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Abstract. This paper describes a deductive verification framework that allows the use of
general purpose decision procedures and traditional modelchecking along with domain spe-
cific inference rules. The latter allow established algorithms for timing verification and other
hardware verification tasks to be imported into the verification framework. To demonstrate
this approach, a SRT divider is verified using a transistor-level model with timing.

1 Introduction

Most formal verification of hardware designs is based on state-space exploration
or theorem proving. State space exploration provides an automatic approach for
verifying properties of designs described by relatively small models. In principle,
theorem proving techniques can be applied to much larger andmore detailed design
descriptions. However, the large demands for the time of expert users prevents the
wide-scale application of theorem proving techniques.

The strengths and weaknesses of state-space exploration and theorem proving
are in many ways complementary. This has motivated several recent efforts to com-
bine the two techniques [5]. One approach is to embed state-space exploration al-
gorithms as decision procedures in a general purpose theorem prover [21]. In this
approach, the design and specification are represented by formulas in the logic of the
prover, and decision procedures are oracles, introducing new theorems into the sys-
tem. Alternatively, some researchers have augmented state-space exploration tools
with simple theorem proving capability [12,1,19]. We extend this approach with the
integration ofdomain specificdecision procedures. For example, to verify timing
properties of a divider, a simple, depth-first, tree-walk algorithm determines tim-
ing relations within the design. In principle, this algorithm could be formalized in
a higher-order logic and proven correct; however, such an effort is not directly ger-
mane to the question of whether or not the divider is correct.

We view the verification task as one of maximizing the probability of producing
a correct design subject to schedule and budget constraints. Using informal, domain-
specific decision procedures in a deductive framework, we can verify critical prop-
erties of real designs that would not be practical to verify by theorem proving and/or
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model checking alone. Section 2 elaborates this claim. Section 3 describes our im-
plementation of this framework, and section 4 presents our verification of a self-
timed divider using this tool.

1.1 Running Example: Asynchronous Divider Verification

Our divider verification establishes refinement between progressively more detailed
descriptions of the design written in the Synchronized Transitions language [25].
The highest level model is an abstract specification of radix-2 SRT division on ra-
tional numbers; we prove functional correctness of the algorithm at this level. The
most detailed model formalizes the transistor-level structure along with its timing
properties. Each level of the hierarchy inherits the safetyproperties of the higher
levels: by showing that the top-level model divides correctly, we establish that all
of the lower level models divide correctly as well. Althoughthere have been many
published verifications of dividers, we believe that our work is distinguished by
spanning the complete design hierarchy.

1.2 Synchronized Transitions

A Synchronized Transitions (abbr. ST) [25] program is an initial state predicate and
a collection of transitions. A transition is a guarded command. For example,

<< x > y → x, y := y, x >>

is a transition that is enabled to swapx andy whenx is greater thany. Transitions
may be combined using the asynchronous combinator,‖, for examplet1‖t2‖ . . . ‖tn.
Program execution consists of repeatedly selecting a transition, testing its guard,
and, if the guard is satisfied, performing the multi-assignment. The order in which
transitions are selected is unspecified: this non-determinism models arbitrary delays
in a speed-independent model. ST provides other combinators and other language
features which are not presented in this paper.

1.3 Semantics

We employ awp semantics (see [8]) for ST. IfP is a program andQ is a predicate,
thenwp(P, Q) is the weakest condition that must hold such thatQ is guaranteed
to hold after any single action allowed byP is performed. Consider a transition
<<G→M>>: the guard,G, denotes a function from program states to the Booleans;
the multi-assignment,M , denotes a function from states to states. Awp semantics
of ST includes

wp(<<G→M>>, Q) = G ⇒ Q ◦ M

wp(t1‖t2‖ . . . ‖tn, Q) =

n∧

i=1

wp(ti, Q)

We make extensive use ofinvariants. A predicateI is an invariant ifI holding in
some state ensures thatI will hold in all possible subsequent states of the program.



In particular,I is an invariant ofP iff I ⇒ wp(P, I). A predicateQ is a safety
property of P if Q holds in all states reachable in any execution ofP . As shown
in [13], Q is a safety property ofP if and only if there is an invariantI such that
Q0 ⇒ I andI ⇒ Q.

