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ABSTRACT
Of late online social networks have become popular, with inter-
est spanning various aspects including search, analysis/mining, and
their potential use for item barter exchange markets. The idea is
that users can leverage their social network for exchanging items
they possess with other users. The problem of generating recom-
mendations for item exchanges between users, consisting of syn-
chronous exchange cycles has been investigated[2]. In this paper,
we identify the shortcomings of the above exchange model and
propose an asynchronous model that makes use of credit points.
Rather than insist on exchanging items synchronously, we award
points to users whenever they give items to other users, which can
be redeemed later. Points and their redemption raise an issue of
fairness which intuitively means users who contribute more should
have a greater priority over others for receiving items they wish
for. We focus on fairness maximization and prove that it is NP-
hard and cannot be approximated within any factor in polynomial
time unless P=NP. We then develop efficient heuristic algorithms,
and experimentally demonstrate their effectiveness and scalability
on both synthetic data and a real dataset from readitswapit.co.uk.

1. INTRODUCTION
The advent of online social networks has sparked considerable

interest in several research problems such as link prediction, com-
munity detection, and network analytics. The specific problem of
interest to us in this paper is exchange markets where users lever-
age their network for exchanging items with other users. E.g., Jen
owns a DVD of Life of Pi and Mike owns a DVD of Brave. They
have watched their DVD and are interested in watching the other
movie. Rather than actually buy more DVDs, if they can find ex-
change partners, they can swap their DVDs and enjoy the movie
for free. Finding exchange partners can be facilitated by an online
social network provided in addition to users and their contacts, the
items (e.g., movies) they have and items they wish for are registered
and the system provides helpful suggestions based on available in-
formation. Indeed, there are several real instances of popular online
exchange markets such as readswapit.co.uk1, bookmooch.com, and
1Some of our experiments are based on the data set from this sys-
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swap.com. The first two enable exchanging of books between users
while the last one enables exchange of different types of goods and
services. In general, an item exchange could be more general than
a swap and can take the form of users exchanging items in a cycle
of length k ≥ 2.

In a recent paper [2], the authors had proposed a model for on-
line item exchange and motivated the problem of recommending
transactions to users. More precisely, users register an item list,
containing items they are willing to give other users and a wish list,
containing items they would like to receive. A recommendation
consists of a set of gives, telling each user which items in their item
list they should give to which user and a set of gets, telling the user
which items in their wish list they can receive from which user.
In this model, the only condition under which an item gets trans-
acted, i.e., changes hands, is when a set of users exchange items
in a cycle, in a synchronous manner. Thus, the recommendations
generated can maximize the number of items that change hands by
maximizing the number of items covered via cycles. We refer to
the above model for exchange markets as the synchronous model.

Unfortunately, the synchronous model suffers from the follow-
ing limitations. First, a user cannot receive an item she wishes for
unless and until she can find exchange partners with whom she can
trade items. In a dynamic network where item and wish lists may
get updated, it may take a long time before such exchange oppor-
tunities materialize. Second, given a window of time, the number
of items transacted may be limited, because the number of items
for which exchange opportunities exist based on the current set of
item and wish lists may be limited. We validate these intuitions
empirically in Section 4.

These observations motivate the question can we reduce the wait
times of users and increase the number of items transacted by do-
ing away with synchronization, decoupling giving and receiving
of items, and by linking them via credit points? To study this
question, we propose an asynchronous model for item exchange.
In order to give an incentive for users to give items to others, we
award credit points to item givers. Credit points can be redeemed
by users against items they wish to receive. Furthermore, every
user is started off with an initial credit so they can begin transact-
ing. In order to develop a basis for awarding and redeeming points,
we allow users to bid a price on the items they wish to receive and
name an asking price on the items they are willing to give. These
prices determine how credits get updated after each transaction. We
assume credits are not allowed to get lower than a certain threshold
(the threshold may be a very small negative number).

Given an instance of the asynchronous exchange markets model,
we study the problem of generating recommendations of transac-
tions for users. As in the synchronous model, we let a recommen-
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dation consist of a set of gives, saying what items a user should
give to whom and a set of gets, saying what items the user should
receive from whom. The set of gives and gets in a recommendation
can be represented as triples u i→ v, where u is asked to give item
i to v (and v is asked to receive i from u). Such a triple is feasible
iff i belongs to u’s item list and v’s wish list. A recommendation
consisting of feasible triples is consistent provided no user is asked
to give any item to more than one user and no user is asked to re-
ceive an item from more than one user. This corresponds to the
assumption that each user owns and wants at most one copy of any
item2.

