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Reachable Sets: What and Why?

* One application: safety analysis
— What states are doomed to become unsafe?
— What states are safe given an appropriate control strategy?
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Calculating Reach Sets

e Two primary challenges

— How to represent set of reachable states

— How to evolve set according to dynamics
« Discrete systems x,,, = ()

— Enumerate trajectories and states

— Efficient representations: Binary Decision Diagrams
e Continuous systems dz/dt = f(x)?




10

-10

10

I0NS

icitly by an isosurface of a scalar function

L

P
et
R

e
A
i

il

S,
i STt
ey LA e e e
R e
R
e e
2 R
e
e
R R e
Rt
e
LR
Al
R
G

to calculate

ts

does not matter conceptually
lly merge and/or separate
R" xR — R
G(t) ={z e R" [ ¢(z,t) < O}

|
ion

t Surface Funct

ica
les are easy

i
imp

th several benef

IC

ined i
Iimens

t

Impl
defi

IS

Wi

— State space d
— Surfaces automat
— Geometric quan

Set G(t)
z,¢)

lan Mitchell (UBC Computer Science)

24 Oct 04



Continuous Backward Reachable Sets

« Set of all states from which trajectories can reach some given
target state
— For example, what states can reach G(t)?

z3(t) rz  Continuous System Dynamics
Target Set G(0) x(t) — f(a;(t))

Backward Reachable Set G(t)

ccz(t)/\//\w62 z(t) € G(O)
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Why “Backward” Reachable Sets?

 To distinguish from forward reachable set
e To compute, run dynamics backwards in time from target set

i(t) = —f(a(t))

O0<t1 <tr<t3
N 6(0)Ca(t) C9ta) € G(ts)

/—\/—/\7
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Reachable Sets (controlled input)

* For most of our examples, target set is unsafe
« If we can control the input, choose it to avoid the target set
e Backward reachable set is unsafe no matter what we do

Continuous System Dynamics

z(t) = f(x(t),v(t))

L1

vu(-),z(t) € G(0)

L2
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Reachable Sets (uncontrolled input)

e Sometimes we have no control over input signal
— noise, actions of other agents, unknown system parameters

* |tis safest to assume the worst case

Continuous System Dynamics

z(t) = f(x(t),v(t))

(), z(t) € G(0)
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Two Competing Inputs

 For some systems there are two classes of inputs v = (u,d)
— Controllable inputs v O U
— Uncontrollable (disturbance) inputs d O D
 Equivalent to a zero sum differential game formulation
— If there is an advantage to input ordering, give it to disturbances

Continuous System Dynamics

z(t) = f(x(t),u(t),d(t))

Vu(-),3d(-),z(t) € G(0)
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Game of Two ldentical Vehicles

e Classical collision avoidance example
— Collision occurs if vehicles get within five units of one another
— Evader chooses turn rate |a| < 1 to avoid collision
— Pursuer chooses turn rate |b| < 1 to cause collision
— Fixed equal velocity v, = v, = 5
dynamics (pursuer)

d pr _'Up COS ep_
' 0p | | b
’1)1D 0
b
evader aircraft (control) pursuer aircraft (disturbance)
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Collision Avoidance Computation

 Work in relative coordinates with evader fixed at origin
— State variables are now relative planar location (z,y) and relative

heading @
d x| —ve + vp COS Y — ay
T y| = vpSIN Y — ax
() b—a
a Up Y

x<—% >y, >
target set description b
h(a:)z\/a:2+y2—5 |

evader aircraft (control) pursuer aircraft (disturbance)

24 Oct 04 lan Mitchell (UBC Computer Science) 11



Evolving Reachable Sets

* Modified Hamilton-Jacobi partial differential equation

Di¢p(x,t) + min [0, H(z, Dz¢(x,t))] = 0O

with Hamiltonian : H(xz,p) = maxmin f(x,a,b) - p
ac A beB

and terminal conditions: ¢(x,0) = h(x)
where G(0) ={z € R" | h(z) <0}
and z = f(x,a,b)

growth of reachable set final reachable set
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Application: Softwalls for Aircraft Safety

» Use reachable sets to guarantee safety

 Basic Rules
— Pursuer: turn to head toward evader
— Evader: turn to head east

« Evader’s input is filtered to guarantee that pursuer does not enter the
reachable set

safety.filter's
__-input modification

evader’s actual input

collision set
., reachable set

/ (unsafe set)

evader

N T——pursuer

evader’s desired input

— pursuer’s input

joint work with Edward Lee & Adam Cataldo
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Application: Collision Alert for ATC

 Use reachable set to detect potential collisions and warn Air Traffic
Control (ATC)
— Find aircraft pairs in ETMS database whose flight plans intersect
— Check whether either aircraft is in the other’s collision region
— If so, examine ETMS data to see if aircraft path is deviated

— One hour sample in Oakland center’s airspace—
» 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts

s
1 | 1
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Validating the Numerical Algorithm

* Analytic solution for reachable set can be found [Merz, 1972]
— Applies only to identical pursuer and evader dynamics
— Merz’s solution placed pursuer at the origin, game is not symmetric
— Analytic solution can be used to validate numerical solution
— [Mitchell, 2001]
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Hybrid System Reach Sets

Combining Continuous and Discrete
Evolution



Why Hybrid Systems?