Intuitively, programP ′ is a refinement of P if every reachable state transition
thatP ′ can make corresponds to a move ofP . More formally, refinement is defined
with respect to anabstraction mapping A that maps the states ofP ′ to P . P ′ is a
refinement ofP under abstraction mappingA iff for every reachable states′

1
of P ′

and every states′
2

that is reachable by performing a single transition ofP ′ from s′
1
,

eitherA(s′
1
) = A(s′

2
) (a stuttering action), or there is a transiton ofP that effects a

move fromA(s′
1
) to A(s′

2
).

2 Verification Approach

Like many theorem provers, our verification tool presents a deductive style of verifi-
cation. However, there are three ways in which our approach differs from traditional
theorem proving:

Integration of informal reasoning. Domain-specific decision procedures can be
used in our framework. Such procedures provide an algorithmic encapsulation
of informal domain expertise.

Syntactic embedding of the HDL. Our framework favours an embedding of the
hardware description language (e.g. ST) at a syntactic level. Inference rules
operate directly on the HDL’s abstract syntax.

Merging of inference rules and decision procedures.In traditional theorem provers,
inference rules provide pattern-based rewriting of proof obligations, while deci-
sion procedures (if any) decide the validity of leaf obligations in a proof tree. In
our framework, inference rules may perform non-trivial computations to decide
the soundness of a proof step, or to derive the result of an inference step.

2.1 Informal reasoning in formal verification

At first, the suggestion of allowing informal reasoning to beintroduced into a formal
proof appears to be outrageous: if an informal inference rule is unsound, it can
invalidate any proof in which the rule is used. However, informal rules provide a
practical way to tailor our verification tool to specific domains and verify properties
that would not be practical to address by strictly formal approaches. When errors
are found in a design, the verification is worthwhile even if some steps are justified
only informally.

Informal reasoning is commonplace in many verification efforts. For example,
model-checking is typically applied to an abstraction of the design that was pro-
duced informally by a verification expert [11,20]. Althoughthe absence of errors
in the abstraction does not guarantee the correctness of theactual design, errors
found in the abstraction can reveal errors in the actual design. Many theorem-prover
based verifications model functional units at the register transfer level; the gate- and



transistor-levels of the design are validated only throughsimulation and informal
reviews [24].

We make two uses of informal rules. First, an informal rule can provide an al-
gorithmic encoding of domain knowledge where a formalization in logic would be
unacceptably time-consuming. For example, the timing analysis procedure that we
used derives a graph whose nodes correspond to the channel connected regions of
the transistor-level circuit. The circuit topology is syntactically encoded in the text
of the ST program, and the procedure derives timing bounds through graph traversal.
The correspondence between the graph and the original circuit and the soundness of
the graph traversal have only been shown informally.

Second, we use several ‘semi-formal’ rules for reasoning about ST programs.
For instance, the proof rules for reasoning about invariants, safety properties, and
refinements are founded on theorems that were formally proven (although the proofs
have not been mechanically checked). These theorems are based on a formal seman-
tics of a core language only, and their extension to the full language with records,
arrays, functions, and modules is informal.

2.2 Syntactic embedding of the HDL

Verification requires a description of the design as a formula in the appropriate logic.
Four ways to obtain such a description are:

1. Describe the design directly in a general purpose logic.With this approach,
the full expressiveness of the logic is available to the designer [9]. However,
many designers find such logics unfamiliar, and most tools for other aspects
of the design process (e.g. simulation, synthesis, physical design, etc.) support
special-purpose specification or hardware description languages.

2. Deeply embed the HDL in the logic[6]. With this approach, the syntax of the
HDL as well as its semantic interpretation are defined withinthe logic. This
provides a rigorous embedding where statements of the HDL become objects
of an abstract data type in the logic, and proof-rules for theHDL can be proven
as theorems in the logic, using the definitions of the semantic functions. The
effort for producing such an embedding can be substantial, although it may be
possible to amortize this effort over many designs.

3. Shallowly embed the HDL in the logic.With this approach, the translation from
the HDL to the logic occurs outside of the logic. Shallow embeddings can be
easier to implement than deep embeddings because the translation process is
informal with a corresponding loss of rigour. Because program structures are
not represented in the logic, theorems that refer to the syntactic structure of the
HDL description can be neither stated nor proven [6].