The asking and bidding prices on items determine how the cred-
its of users are updated after a transaction.

A recommendation is maximal if adding any feasible triple to it
makes it inconsistent. The net value gain associated with a recom-
mendation is 0 minus the algebraic sum of changes to the credits of
all users. The intuition behind this definition is that the change to
the credit of a giver represents the net value loss of that user.

We define a notion of fairness for recommendations, based on
the intuition that users with a higher credit should have a greater
priority for receiving items. One measure of fairness of a recom-
mendation ρ is the maximum credit of any user once users perform
transactions following ρ. For the same initial credits, if a recom-
mendation ρi leads to a smaller maximum resulting credit than an-
other recommendation ρj , we say ρi is fairer than ρj .

In this paper, we make the following contributions3:
(1) We propose a credit-based asynchronous model for item ex-
changes. We show empirically that it takes a long time for the syn-
chronous model to catch up with a fraction of the transactions oc-
curring in a given time slot in the asynchronous model (Section 4).
(2) We show that generating recommendations that maximize fair-
ness is NP-hard and also that this problem is not approximable
within any factor, in polynomial time, unless P=NP. We propose
two heuristic algorithms for this purpose (Section 3).
(3) Finally, given that fairness maximization is not approximable,
we empirically validate the quality and scalability of our heuristic
algorithms. We report the results of an extensive set of experiments
we conducted (Section 4).

1.1 Related Work
Two main bodies of work are relevant to us – recommender sys-

tems and P2P networks.
Recommender Systems: Extensive work has been done in the area
of recommender systems [3]. A major distinction with our work is
that traditional recommender systems recommend (passive) items
while our system recommends (exchange) transactions. Further-
more, item recommendations made to different users are indepen-
dent, while transactions recommended to users of a system as a
whole must satisfy the conflict-free property [2]. In the current
work, we consider the combination of transaction recommenda-
tions together with credit points, using which users can ask prices
and place bids. This distinguishes our work from both the field of
traditional recommender systems and [2]. In particular, the model
we propose allows for asynchronous exchanges unlike[2]. In [10],
the authors propose to recommend transactions for a pair of users
by taking into consideration publicly agreed values of items. We
note that usually in exchange markets buyers and sellers have dif-
ferent valuation of the same item, thus it is difficult to adapt [10]
2If a user owns/wants more than one copy of an item she can place
it multiple times in her item/wish list
3A more comprehensive version of the paper with more contri-
butions can be found at http://www.cs.columbia.edu/
~zeinab/FairRecs/fair-recs-fullversion.pdf

for settings where valuations of items vary. Furthermore, the trans-
actions recommended in [10] is still based on current item lists of
two users (thus synchronized), so unlike our credit-based model,
user has to wait till there exists another user who can trasact with
him/her.
P2P Networks: Newer peer to peer applications such as BitTorrent
incorporate some kind of incentive mechanism to reward sharing
peers: a built-in tit-for-tat mechanism. The intuition behind such a
design is that it will encourage upload and lead to a fair and efficient
allocation of bandwidth among the peers. In [11], the authors prove
that the bandwidth allocation converges to a market equilibrium.

There have been several studies on fairness measures in resource
allocation problem [8, 6, 1]. We have chosen the notion of max-min
fairness [9]. There are several approximation algorithms known for
this particular problem [4, 5]. However none of these results apply
in our framework as we have shown that our fairness problem is
inapproximable within any factor.

2. THE MODEL
We first define an exchange market, which will serve as a basis for
the problems studied in this paper. An exchange market is a 6-tuple
E = (U, I, S,W,A,B), where U is a set of users, I a set of items,
S and W are functions specifying item lists and wish lists, and
A,B are functions specifying asking prices and bids. More pre-
cisely, for each user u, S(u) ⊆ I is the item list of u andW (u) ⊆ I
is the wish list of u. We will denote S(u) andW (u) as Su andWu

for convenience. For each user u, item i ∈ Su, Aui denotes the
asking price of i by u and for each item i ∈ Wu, Bui denotes u’s
bid on i. The bid captures the number of credits a user is willing
to spend for receiving an item in her wish list. The asking price
captures the number of credits she would like to get in return for
giving an item from her item list. Given an exchange market, an
exchange (transaction) is a triple u i→ v. This exchange is feasible
provided i ∈ Su ∩Wv . We use the terms exchange and transaction
interchangeably.

