Reach Sets and the Hamilton-Jacobi Equation

Ian Mitchell
Department of Computer Science
The University of British Columbia

Joint work with
Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford)

research supported by
National Science and Engineering Research Council of Canada
DARPA Software Enabled Control Project
Reachable Sets: What and Why?

- One application: safety analysis
 - What states are doomed to become unsafe?
 - What states are safe given an appropriate control strategy?
Calculating Reach Sets

• Two primary challenges
 – How to represent set of reachable states
 – How to evolve set according to dynamics

• Discrete systems $x_{k+1} = \delta(x_k)$
 – Enumerate trajectories and states
 – Efficient representations: Binary Decision Diagrams

• Continuous systems $\frac{dx}{dt} = f(x)$?
Implicit Surface Functions

- Set $G(t)$ is defined implicitly by an isosurface of a scalar function $\phi(x, t)$, with several benefits
 - State space dimension does not matter conceptually
 - Surfaces automatically merge and/or separate
 - Geometric quantities are easy to calculate

$$\phi : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}$$

$$G(t) = \{x \in \mathbb{R}^n \mid \phi(x, t) \leq 0\}$$
Continuous Backward Reachable Sets

- Set of all states from which trajectories can reach some given target state
 - For example, what states can reach $G(t)$?

\[
\begin{align*}
\dot{x}(t) &= f(x(t)) \\
x(t) &\in G(0)
\end{align*}
\]
Why “Backward” Reachable Sets?

• To distinguish from forward reachable set
• To compute, run dynamics backwards in time from target set

\[\dot{x}(t) = -f(x(t)) \]

\[0 < t_1 < t_2 < t_3 \]

\[G(0) \subseteq G(t_1) \subseteq G(t_2) \subseteq G(t_3) \]
Reachable Sets (controlled input)

- For most of our examples, target set is unsafe
- If we can control the input, choose it to avoid the target set
- Backward reachable set is unsafe no matter what we do

\[
\dot{x}(t) = f(x(t), \nu(t))
\]

\[\forall \nu(.), x(t) \in G(0)\]
Reachable Sets (uncontrolled input)

- Sometimes we have no control over input signal
 - noise, actions of other agents, unknown system parameters
- It is safest to assume the worst case

Continuous System Dynamics
\[\dot{x}(t) = f(x(t), \nu(t)) \]

\[\exists \nu(\cdot), x(t) \in G(0) \]
Two Competing Inputs

- For some systems there are two classes of inputs $\mathbf{v} = (u, d)$
 - Controllable inputs $u \in U$
 - Uncontrollable (disturbance) inputs $d \in D$
- Equivalent to a zero sum differential game formulation
 - If there is an advantage to input ordering, give it to disturbances

Continuous System Dynamics

$\dot{x}(t) = f(x(t), u(t), d(t))$

$\forall u(\cdot), \exists d(\cdot), x(t) \in \mathcal{G}(0)$
Game of Two Identical Vehicles

- Classical collision avoidance example
 - Collision occurs if vehicles get within five units of one another
 - Evader chooses turn rate $|a| \leq 1$ to avoid collision
 - Pursuer chooses turn rate $|b| \leq 1$ to cause collision
 - Fixed equal velocity $v_e = v_p = 5$

\[
\begin{align*}
\frac{dx_p}{dt} &= v_p \cos \theta_p \\
\frac{dy_p}{dt} &= v_p \sin \theta_p \\
\frac{d\theta_p}{dt} &= b
\end{align*}
\]

evader aircraft (control) pursuer aircraft (disturbance)
Collision Avoidance Computation

- Work in relative coordinates with evader fixed at origin
 - State variables are now relative planar location \((x, y)\) and relative heading \(\psi\)

\[
\frac{d}{dt} \begin{bmatrix} x \\ y \\ \psi \end{bmatrix} = \begin{bmatrix} -v_e + v_p \cos \psi - ay \\ v_p \sin \psi - ax \\ b - a \end{bmatrix}
\]

Target set description

\[h(x) = \sqrt{x^2 + y^2} - 5 \]

evader aircraft (control)
pursuer aircraft (disturbance)
Evolving Reachable Sets

- Modified Hamilton-Jacobi partial differential equation

\[D_t \phi(x, t) + \min \left[0, \, H(x, D_x \phi(x, t)) \right] = 0 \]

with Hamiltonian:

\[H(x, p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} f(x, a, b) \cdot p \]

and terminal conditions:

\[\phi(x, 0) = h(x) \]

where

\[G(0) = \{ x \in \mathbb{R}^n \mid h(x) \leq 0 \} \]

and

\[\dot{x} = f(x, a, b) \]
Application: Softwalls for Aircraft Safety

• Use reachable sets to guarantee safety
• Basic Rules
 – Pursuer: turn to head toward evader
 – Evader: turn to head east
• Evader’s input is filtered to guarantee that pursuer does not enter the reachable set

joint work with Edward Lee & Adam Cataldo
Application: Collision Alert for ATC

- Use reachable set to detect potential collisions and warn Air Traffic Control (ATC)
 - Find aircraft pairs in ETMS database whose flight plans intersect
 - Check whether either aircraft is in the other’s collision region
 - If so, examine ETMS data to see if aircraft path is deviated
 - One hour sample in Oakland center’s airspace—
 - 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts
Validating the Numerical Algorithm

- Analytic solution for reachable set can be found [Merz, 1972]
 - Applies only to identical pursuer and evader dynamics
 - Merz’s solution placed pursuer at the origin, game is not symmetric
 - Analytic solution can be used to validate numerical solution
 - [Mitchell, 2001]
Hybrid System Reach Sets

Combining Continuous and Discrete Evolution
Why Hybrid Systems?