4. Syntactic embeddings.In a syntactic embedding, the logic is extended to include
proof-rules for the HDL, and the syntax of the HDL becomes part of the syntax
of the logic. Because programs appear ‘literally’ in proof obligations, theorems
about syntactic forms can be included as proof rules; results of inferences can be
interpreted in the original domain; and it is easier to present counter-examples
in terms of the original program.



We use a syntactic embedding of ST into the logic of our theorem prover. The
core logic of the prover is first-order with quantifiers, equality, and arithmetic oper-
ations. We extend this logic with inference and rewriting rules for the ST combina-
tors,wp, invariants, safety properties, refinement, and timing-analysis.

We have found that a syntactic embedding simplifies the implementation of
semi-formal or informal inference rules. Such rules are often based on syntactic
analysis of the underlying program. These rules are easier to implement, and hope-
fully less prone to implementation errors, because the abstract syntax of the program
is immediately available in the syntactic embedding. Furthermore, proof systems
based on syntactic proof rules tend to match the designer’s intuitive understanding
of the HDL.

There are noteworthy drawbacks to this approach. Because the proof rules effec-
tively become axioms of the logic, it is impossible to prove the consistency of the
proof system. Doing so would require a formulation of a complete formal seman-
tics of the logic, and thus the specification language, whichis precisely what we are
trying to avoid. Furthermore, as with shallow embeddings, no meta-reasoning about
the semantics of the specification language is possible.

2.3 Merging of Decision Procedures and Inference Rules

Traditional mechanized theorem provers generally use onlydecision procedures in
the classic sense of an algorithm that decides the validity of a formula. Such decision
procedures are used to discharge proof obligations in a single automatic step, i.e.
they operate on the leaves of a proof tree. Proof steps interior to the proof tree,
however, are generally justified by matching them with an inference rule schema,
and possibly checking side conditions or provisos.

We remove the restriction of decision procedures to leaf obligations and allow
inference rules to use arbitrary algorithms to decide the soundness of a proof step.
Theoretically, lifting this restriction has no significance; such an “inference proce-
dure” can be replaced by the corresponding leaf decision procedures, and inferences
using propositional logic. However, there are significant practical advantages to our
approach. In many cases, it is convenient to let the inference rule compute the de-
rived obligations rather than requiring the user to providethem. Of course, one could
perform two computations of the derived obligation: one outside of the trusted core
to derive the result for the user, and the other in the core to verify the result. Such an
approach has obvious disadvantages with respect to efficiency and software main-
tenance. These problems would be particularly severe in a framework such as ours
where it is supposed to be easy to add and extend domain-specific inference rules
and decision procedures. Our “inference procedures” provide a simple mechanism
for avoiding these problems.

3 Prototype Implementation

We have implemented a proof-of-conceptverification environment for our approach.
It has three architectural components. A generic core provides proof state and the-



orem objects, as well as a tactic interface. The second component is a library of
common decision procedures, while the third comprises the code that is specific to
a particular object logic. The system has been implemented in Standard ML of New
Jersey [4]. As in HOL, ML also forms the user-interface for the proof checker.

3.1 Generic Core

Similar to theorem proving environments such as HOL, PVS or Isabelle [10,17,18],
a (backwards-style) proof in our proof checker is represented by a sequence of proof
states. A proof state consists of the claim, the pending obligations, and some book-
keeping information. The claim and obligations are judgments which can be, for
instance, a sequent (in a sequent calculus), or a formula (ina natural deduction style
calculus). In the initial proof state of a proof, the list of pending obligations con-
sists only of the claim. Rules of inference are implemented as functions from proof
state to proof state, and are used to transform one or more pending obligations into
zero or more (simpler) obligations. The available proof rules are registered with the
claim state and cannot be modified afterwards; in a sense, they become hypotheses
of the theorem. This permits user-defined domain-specific proof rules to be intro-
duced without modification of the core.

A proof state with no pending obligations corresponds to a proven claim, i.e. a
theorem. To allow for theorems to be used in later proofs without having to check,
and therefore execute, their proof before each use, we provide theorem objects,
which associate a claim with a proof, i.e. a function that takes the claim proof state
and returns a proof state with no pending obligations. Theorems can only be used in
a proof if they were imported into the initial proof state. Weprovide facilities that
analyze the dependency between theorems, ensure the absence of circularity, check
all proofs that a theorem depends on, and generate reports.