An exchange market automatically induces a set C of all feasible
transactions. A recommendation is a subset of feasible transactions
ρ ⊂ C such that ρ is consistent, i.e., there do not exist two triples
u

i→ v and u i→ w in ρ: v 6= w, and there do not exist two triples
u

i→ v andw i→ v in ρ: u 6= w. That is, no user is asked to give the
same item to two different users nor any user is promised the same
item from two different users. We only consider consistent recom-
mendations in what follows. The notion of a recommendation for a
user, defined next, is convenient in our discussions.

DEFINITION 1. Let ρ be a consistent recommendation. Let u
be a user. Then the recommendation for u is πu(ρ) = (Gu, Ru),
defined as Gu = {i | ∃v : u

i→ v ∈ ρ} and Ru = {i | ∃v :

v
i→ u ∈ ρ}. By the recommendation set of ρ, we mean the set of

pairs {πu(ρ) | u ∈ U} and denote it π(ρ).

A recommendation set can also be specified independently of a
recommendation, simply by listing for each user, the items she is
supposed to give and items she is supposed to receive. Let RS =
{(Gu, Ru) | u ∈ U} be a recommendation set specified in this
way. Then a recommendation ρ implements this recommendation
set iff ∀u ∈ U : (Gu, Ru) = πu(ρ).
Credit System: In our proposed system, a recommendation gener-
ation algorithm is run periodically and the set of potential feasible
exchanges are discovered. Users involved in these potential ex-
changes are notified by the system. When a transaction is done the
exchanged items are removed from the item lists and wish lists, and



the system is updated. Each user u collects credit for giving items,
and can redeem credit points to receive some items. The credit sys-
tem works as follows: when a user gives away an item their credit
will be increased by the asking price for that particular item and
when a user receives an item in realization of a wish, their credit
decreased by the bid they have made on that item.
Initialization: We initialize the credit of each new user in the sys-
tem to a small fixed value (as it is done in many similar systems
based on credit points, like Yahoo! Answers which sets the initial
credit to 100).
Updating Rules: Consider a transaction T at time t in which a user
u gives an item i to a user v, i.e, item i is in item list of u and in
wish list of v. We should update Cu(t+ 1) = Cu(t) +Aui(t) and
Cv(t+ 1) = Cv(t)−Bvi(t).

In order to encourage early participation in the market, we up-
date the credit of users after each time step as follows: Cu(t+1) =
Cu(t) ∗ (1 + δ) where δ is a small constant (interest rate), e.g.,
δ = 0.001. This will encourage users to participate in the system
as early as possible.

The bid Bui and asking price Aui model the value gain or value
loss of users for receiving and giving the items, respectively.

Notice that the model introduced allows users to say, e.g., a copy
of Hugo DVD has a value equal to the combined worth (for that
user) of The Help and any one classical music CD, by placing the
bids and asking prices appropriately.

3. FAIRNESS MAXIMIZATION
The problem of fairness maximization is defined as follows:

PROBLEM 1. Given an exchange market E = (U, I, S,W,A,B),
the goal is to find a maximal recommendation set (W ′, S′) that
minimizes the maximum credit.

Indeed it is not difficult to show that the MAX-FAIR problem is
NP-hard as it is harder than the well-known NP-complete problem
of minimum makespan scheduling for unrelated machine schedul-
ing [7]. However, in the following, we prove a stronger result that
this problem is not even approximable within any factor.

THEOREM 1. The MAX-FAIR problem is NP-complete and not
approximable, in PTIME, within any factor α ≥ 1, unless P = NP.
This hardness result holds even in the special case of the problem
where for each item i all the bids and prices on the item lists and
wish lists of all users are the same, i.e., for any two users u, v for
which i ∈Wu and i ∈ Sv , we have Aui = Bvi = Pi.