• Computers are increasingly interacting with external world
 – Flexibility of such combinations yields huge design space
 – Design methods and tools targeted (mostly) at either continuous or discrete systems
• Example: aircraft flight control systems

seven mode collision avoidance protocol
Hybrid Automata

- Discrete modes and transitions
- Continuous evolution within each mode

\[\sigma_1 = \text{initiate maneuver} \]

\[\dot{x} = f_A(x, v) \]

\[q_2 \]

\[t = \frac{\pi}{4} \]

\[\text{straight1} \]

\[\dot{x} = f_S(x, v) \]

\[q_1 \]

\[\text{arc1} \]

\[\dot{x} = f_S(x, v) \]

\[q_3 \]

\[t = T \]

\[\text{straight2} \]

\[\dot{x} = f_A(x, v) \]

\[q_4 \]

\[t = \frac{\pi}{2} \]

\[\text{arc2} \]

\[\dot{x} = f_S(x, v) \]

\[q_7 \]

\[t = \frac{\pi}{4} \]

\[\text{straight4} \]

\[\dot{x} = f_A(x, v) \]

\[q_6 \]

\[t = T \]

\[\text{arc3} \]

\[\dot{x} = f_S(x, v) \]

\[q_5 \]

\[t = \frac{\pi}{2} \]

\[\text{straight3} \]

\[f_S \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} -v + v \cos \psi \\ v \sin \psi \end{array} \right) \]

\[\text{dynamics in straight modes} \]

\[f_A \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} -v + v \cos \psi - x_2 \\ v \sin \psi + x_1 \end{array} \right) \]

\[\text{dynamics in arc modes} \]
Seven Mode Safety Analysis

unsafe set without maneuver

unsafe set with maneuver

unsafe set with choice of maneuver or not
Seven Mode Safety Analysis

- Ability to choose maneuver start time further reduces unsafe set

[Tomlin, Mitchell & Ghosh, 2001]
Computing Hybrid Reachable Sets

- Compute continuous reachable set in each mode separately
 - Uncontrollable switches may introduce unsafe sets
 - Controllable switches may introduce safe sets
 - Forced switches introduce boundary conditions

[Tomlin, Lygeros & Sastry, 2000]
Reach-Avoid Operator

- Compute set of states which reaches $G(0)$ without entering E

\[G(t) = \{ x \in \mathbb{R}^n \mid \phi_G(x, t) \leq 0 \} \]
\[E = \{ x \in \mathbb{R}^n \mid \phi_E(x) \leq 0 \} \]

- Formulated as a constrained Hamilton-Jacobi equation or variational inequality
 - [Mitchell & Tomlin, 2000]

\[D_t \phi_G(x, t) + \min [0, H(x, D_x \phi_G(x, t))] = 0 \]
subject to: $\phi_G(x, t) \geq \phi_E(x)$

- Level set can represent often odd shape of reach-avoid sets
Application: Discrete Abstractions

- It can be easier to analyze discrete automata than hybrid automata or continuous systems
 - Use reachable set information to abstract away continuous details
Application: Cockpit Display Analysis

- Controllable flight envelopes for landing and Take Off / Go Around (TOGA) maneuvers may not be the same.
- Pilot’s cockpit display may not contain sufficient information to distinguish whether TOGA can be initiated.

![Diagram showing controlled TOGA envelope and intersection with existing interface: flare (flaps extended, minimum thrust), TOGA (flaps retracted, maximum thrust), rollout (flaps extended, reverse thrust). Revised interface: flare (flaps extended, minimum thrust), TOGA (flaps retracted, maximum thrust), rollout (flaps extended, reverse thrust), slow TOGA (flaps extended, maximum thrust).]
Application: Aircraft Autolander

- Airplane must stay within safe flight envelope during landing
 - Bounds on velocity (V), flight path angle (γ), height (z)
 - Control over engine thrust (T), angle of attack (α), flap settings
 - Model flap settings as discrete modes of hybrid automata
 - Terms in continuous dynamics may depend on flap setting
- [Mitchell, Bayen & Tomlin, 2001]

\[
\begin{bmatrix}
\frac{d}{dt}V \\
\frac{d}{dt}\gamma \\
\frac{d}{dt}z
\end{bmatrix} = \begin{bmatrix}
m^{-1}[T \cos \alpha - D(\alpha, V) - mg \sin \gamma] \\
(mV)^{-1}[T \sin \alpha + L(\alpha, V) - mg \cos \gamma] \\
V \sin \gamma
\end{bmatrix}
\]
Landing Example: Discrete Model

• Flap dynamics version
 – Pilot can choose one of three flap deflections
 – Thirty seconds for zero to full deflection

• Implemented version
 – Instant switches between fixed deflections
 – Additional timed modes to remove Zeno behavior
Landing Example: No Mode Switches
Landing Example: Mode Switches

Envelopes

Safe sets
Landing Example: Synthesizing Control

• For states at the boundary of the safe set, results of reach-avoid computation determine
 – What continuous inputs (if any) maintain safety
 – What discrete jumps (if any) are safe to perform
 – Level set values & gradients provide all relevant data