All of the above components are parameterized in the syntax of the logic and
a well-formedness predicate for proof obligations. The parameterization is realized
through SML functors.

To facilitate the interactive development of proofs, we provide a simple goal
package, which maintains a current proof-state to which rules can be applied, and
allows proof steps to be undone. As indicated above, a proof in our system is a SML
function from proof states to proof states. We provide a library of higher-order func-
tions on proof rules (analogous to tacticals in e.g. HOL or Isabelle) which facilitate
the construction of proofs from basic proof rules. This is often more effective and
produces more readable proofs than writing a proof ‘from scratch’ in plain SML.

3.2 Library of Common Decision Procedures

This library comprises core routines of several commonly used decision procedures.
The library is independent of a particular object logic; instantiating a decision pro-
cedure for a logic requires writing a small amount of interface code.

To support Boolean tautology checking as well as symbolic model checking, the
library provides an abstract data type for boolean expressions in a canonical repre-
sentation. The underlying implementation of this data typeis a state-of-the art BDD



package [23] that was integrated into the SML/NJ runtime system. The interface
provides full access to the control aspects of the BDD package, such as variable
reordering strategies, cache sizes etc. Based on the BDD package, we have imple-
mented a package for symbolic manipulation of bit-vectors and arithmetic operation
thereon.

Components for arithmetic decision procedures include a package for arbitrary
precision integer and rational arithmetic, polynomials, and a decision procedure for
linear arithmetic.

Based on these procedures, we have implemented a decision procedure that dis-
charges arbitrary tautologies composed of linear inequalities with boolean connec-
tives. We have not implemented a decision procedure for combinations of theories
(e.g. [15,22]) as our simple procedures were sufficient for the divider proof. All
decision procedures include counter-example facilities for non-valid formulas.

3.3 Object Logic for Synchronized Transitions

We have instantiated the generic core with a logic suitable for reasoning about
ST programs. The proof system is a sequent calculus for explicitly typed first-
order logic that is extended with all types, constants and operators of ST, including
transition-valued expressions.

As indicated in section 2.2, assertions on ST programs, suchas invariants, safety
properties and refinement, are formulated in terms of predicates on transition-val-
ued expressions. We provide proof rules, such as thewp-based rule for invari-
ants, that allow such obligations to be reduced to obligations that are purely within
quantifier-free logic with boolean connectives, arithmetic, If-expressions, and arrays
and records under store and select.

As an example, consider a proof state that includes the pending obligation:

HasInvariant(<<i > 0 → i:= i − 1>>‖<<i < N → i:= i + 1>>, 0 ≤ i ≤ N)

This obligation states that the two transitions maintain the given invariant. An ap-
plication of the proof rule forHasInvariantrewrites this obligation as

(0 ≤ i ≤ N) ⇒ wp(<<i > 0 → i:= i−1>>‖<<i < N → i:= i+1>>, 0 ≤ i ≤ N)

An application of the proof rule forwp, which implements the semantics given in
section 1.3, yields:

(0 ≤ i ≤ N) ⇒ (
((i > 0) ⇒ (0 ≤ i − 1 ≤ N))

∧ ((i < N) ⇒ (0 ≤ i + 1 ≤ N))
)

This last obligation can be discharged using the decision procedure for linear in-
equalities with boolean connectives.

Further proof rules include the usual rules for sequent manipulations, rewrites,
simplification and lifting ofIf-expressions, quantifier manipulations, and arithmetic



simplifications. Together with decision procedures for propositional calculus and
linear arithmetic, these are frequently sufficient to discharge obligations arising from
assertions about ST programs. More specialized proof ruleswill be explained briefly
in the context of the divider verification presented in the remainder of the paper.

4 Example: Proving a Self-Timed Divider Correct

We evaluated the proof checker by verifying Williams’ self-timed divider [27],
which implements the radix-2 SRT algorithm [7]. We reconstructed the design from
the descriptions in [27] and [28]. A variation of this designis incorporated in the
HAL SPARC CPU.