PROOF. Suppose there is an α-approximation algorithm A for
the MAX-FAIR problem for any α > 1. That is, if the opti-
mum solution for MAX-FAIR is vopt, then algorithm A produces
a solution v s.t. vopt ≤ v ≤ α × vopt. We will show that us-
ing such an algorithm, the NP-complete problem of subset sum
can be solved in PTIME. Without loss of generality, we consider
only instances of subset sum in which all weights are larger than
or equal to 1. Clearly, the problem remains NP-complete under
this restriction. Let I = {a1, . . . , an} be such an instance. Let
B = Σ1≤i≤nai/2. Create an instance J of MAX-FAIR with users
1, . . . , n, n + 1, n + 2 and items 1, . . . , n. User i has item list
Si = {i} and wish list Wi = {}, 1 ≤ i ≤ n and user j has item
list Sj = {} and wish list Wj = {1, . . . , n}, n+ 1 ≤ j ≤ n+ 2.
The initial credit of user i is −ai, 1 ≤ i ≤ n and of user j is
B + 1/α, n+ 1 ≤ j ≤ n+ 2. We have the following claim.

Claim 1:.

I is a YES-instance of subset sum iff the optimal solution of J ,
i.e., the minimum possible value of the maximum credit of any user
after a transaction is 1/α.

PROOF. Suppose I is a YES-instance. Then there is a partition
of I into I1 ∪ I2 such that SUM(I1) = SUM(I2) = B. Then each
of the users 1, . . . , n can give their item to user n + 1 or n + 2,
depending on whether the user’s index is in I1 or I2. It is easy to
see after this set of transactions, the first n users have a resultant
credit of 0 whereas the last two have a credit of 1/α each. It is not
hard to see that the minimum possible value of the maximum credit
of a user after performing any set of transactions on the instance J
cannot be less than 1/α.

Suppose the optimum solution to J is 1/α. Since each of the first
n users can only give away their corresponding item, the maximum
value of their resultant credit is 0. Thus, the optimum value 1/α
(which is positive) must be attained by one or both of the last two
users, say n+ 1, without loss of generality. This is only possible if
user n+ 1 received a set of items from the first n users whose total
value equals B. This implies I must be a YES-instance.

Now, given any instance I of subset sum, we can run our α-
approximation algorithm A on the corresponding instance J of
MAX-FAIR. The value v returned by A is vopt ≤ v ≤ α× vopt.

Claim 2:.
I is a YES-instance of subset sum iff 1/α ≤ v ≤ 1.

PROOF. If I is a YES-instance, vopt = 1/α, so clearly, 1/α ≤
v ≤ 1/α×α. If I is a NO-instance, then clearly vopt > 1/α. Since
all weights ai ≥ 1, we know vopt ≥ β + 1/α, where β ≥ 1. By
the property of the approximation algorithm, we have β + 1/α ≤
v ≤ α(β + 1/α) = αβ + 1. Since the two intervals [1/α, 1] and
[β + 1/α, αβ + 1] are disjoint, the claim follows.

It is thus clear that using algorithm A, we can distinguish, in
PTIME, between YES- and NO-instances of subset sum. The the-
orem follows.

In view of this hardness result, we propose two heuristic algo-
rithms to solve MAX-FAIR; one is a simple and fast greedy algo-
rithm, and the other is based on applying randomized rounding to
a linear programming formulation of the problem.

3.1 Greedy Algorithm
A simple heuristic algorithm for the MAX-FAIR problem is to

assign item exchanges among users one by one, and at each step
find the one item transfer that minimizes the maximum credit af-
ter this item transfer. In other words, at each step, we examine all
possible item transfers for items i ∈ Su ∩Wv for any two users
u and v, and find the triple u, v, i such that after item transfer, the
maximum credit would be the minimum possible. To do so, we sort
the users in the decreasing order of their credit, and try transferring
items from users at the beginning of the list. We keep doing this in
a loop until no other exchange is possible. This will lead to a rec-
ommendation and the algorithm outputs the recommendation sets
by projecting it on the various users. Since we continue finding ex-
changes until no more exchange can be found, the recommendation
set is maximal as required. The corresponding pseudo-code for this
algorithm is straightforward and is omitted.