« Computers are increasingly interacting with external world
— Flexibility of such combinations yields huge design space

— Design methods and tools targeted (mostly) at either continuous or
discrete systems

 Example: aircraft flight control systems

seven mode collision
avoidance protocol
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Hybrid Automata

 Discrete modes and
transitions

e Continuous evolution within i
each mode

straight2

0, = initiate maneuver |y = f (X,0) L= 14

straightl
X =fs(X,0)
9.

straight4 straight3

97 9s
¢ X;) _(-V tvcosy ¢ X;) _(~-V+vcosy -X,
*{ X, vV sing A x, vV Sing + X,
dynamics in straight modes dynamics in arc modes
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Seven Mode Safety Analysis

unsafe set Wlthout maneuver
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Seven Mode Safety Analysis

« Ability to choose maneuver start time further reduces unsafe set

safe with switch

20
15

10

unsafe with or
without switch

-10
-15
-20

-25

-30

-10 0 10 20 30 40 50
. . X . .
[Tomlin, Mitchell & Ghosh, 2001] : safe without S\_NItCh
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Computing Hybrid Reachable Sets

 Compute continuous reachable set in each mode separately
— Uncontrollable switches may introduce unsafe sets
— Controllable switches may introduce safe sets
— Forced switches introduce boundary conditions

[Tomlin, Lygeros & Sastry, 2000]
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Reach-Avoid Operator

 Compute set of states which reaches G(0) without entering £

G(t) = {z € R" | ¢g(z,t) <O}
E={zeR"|¢p(z) <0}

Reach-Avoid Set G(t)

 Formulated as a constrained Hamilton-Jacobi equation or
variational inequality

— [Mitchell & Tomlin, 2000]

Dipg(z,t) + min [0, H(x, Depg(z,t))] = 0
subject to: ¢q(x,t) > ¢p(x)

* Level set can represent often odd shape of reach-avoid sets
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Application: Discrete Abstractions

e It can be easier to analyze discrete automata than hybrid
automata or continuous systems

— Use reachable set information to abstract away continuous details

U4
safe at present
always safe
unsafe to g;

-10 0 10 20 30 40 50

—— controlled transition (o)
— forced transition

d;
safe at present
will become unsafe
unsafe to g;
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Application: Cockpit Display Analysis

« Controllable flight envelopes for landing and Take Off / Go
Around (TOGA) maneuvers may not be the same

* Pilot’s cockpit display may not contain sufficient information to
distinguish whether TOGA can be initiated

controllable TOGA envelope _ _ eXiSting Interface
intersection flare TOGA

flaps extended flaps retracted
minimum thrust maximum thrust

rollout

flaps extended
reverse thrust

revised interface
flare ) [ TOGA

flaps retracted

Y

flaps extended

minimum thrust ) 9 maximum thrust
v (degrees) \ 4
rollout slow TOGA
controllable flare envelope flaps extended flaps extended
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Application: Aircraft Autolander

« Airplane must stay within safe flight envelope during landing
— Bounds on velocity (V), flight path angle ()), height (2)
— Control over engine thrust (T), angle of attack (a), flap settings
— Model flap settings as discrete modes of hybrid automata
— Terms in continuous dynamics may on flap setting
— [Mitchell, Bayen & Tomlin, 2001]

V m™[T cosa -D(a,V)-mgsiny]
Z S_t y | = (mV)™T sing +L(a.V)-mg cos]
‘ 7 Vsiny
body frame
a wind frame
inertial frame

mg
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Landing Example

* Flap dynamics version

— Pilot can choose one of
three flap deflections

— Thirty seconds for zero to
full deflection

* Implemented version

— Instant switches between
fixed deflections

— Additional timed modes to
remove Zeno behavior
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: Discrete Model

C__deflect >
(0u) (25d) (5o
C__retract >

<—— controlled
<«—— forced
<—— |nitial
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Landing Example: No Mode Switches

Mode 0d Mode 25d Mode 50d

Envelopes

Safe sets
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Envelopes

Safe sets
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Landing Example: Mode Switches

Mode 0d Mode 25d Mode 50d

lan Mitchell (UBC Computer Science)
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Landing Example: Synthesizing Control

* For states at the boundary of the safe set, results of reach-avoid
computation determine

— What continuous inputs (if any) maintain safety
— What discrete jumps (if any) are safe to perform
— Level set values & gradients provide all relevant data

Slice at z = 3 meters

il 70 el il 70 el il 70 el
Mode Od Mode 25d Mode S0d
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