4.1 Description of the Divider

As shown in figure 1, the divider consists of three
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Fig. 1.Divider Architecture

identical stages, each of which performs the com-
putation of a single iterative step of the SRT di-
vision algorithm, and which pass intermediate
results around in a circular fashion. Each stage
computes a new partial remainder (in carry-save
representation) and quotient digit, based on the
result of the previous iteration which it receives
from the preceding stage. The design is self-timed,
with signals encoded as dual-rail values [26], and

implemented in precharged logic.
The precharge control block sequences the iterative computation. This block

reads the stage completion signals and regulates the operation of the stages through
the precharge control signals. Taken together, the precharge control block and the
dual-rail data-paths form a ring oscillator; three steps ofthe SRT algorithm are com-
puted in each period of the oscillation.

According to the precharge control signals, each stage can be in one of three
states: precharge, evaluate, or hold. The “precharge bar” signal for stagei ispb(i).
Whenpb(i) is low, stagei is precharging. Precharging leads to a state where ev-
ery dual-rail signal produced by the stage has the “empty” value. Evaluation leads
to a state where every signal has a “valid” value. A stage in the holding state leaves
its outputs unchanged so that its successor can use them to compute the next par-
tial remainder and quotient bit. A simple invariant that captures this sequencing is
central in many of our proofs.

Williams employed two optimizations to improve the performance of the di-
vider. First, he assumed that a stage can precharge faster than its predecessor can
evaluate. Second, he assumed that the quotient bit of a stagewill be the last output
to change during the evaluation stage. The first optimization allows stagei+1 to
precharge in parallel with the evaluation phase of stagei. If no timing assumptions
were made, these operations would have to be performed sequentially. The second



optimization allows the computation of stagei+1 to start as soon as the quotient bit
from stagei is output, without any extra hardware to check the completion status of
the partial remainder. Due to these optimizations, verifying the functionality of the
divider includes proof obligations that require timing analysis. This timing analysis
establishes relative orderings of events in the operation of the divider and shows that
the assumptions on which the optimizations are based are indeed correct.

4.2 A Refinement Hierarchy for the Divider

The transistor-level model
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and stage signal timing
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timed control
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Fig. 2.Verification Hierarchy

of the divider is too large
to permit model check-
ing, and too complicated
to verify from first prin-
ciples using a theorem
prover. Therefore it is
desirable to prove safety
properties on a more ab-
stract, higher-level model
and show that these prop-
erties hold in the more
detailed models. We used
a hierarchy of models
as depicted in figure 2
to verify the divider. Ar-
rows indicate verifica-
tion obligations: verti-
cal arrows correspond
to refinement proofs, hor-
izontal arrows indicate
other properties that ei-
ther establish correctness
or assist in the refine-
ment proofs.

The first two refine-
ment steps are data refinements. Our top-level model has a single stage which com-
putes a quotient bit and the next partial remainder in each step. The divisor, dividend,
and remainder have rational values. In the first refinement step, we replace the ratio-
nal values with integer values, and the next refinement step replaces these integers
with bit-vectors.

The next two models elaborate upon the self-timed handshaking protocols used
in the design. The speed-independent model has three divider stages and implements
a handshaking protocol that does not depend on the timing delays of the compo-
nents. In the timed, word-level model, bounds are given on the ratio of precharge
time to evaluation time.



The lowest-level model corresponds directly to our transistor-level implementa-
tion of the divider chip. Variables in this model are represented using dual-rail code.
In the higher level models, the remainder word was computed as a single, atomic
action. Here, each bit is set independently. In this transistor-level model, a stage’s
completion status is determined solely by the quotient bit output.

4.3 Functional Correctness

In radix-2 SRT division, each quotient bit can have the value-1, 0 or 1 (see [7]). If
the current remainderRi is greater or equal to 0, 1 is a valid quotient digit choice. If
the remainder is negative, -1 is a valid choice for the next quotient digit. If 2|Ri| ≤
divisor, the quotient digit can also be0. In our synchronous model of the divider this
overlapping choice for the digit is represented by three transitions combined with
the asynchronous combinator:

≪ 0 ≤ Ri → qi := 1 ≫
‖ ≪ −D ≤ 2 ∗ Ri ≤ D → qi := 0 ≫
‖ ≪ Ri < 0 → qi := −1 ≫

For example, if the current remainder is equal to−0.2 ∗ D, then either the first or
the second transition may be chosen for the next step. By using non-determinism,
we avoid cluttering this description with implementation details, and at the same
time modularize and simplify the proofs. Deterministic quotient bit selection is in-
troduced in the synchronous, bit-vector model.