3.2 An LP Rounding Heuristic
In this section, we develop an integer linear programming formu-

lation of the MAX-FAIR problem as shown below. Recall that C



denotes the set of all feasible exchanges for a given exchange mar-
ket. For a triple u i→ v ∈ C, let xuvi = 1 if we assign item i from
u’s item list to user v, and xuvi = 0 otherwise. Also, we let vari-
able tu be a variable that corresponds to the credit of user u after
the assignment of this step, and let variable t denote maxu∈U tu.
Finally, let U be the set of users and I be set of items.

min t subject to:

t ≥ tu ∀u ∈ U (1)

tu =
∑
i∈Su

∑
v:u

i→ v∈C

xuviAui −

∑
i∈Wu

∑
v:v

i→ u∈C

xvuiBui + Cu ∀u ∈ U (2)

∑
v:u

i→ v∈C

xuvi ≤ 1 ∀u ∈ U, i ∈ Su (3)

∑
v:v

i→ u∈C

xvui ≤ 1 ∀u ∈ U, i ∈ Wu (4)

xuvi +
∑

v′:v′
i→ v∈C,v′ 6=u

xv′vi +

∑
v′:u

i→ v′∈C,v′ 6=v

xuv′i ≥ 1 ∀u i→ v ∈ C (5)

xuvi ∈ {0, 1} ∀u i→ v ∈ C (6)

The first inequality indicates that t is the maximum credit of
users. The second inequality quantifies the credit of user u after
the assignment. The third inequality models the constraint that each
item i in the item list of user u can be assigned to somebody at most
once, and the fourth inequality models the fact that each item i in
the with list of user u can be received by user u. Finally, the fifth
inequality models the maximality of the solution, i.e, the fact that
if user u does not give an item i ∈Wv to user v, then either user u
gives i to somebody else, or user v gets it from somebody else.

Next, we give an intuitive description of the algorithm. Consider
an LP relaxation of the above integer linear program in which we
relax each variable 0 ≤ xuvi ≤ 1 for each u i→ v ∈ C. Con-
sider a solution x∗ to this LP. In the LP relaxation, we can interpret
the variable xuvi to be the extent to which user u gives item i to
user v. In other words, we use the value x∗uvi as the probability
of transferring item i from u to v. In order to find a feasible solu-
tion, we need to perform a rounding algorithm. In fact, we perform
a natural randomized rounding procedure: we set xuvi to 1 with a
probability proportional to x∗uvi (i.e,

x∗
uv′i
Yui

in the algorithm below).
After performing this natural rounding procedure, for one user v,
there might be several users u for which xuvi = 1. In this case, v
receives item i from several users which is not valid. To obtain a
feasible solution, we have to choose only one user u′ among users
u for which xuvi = 1, and keep xu′vi = 1, and make the rest of
variables xuvi zero. We iterate the above process until we find a
maximal solution (i.e, no other item exchange is possible for solu-
tion x∗ and as a result, the solution x did not change in the last step
of the algorithm. Here is a formal description of the above idea:

1. Initialize x = 0.

2. Solve the LP relaxation and find an optimal solution x∗.

3. For each user u and item i ∈ Su such that
∑

v xuvi = 0,

(a) Let Zvi =
∑

u xuvi.

(b) Let Yui =
∑

v:Zvi=0 x∗uvi.

(c) If Yui > 0 then among all users v for which x∗uvi > 0 and Zvi =
0,

i. Choose one user v′ with probability
x∗
uv′i
Yui

ii. Set xuv′i = 1, and Su = Su\{i}.

4. For each item i and each v such that i ∈ Wv ,

(a) Let set Tv be the set of users u for which xuvi became one in this
round.

(b) If |Tv| = 1, then for each v′ ∈ Tv , x∗
v′vi

= 0, and Wv =

Wv\{i} (finalize transfer v′ i→ v),

(c) else

i. Choose one user v′ ∈ Tv with prob 1
|Tv|

.

ii. For each u 6= v′ and u ∈ Tv , set xuvi = 0, and Su =
Su ∪ {i}.

iii. For v′, let x∗
v′vi

= 0, and Wv = Wv\{i} (finalize transfer

v′
i→ v).

5. If any new item transfer was assigned in the last round, go back to 3 to start a
new round, otherwise output x and terminate.

4. EXPERIMENTAL EVALUATION
Goals. The goals of our experiments are as follows:

(1) To examine the quality of the results found by our heuristic
algorithms for MAX-FAIR, a problem we showed to be hard to
approximate within any factor.
(2) To measure the advantages of the asynchronous model over the
synchronous model.
(3) To study the scalability of the heuristic algorithms and also the
impact of the parameters used in the experiments on the perfor-
mance of the algorithms.

All experiments are done on a Windows machine with a 2.4 GHz
CPU, 8GB of Memory, and 320GB of SCSI hard disk.

