verification of a non-trivial hardwareseyn, a self-timed im-
plementation of SRT division. Our verification connects ghhievel specification
of the SRT division algorithm with a formalization of the tisistor-level implemen-
tation through a series of refinement proofs. Safety-ptogmeproven at the highest
level, in particular correct division, are propagated ddh chain of refinements
and thus hold for the implementation. The proof obligatiarising from the safety
property and refinement proofs varied widely in nature, fasithmetic obligations
at the algorithmic level to timing properties at the tratmidevel. Although there
have been many published verifications of dividers, we Belikat our work is dis-
tinguished by spanning the complete design hierarchy. Dmsecific proof rules
such as the timing-verification procedure played a crucial in achieving this.
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