The following two properties are invariants of the synchronous divider model:

(i) |Ri| ≤ D

(ii) 2C − D
∑i−1

j=0
qj2

−j = Ri2
1−i,

whereRi is the remainder determined in iterationi. From these two invariants and
the initial condition that the divisorD and dividendC are normalized to satisfy
1

2
≤ D < 1 and0 < C < D, we proved that the computed quotient∑i−1

j=0
qj2

−j asymptotically approaches the true quotientC/D.

4.4 Refinement Proofs

This section gives short overviews of the refinement proofs and mentions key prob-
lems within each proof. It is this chain of refinement proofs which establishes that
the functional correctness proven on the abstract, synchronous model also applies
to the transistor-level model. The divider models will be referred to as rational di-
vider, integer divider, bit-vector divider, speed-independent divider, timed divider
and transistor-level divider.

In our approach, refinement is a safety-property. To establish refinement, we
must first show that initial states of the lower-level model correspond to legal, initial
states of the higher-level model. Then, we must show that foreach transition that
can be performed by the lower-level model, there is a corresponding transition of



the higher-level model, or that it is a stuttering move [14] of the higher-level model.
These proof obligations are derived automatically by one ofthe proof rules that
encodes the semantics of our logic for ST.

Because refinement is a safety property, we can assume that ifthe state of the
lower-level model before a transition is performed maps to astate of the higher-level
model, it satisfies any safety properties that have been established for higher-level
model. This allows us to use safety properties of the higher-level model in the proof
of refinement. This property is very helpful for our proofs. For example, arithmetic
properties that are established for the top-level models can be used when verifying
the other models. Likewise, invariants that are established by model-checking on
intermediate level models can be used when verifying lower-level models. Because
of this, the verification of refinement is often simply a matter of tautology checking.

Refinement between the Rational Divider and the Integer Divider. To convert
the integer values in the integer divider to the rational valued variables in the rational
divider one has to simply apply a division by2N−1. To prove that the integer-valued
divider is a refinement of the rational-valued one, it needs to be shown that overflows
do not happen. However, this is implied by the safety property |Ri| ∗

1

2N−1 ≤ D ∗
1

2N−1 which the integer divider model inherits from the rational divider.

Refinement between the Integer Divider and the Bit-Vector Divider. In the bit-
vector divider, carry-save representation is used for the remainder value. The ab-
straction mapping adds the carry and sum words to determine the remainder value
at the integer level. Furthermore, the next quotient digit is computed deterministi-
cally in the bit-vector model based on the top bits of the carry-save adder without
resolving the carry of the bottom bits. For the refinement proof it needs to be shown
that for each quotient digit choice of the bit-vector model,an equivalent choice can
be made by the higher-level model.

Several safety properties of the higher-level models are used to bound the values
of the divider and partial remainder at each iteration. Combined with properties of
the abstraction mapping, refinement is straightforward to show. The proof obliga-
tions were discharged by the combination of a proof rule thatreduces arithmetic
operations on bit-vectors to BDDs, and the BDD-based tautology checker.

When we first attempted this proof, we discovered quotient selections that could
lead to a violation on the clause of the word-level invariantthat bounds the magni-
tude of the partial remainder. Using the counter-examples generated by our decision
procedures, we identified the cause, and modified the quotient selection to correct
the error. As previously indicated, we reconstructed our models from published de-
scriptions [27,28]. It is likely that this error is an artifact of our interpretation of
these sources. We hope to have a clarification of this issue for the final paper.

Refinement between the Bit-Vector Divider and Speed-Independent Divider.
The speed-independent model consists of three divider stages and all control is per-
formed by explicit handshaking without any timing assumptions. For the abstraction



mapping it is necessary to determine which stage’s output tomap to the output of
the synchronous model’s only stage. Intuitively, the precharge control ensures that at
any time, there is a stage whose output value is the last partial remainder computed,
and this stage can be identified by the state of the precharge control. We verified a
hand-written invariant to show that the control logic operates as intended. We then
wrote an abstraction function that selected the appropriate output value for the par-
tial remainder based on the state of the precharge control. Using this abstraction
function, the refinement property was easily proven.