Dataset. We perform our experiments on both synthetic datasets
and a real dataset adapted from a real exchange market application.
Real Data: We have obtained a recent snapshot of the data from
ReadItSwapIt.co.uk. ReadItSwapIt, a popular online book exchange
website located in United Kingdom, allows book lovers to swap
used books with each other. In this dataset, there are more than
50,000 users, 270,000 active used books in users’ item lists and
170,000 books in users’ wish lists.

In Figure 1, we show some properties of the ReadItSwapIt dataset.
From Figure 1 (a) and (b), it is clear that the number of times that a
book occurs in an item list and in a wish list both follows a power-
law distribution. And in Figure 1 (d), we have shown that size of
wish list also follows the power-law distribution. Although the size
of item list as shown in Figure 1 (c) may not exactly follow a power-
law distribution, we can still infer from the figure that the number
of item lists having a specific size has an exponential decay behav-
ior as the size grows. These observations validate our intuition on
how to generate synthetic dataset, discussed below.
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Figure 1: Distribution of: (a) occurrences of books in item list,
(b) occurrences of books in wish list, (c) size of item list, (d) size
of wish list.

Synthetic Data: The intuition behind the data generation is that
the popularity of items in wish lists and item lists follows some



power law distributions, i.e., there are many items which are wished
for or provided by a small number of people, and there is a small
number of items which are provided by or wished for by many
people. To achieve this distribution, first, we generate some power
law distributions with a given power as the parameter. We actually
examined four different powers of 0.25, 0.5, 0.75 and 1. We use
one of these power law distributions for the popularity of the items,
i.e., the number of people who own an item. We also generate a
set of item list sizes based on some other power law vectors (this is
justified by the fact that the size of wish lists and item lists should
also follow some power law distribution). We also generate a vector
of wish list sizes in direct correlation with the vector of item list
sizes. The intuition here is that if a user provides more items, then
probably she has larger wish lists as well. This intuition need not
be true in all cases, so we add some noise to this process with a
small probability. The initial credit score for users for experiments
is set to 100. The asking price and bid values are also set as uniform
random numbers between 5 and 50.

Synchronous vs. Asynchronous.
Here, we explore the advantage of the asynchronous model w.r.t.
both the number of transactions completed over a given time slot
and the catchup time for synchronous model under a very general
setting. We define the catchup time to be the number of time slots
required for the synchronous model to achieve a fraction of the
transactions occurring in one time slot in the asynchronous model.

Our simulation of the runtime environment of an exchange mar-
ket is as follows: at each fixed time slot, we generate several sets of
items, whose arrival pattern follows Gaussian distribution. 4 The
number of transactions completed in the synchronous and asyn-
chronous model are calculated using the above analysis result. Here
in this experiment, the number of users is set to 500 and 600, and
for the Gaussian distribution, we have experimented with the envi-
ronment under the setting of µ = 20, σ = 10 and µ = 10, σ = 10.

In Figure 2, under various settings, we show the ratio of (the
upper bound on the) number of transactions completed in the syn-
chronous model over the asynchronous model at different time slots.
It can be observed from the figure that the ratio decreases as the
number of users increases, and when µ of the Gaussian distribution
increases, which means the number of items generated at each time
slot increases, the ratio will increase.

To better examine the “time latency” of the synchronous model,
we calculate the catchup time, the number of time slots needed to
catch up with a certain percentage (e.g., 5% to 50%) of transactions
completed in the asynchronous model (see Figure 3). Similar to
the ratio of transactions completed at different time slots shown in
Figure 2, we can also observe from Figure 3 that the catchup time
increases as the number of users increases, and the catchup time
decreases as the µ of Gaussian distribution increases. And we can
easily observe that under the best setting, it takes more than 50
time slots for the synchronous model to catch up with 50% of the
total transactions done under the asynchronous model when λ = 1
(where λ is the number of times an item is put in wish lists, λ ≥ 1)
, and even when λ = 3, to catch up with the same amount, it takes
more than 10 time slots.

