Reach Sets and the Hamilton-Jacobi Equation

Ian Mitchell

Department of Computer Science The University of British Columbia

Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford)

research supported by National Science and Engineering Research Council of Canada DARPA Software Enabled Control Project

Reachable Sets: What and Why?

- One application: safety analysis
 - What states are doomed to become unsafe?
 - What states are safe given an appropriate control strategy?

Calculating Reach Sets

- Two primary challenges
 - How to represent set of reachable states
 - How to evolve set according to dynamics
- Discrete systems $x_{k+1} = \delta(x_k)$
 - Enumerate trajectories and states
 - Efficient representations: Binary Decision Diagrams
- Continuous systems dxIdt = f(x)?

2

Implicit Surface Functions

- Set G(t) is defined implicitly by an isosurface of a scalar function φ(x,t), with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

 $\phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$

 $\mathcal{G}(t) = \{ x \in \mathbb{R}^n \mid \phi(x, t) \le 0 \}$

Continuous Backward Reachable Sets

- Set of all states from which trajectories can reach some given target state
 - For example, what states can reach G(t)?

Why "Backward" Reachable Sets?

- To distinguish from forward reachable set
- To compute, run dynamics backwards in time from target set

$$\dot{x}(t) = -f(x(t))$$

$$G(0) G(t_1) G(t_2) G(t_3)$$

 $0 < t_1 < t_2 < t_3$

Reachable Sets (controlled input)

- For most of our examples, target set is unsafe
- If we can control the input, choose it to avoid the target set
- Backward reachable set is unsafe no matter what we do

Reachable Sets (uncontrolled input)

- Sometimes we have no control over input signal
 - noise, actions of other agents, unknown system parameters
- It is safest to assume the worst case

Continuous System Dynamics $\dot{x}(t) = f(x(t), \nu(t))$

Two Competing Inputs

- For some systems there are two classes of inputs v = (u,d)
 - Controllable inputs $u \in U$
 - Uncontrollable (disturbance) inputs $d \in D$
- Equivalent to a zero sum differential game formulation
 - If there is an advantage to input ordering, give it to disturbances

Game of Two Identical Vehicles

- Classical collision avoidance example
 - Collision occurs if vehicles get within five units of one another
 - Evader chooses turn rate $|a| \leq 1$ to avoid collision
 - Pursuer chooses turn rate $|b| \le 1$ to cause collision
 - Fixed equal velocity $v_e = v_p = 5$

Collision Avoidance Computation

- Work in relative coordinates with evader fixed at origin
 - State variables are now relative planar location (x,y) and relative heading ψ

Evolving Reachable Sets

Modified Hamilton-Jacobi partial differential equation

 $D_t \phi(x, t) + \min \left[0, H(x, D_x \phi(x, t))\right] = 0$ with Hamiltonian : $H(x, p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} f(x, a, b) \cdot p$ and terminal conditions : $\phi(x, 0) = h(x)$ where $G(0) = \{x \in \mathbb{R}^n \mid h(x) \leq 0\}$ and $\dot{x} = f(x, a, b)$

Application: Softwalls for Aircraft Safety

- Use reachable sets to guarantee safety
- Basic Rules
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- Evader's input is filtered to guarantee that pursuer does not enter the reachable set

Application: Collision Alert for ATC

- Use reachable set to detect potential collisions and warn Air Traffic Control (ATC)
 - Find aircraft pairs in ETMS database whose flight plans intersect
 - Check whether either aircraft is in the other's collision region
 - If so, examine ETMS data to see if aircraft path is deviated
 - One hour sample in Oakland center's airspace-
 - 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts

Validating the Numerical Algorithm

- Analytic solution for reachable set can be found [Merz, 1972]
 - Applies only to identical pursuer and evader dynamics
 - Merz's solution placed pursuer at the origin, game is not symmetric
 - Analytic solution can be used to validate numerical solution
 - [Mitchell, 2001]

Hybrid System Reach Sets

Combining Continuous and Discrete Evolution

Why Hybrid Systems?

- Computers are increasingly interacting with external world
 - Flexibility of such combinations yields huge design space —
 - Design methods and tools targeted (mostly) at either continuous or discrete systems
- Example: aircraft flight control systems

Seven Mode Safety Analysis

Seven Mode Safety Analysis

• Ability to choose maneuver start time further reduces unsafe set

Computing Hybrid Reachable Sets

- Compute continuous reachable set in each mode separately
 - Uncontrollable switches may introduce unsafe sets
 - Controllable switches may introduce safe sets
 - Forced switches introduce boundary conditions

Reach-Avoid Operator

• Compute set of states which reaches G(0) without entering E

$$G(t) = \{x \in \mathbb{R}^n \mid \phi_G(x, t) \le 0\}$$
$$E = \{x \in \mathbb{R}^n \mid \phi_E(x) \le 0\}$$

Reach-Avoid Set G(t)

- Formulated as a constrained Hamilton-Jacobi equation or variational inequality
 - [Mitchell & Tomlin, 2000]

$$D_t \phi_G(x, t) + \min \left[0, H(x, D_x \phi_G(x, t))\right] = 0$$

subject to: $\phi_G(x, t) \ge \phi_E(x)$

• Level set can represent often odd shape of reach-avoid sets

Application: Discrete Abstractions

- It can be easier to analyze discrete automata than hybrid automata or continuous systems
 - Use reachable set information to abstract away continuous details

Application: Cockpit Display Analysis

- Controllable flight envelopes for landing and Take Off / Go Around (TOGA) maneuvers may not be the same
- Pilot's cockpit display may not contain sufficient information to distinguish whether TOGA can be initiated

Application: Aircraft Autolander

- Airplane must stay within safe flight envelope during landing
 - Bounds on velocity (V), flight path angle (γ), height (z)
 - Control over engine thrust (T), angle of attack (a), flap settings
 - Model flap settings as discrete modes of hybrid automata
 - Terms in continuous dynamics may depend on flap setting
 - [Mitchell, Bayen & Tomlin, 2001]

Landing Example: Discrete Model

- Flap dynamics version
 - Pilot can choose one of three flap deflections
 - Thirty seconds for zero to full deflection

- Implemented version
 - Instant switches between fixed deflections
 - Additional timed modes to remove Zeno behavior

Landing Example: No Mode Switches

Landing Example: Mode Switches

Landing Example: Synthesizing Control

- For states at the boundary of the safe set, results of reach-avoid computation determine
 - What continuous inputs (if any) maintain safety
 - What discrete jumps (if any) are safe to perform
 - Level set values & gradients provide all relevant data