Refinement between the Speed-Independent Divider and the Timed Divider.
In the speed-independent model, the precharge control block performs an explicit
check to ensure that stagei+1 is done precharging (i.e. its outputs are empty) before
stagei starts evaluating. The timed model starts both operations in parallel, and
timing bounds are used to ensure that precharging completesbefore evaluation. This
corresponds to William’s first optimization in the design ofthe chip, as discussed in
section 4.1.

We use the approach of [2] to model time: a real-valued variable is added to
the program to model the current time, transition guards arestrengthened to express
lower bounds on delays, and an action for advancing time is defined so as to observe
upper bounds on delays (i.e. time may not progress beyond themaximum delay for
a pending action). In this model, the clause of the guard for the evaluate action
that asserted that the successor stage is done precharging is replaced by a clause that
states that the successor stage started precharging sufficiently far in the past. We then
verified an invariant that implies that whenever this timingcondition is satisfied, the
successor stage has finished precharging. With this invariant, refinement was easily
verified (see [16] for details).

Refinement between the Timed Divider and Transistor-Level Divider. To estab-
lish that the transistor-level model implements the timed divider, two major prob-
lems have to be addressed. First, the dual-rail encoded signals of the transistor-
level model must be mapped to the bit-vectors of the timed divider. Second, in the
transistor-level model only the quotient bit output is usedto determine if a stage has
finished evaluation. It therefore needs to be shown that the quotient bit of a stage
becomes valid only after all other outputs of a stage are valid. This corresponds to
William’s second optimization as mentioned in section 4.1.

The first problem was addressed by defining an appropriate abstraction map-
ping. Solving the second problem requires an argument aboutthe timing of events
as data values propagate from a stage’s inputs through its logic elements after it en-
ters evaluation mode. Our verification adapted a simple depth-first graph traversal
algorithm for timing verification of combinational logic for use in the self-timed
context. Thus, our timing verification procedure verifies that the timing graph has
the desired property and generates side obligations stating e.g. that the inputs to a
stage remain stable while it is in evaluation mode.



These side conditions are expressed as safety properties ofthe transistor-level
model. To discharge the resulting proof obligations, we introduced a side hierarchy
of models that matched the handshaking of the original hierarchy with the details of
the computation abstracted away. Corresponding safety properties were proven for
the highest, speed-independent level of the side hierarchy, which were then inherited
down (through refinement) to the transistor level and used todischarge the side
conditions of the timing analysis.

The introduction of the side hierarchy allowed us to discharge all proof obli-
gations without ever having to prove an invariant or safety property directly at the
transistor level. Due to the timed nature and the amount of detail present at this level,
this would have been extremely difficult and time-consuming. See [16] for details
on the timing analysis and the use of the side hierarchy.

5 Conclusions

We have demonstrated an approach to the verification of hardware designs that
combines deductive reasoning with algorithmic decision procedures. Like theorem
provers such as HOL, Isabelle or PVS, our tool employs the notion of proof states,
to which a sequence of inference rules and decision procedures is applied to form a
proof. The most important distinction between our tool and more traditional provers
is that the set of available inference rules and decision procedures is not fixed, but
may be extended with domain-specific rules. This permits reasoning that would be
unacceptably costly to formalize rigorously in logic to be introduced into a correct-
ness argument in a controlled manner.

We have demonstrated the practical applicability of our approach by carrying
out a top-to-bottom verification of a non-trivial hardware design, a self-timed im-
plementation of SRT division. Our verification connects a high-level specification
of the SRT division algorithm with a formalization of the transistor-level implemen-
tation through a series of refinement proofs. Safety-properties proven at the highest
level, in particular correct division, are propagated downthe chain of refinements
and thus hold for the implementation. The proof obligationsarising from the safety
property and refinement proofs varied widely in nature, fromarithmetic obligations
at the algorithmic level to timing properties at the transistor level. Although there
have been many published verifications of dividers, we believe that our work is dis-
tinguished by spanning the complete design hierarchy. Domain-specific proof rules
such as the timing-verification procedure played a crucial role in achieving this.
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