We have observed from the ReadItSwapIt dataset (Figure 1(b))
that the number of times an item occurs in users’ wish lists follows
the power law distribution, and more than 90% of all items are
wished by just one user, implying in practice the average value of λ
may be closer to 1. From Figure 2 and Figure 3, we observe that the
asynchronous model has a great advantage over the synchronous
model w.r.t. both ratio of number of transactions completed and
4Other distributions are possible; note that this is orthogonal to the
item and wish lists following power law.
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(a) NU=500, µ=20, =10
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(c) NU=500, µ=10, =10
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Figure 2: Comparison of asynchronous model and synchronous
model on ratio of transactions completed

catchup time, thus clearly establishing an empirical motivation for
studying the asynchronous model.

Fairness
Since MAX-FAIR is inapproximable, there is a need to evaluate
the quality (i.e., accuracy) of our heuristic algorithms. We im-
plemented the integer linear program (ILP) formulation of MAX-
FAIR using GNU Linear Program Kit (GLPK) and the LP-rounding
and greedy algorithms using MATLAB. The experiments were run
on a computer with a 2.40GHz Intel Core 2 Duo CPU and 3 GB
of RAM under Windows Vista. We ran our algorithms on three
different data sets with 100, 500 and 1000 users. The data were
generated with four different values for α = 0.25, 0.5, 0.75 and 1,
where α is the skew factor of the power law.

We solved the ILP for two small datasets including 10 users, 50
items and 20 users, 100 items. ILP gives us the optimal solution
however its running time is exponential. We compare the results
of the three algorithms, depicted in Figure 4. Notice that the per-
formance (maximum credit value) achieved by LP-rounding is very
close to the optimal value of ILP. Greedy’s performance is a little
worse, however it is within a factor of 2.3 of the optimum.

Figure 5 shows the results of the LP, LP-rounding and the greedy
heuristic for datasets of size 100, 500, and 1000 respectively. The
total number of items in each case is 5 times the number of users.
The numbers indicate the maximum credit, for various values of α
for different algorithms. The LP relaxation discussed in the previ-
ous sections gives a polynomial-time computable lower bound on
the optimal value of the fairness optimization problem. In fact, we
use this lower bound to evaluate the performance (i.e., quality) of
our heuristic algorithms. As can be seen, the LP-rounding has a
better performance than greedy. Also, we can observe that as α in-
creases (in most cases), the algorithms’ performance also improves.

Scalability
So far, our focus has been on the quality of the results returned by
LP-rounding and greedy. To evaluate scalability, we note that in
practice, the numbers of users and items may run in tens to hun-
dreds of thousands. Since the size of the LP that needs to be solved
is correspondingly huge, we restrict the scalability evaluation to the
greedy algorithm, since the free LP solver we have access to cannot
scale up to that size.
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Figure 3: Comparison of asynchronous model and synchronous
model on catchup time.
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Figure 4: Performance of the heuristics compared to the opti-
mal solution given by ILP on various datasets

Our scalability experiments were conducted on the real data set
– ReadItSwapIt, ReadItSwapIt is a synchronous exchange system
so its dataset does not contain pricing and credit information, so
we synthetically generated asking price, bidding price and initial
credits, using a procedure similar to that for our synthetic data gen-
eration.

The run times correspond to the greedy heuristic algorithm in
case of MAX-FAIR (see Figure 6). As can be seen from this figure,
the Greedy algorithms scales well for large data sets.

5. FINAL REMARKS
In a recent paper [2], the problem of exchange markets for items

in an online social network of users was studied, where exchanges
are required to be synchronous. We pointed out the shortcomings
of this model. In this paper, we proposed an asynchronous system
using virtual credit points. We empirically demonstrated that both
w.r.t. number of transactions done in a time slot and w.r.t. catchup
time, the asynchronous model significantly outperforms the syn-
chronous one. Introducing virtual points to the system raises the
issue of fairness and motivates the problem of fairness maximiza-
tion (MAX-FAIR). We showed that MAX-FAIR is NP-hard and is
not approximable within any factor, unless P = NP. We proposed a
simple greedy algorithm and a LP rounding heuristic for this prob-
lem and evaluated their quality empirically. Our experiments show
both heuristics have a reasonable quality. While LP-rounding has
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Figure 5: Performance of different algorithms on datasets of
different sizes
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Figure 6: Scalability of the Greedy Algorithm

better quality, greedy is much more efficient and scalable.
Clearly, in exchange markets, reputation of users may affect the

preference of users for transacting with other users. Inferring rep-
utation and incorporating it in the context of recommendations is
an important direction worthy of research. And further research
is needed to devise strategies for suggesting “optimal” asking and
bidding prices.
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